Alberti KG, Zimmet P, Shaw J. International Diabetes Federation: a consensus on Type 2 diabetes prevention. Diabet Med. 2007;24:451–63.
Article
CAS
PubMed
Google Scholar
Pulgaron ER, Delamater AM. Obesity and type 2 diabetes in children: epidemiology and treatment. Curr Diab Rep. 2014;14:508.
Article
PubMed
PubMed Central
Google Scholar
Skinner AC, Perrin EM, Moss LA, Skelton JA. Cardiometabolic risks and severity of obesity in children and young adults. N Engl J Med. 2015;373:1307–17.
Article
PubMed
Google Scholar
Rhodes ET, Prosser LA, Hoerger TJ, Lieu T, Ludwig DS, Laffel LM. Estimated morbidity and mortality in adolescents and young adults diagnosed with Type 2 diabetes mellitus. Diabet Med. 2012;29:453–63.
Article
CAS
PubMed
Google Scholar
Amutha A, Mohan V. Diabetes complications in childhood and adolescent onset type 2 diabetes—a review. J Diabetes Complicat. 2016;30:951–7.
Article
PubMed
Google Scholar
American Diabetes Association. Prevention or delay of type 2 diabetes. Diabetes Care. 2016;39(Suppl):S36–8.
Mechanick JI, Hurley DL, Garvey WT. Adiposity based chronic disease as a new diagnostic term: American Association of Clinical Endocrinologists and the American College of Endocrinology Position Statement. Endocr Pract. 2017;23:327–8.
Google Scholar
Steinberger J, Daniels SR. Obesity, insulin resistance, diabetes, and cardiovascular risk in children: an American Heart Association scientific statement from the Atherosclerosis, Hypertension, and Obesity in the Young Committee (Council on Cardiovascular Disease in the Young) and the Diabetes Committee (Council on Nutrition, Physical Activity, and Metabolism). Circulation. 2003;107:1448–53.
Article
PubMed
Google Scholar
Di Bonito P, Pacifico L, Chiesa C, Valerio G, Miraglia Del Giudice E, Maffeis C, Morandi A, Invitti C, Licenziati MR, Loche S, et al. Impaired fasting glucose and impaired glucose tolerance in children and adolescents with overweight/obesity. J Endocrinol Invest. 2017;40:409–16.
Article
PubMed
Google Scholar
Molnar D. The prevalence of the metabolic syndrome and type 2 diabetes mellitus in children and adolescents. Int J Obes Relat Metab Disord. 2004;28 Suppl 3:S70–4.
Article
PubMed
Google Scholar
Onge ES, Miller SA, Motycka C, DeBerry A. A review of the treatment of type 2 diabetes in children. J Pediatr Pharmacol Ther. 2015;20:4–16.
PubMed
PubMed Central
Google Scholar
Verbestel V, De Henauw S, Barba G, Eiben G, Gallois K, Hadjigeorgiou C, Konstabel K, Maes L, Marild S, Molnar D, et al. Effectiveness of the IDEFICS intervention on objectively measured physical activity and sedentary time in European children. Obes Rev. 2015;16 Suppl 2:57–67.
Article
PubMed
Google Scholar
Wang Y, Cai L, Wu Y, Wilson RF, Weston C, Fawole O, Bleich SN, Cheskin LJ, Showell NN, Lau BD, et al. What childhood obesity prevention programmes work? A systematic review and meta-analysis. Obes Rev. 2015;16:547–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reinehr T. Type 2 diabetes mellitus in children and adolescents. World J Diabetes. 2013;4:270–81.
Article
PubMed
PubMed Central
Google Scholar
Lobstein T, Baur L, Uauy R. Obesity in children and young people: a crisis in public health. Obes Rev. 2004;5 Suppl 1:4–104.
Article
PubMed
Google Scholar
Malik VS, Hu FB. Fructose and cardiometabolic health: what the evidence from sugar-sweetened beverages tells us. J Am Coll Cardiol. 2015;66:1615–24.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rouhani MH, Haghighatdoost F, Surkan PJ, Azadbakht L. Associations between dietary energy density and obesity: a systematic review and meta-analysis of observational studies. Nutrition. 2016;32:1037–47.
Article
PubMed
Google Scholar
Mollard RC, Senechal M, MacIntosh AC, Hay J, Wicklow BA, Wittmeier KD, Sellers EA, Dean HJ, Ryner L, Berard L, McGavock JM. Dietary determinants of hepatic steatosis and visceral adiposity in overweight and obese youth at risk of type 2 diabetes. Am J Clin Nutr. 2014;99:804–12.
Article
CAS
PubMed
Google Scholar
Cook LT, O’Reilly GA, Goran MI, Weigensberg MJ, Spruijt-Metz D, Davis JN. Vegetable consumption is linked to decreased visceral and liver fat and improved insulin resistance in overweight Latino youth. J Acad Nutr Diet. 2014;114:1776–83.
Article
PubMed
PubMed Central
Google Scholar
House BT, Cook LT, Gyllenhammer LE, Schraw JM, Goran MI, Spruijt-Metz D, Weigensberg MJ, Davis JN. Meal skipping linked to increased visceral adipose tissue and triglycerides in overweight minority youth. Obesity (Silver Spring). 2014;22:E77–84.
Article
CAS
PubMed
Google Scholar
House BT, Shearrer GE, Miller SJ, Pasch KE, Goran MI, Davis JN. Increased eating frequency linked to decreased obesity and improved metabolic outcomes. Int J Obes (Lond). 2015;39:136–41.
Article
CAS
Google Scholar
Henderson M, Benedetti A, Barnett TA, Mathieu ME, Deladoey J, Gray-Donald K. Influence of adiposity, physical activity, fitness, and screen time on insulin dynamics over 2 years in children. JAMA Pediatr. 2016;170:227–35.
Article
PubMed
Google Scholar
Sayin FK, Buyukinan M. Sleep duration and media time have a major impact on insulin resistance and metabolic risk factors in obese children and adolescents. Child Obes. 2016;12:272–8.
Article
PubMed
Google Scholar
De Bernardi Rodrigues AM, da Silva CC, Vasques AC, Camilo DF, Barreiro F, Cassani RS, Zambon MP, Antonio MA, Geloneze B. Association of sleep deprivation with reduction in insulin sensitivity as assessed by the hyperglycemic clamp technique in adolescents. JAMA Pediatr. 2016;170:487–94.
Article
PubMed
Google Scholar
Wilfley DE, Staiano AE, Altman M, Lindros J, Lima A, Hassink SG, Dietz WH, Cook S. Improving access and systems of care for evidence-based childhood obesity treatment: conference key findings and next steps. Obesity (Silver Spring). 2017;25:16–29.
Article
Google Scholar
Elovainio M, Pulkki-Raback L, Hakulinen C, Lehtimaki T, Jokinen E, Ronnemaa T, Mikkila V, Tossavainen P, Jula A, Hutri-Kahonen N, et al. Psychosocial environment in childhood and body mass index growth over 32 years. Prev Med. 2017;97:50–5.
Article
PubMed
Google Scholar
Olive LS, Telford RM, Byrne DG, Abhayaratna WP, Telford RD. Psychological distress leads to reduced physical activity and fitness in children: the Australian longitudinal LOOK study. J Behav Med. 2016;39:587–98.
Article
CAS
PubMed
Google Scholar
Rankin J, Matthews L, Cobley S, Han A, Sanders R, Wiltshire HD, Baker JS. Psychological consequences of childhood obesity: psychiatric comorbidity and prevention. Adolesc Health Med Ther. 2016;7:125–46.
Article
PubMed
PubMed Central
Google Scholar
Wilkie HJ, Standage M, Gillison FB, Cumming SP, Katzmarzyk PT. Multiple lifestyle behaviours and overweight and obesity among children aged 9–11 years: results from the UK site of the International Study of Childhood Obesity, Lifestyle and the Environment. BMJ Open. 2016;6:e010677.
Article
PubMed
PubMed Central
Google Scholar
Nemet D, Barkan S, Epstein Y, Friedland O, Kowen G, Eliakim A. Short- and long-term beneficial effects of a combined dietary-behavioral-physical activity intervention for the treatment of childhood obesity. Pediatrics. 2005;115:e443–9.
Article
PubMed
Google Scholar
Pivovarov JA, Taplin CE, Riddell MC. Current perspectives on physical activity and exercise for youth with diabetes. Pediatr Diabetes. 2015;16:242–55.
Article
CAS
PubMed
Google Scholar
Marson EC, Delevatti RS, Prado AK, Netto N, Kruel LF. Effects of aerobic, resistance, and combined exercise training on insulin resistance markers in overweight or obese children and adolescents: a systematic review and meta-analysis. Prev Med. 2016;93:211–8.
Article
PubMed
Google Scholar
Davis CL, Pollock NK, Waller JL, Allison JD, Dennis BA, Bassali R, Melendez A, Boyle CA, Gower BA. Exercise dose and diabetes risk in overweight and obese children: a randomized controlled trial. JAMA. 2012;308:1103–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Panera N, Gnani D, Crudele A, Ceccarelli S, Nobili V, Alisi A. MicroRNAs as controlled systems and controllers in non-alcoholic fatty liver disease. World J Gastroenterol. 2014;20:15079–86.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campion J, Milagro FI, Martinez JA. Individuality and epigenetics in obesity. Obes Rev. 2009;10:383–92.
Article
CAS
PubMed
Google Scholar
Tang X, Tang G, Ozcan S. Role of microRNAs in diabetes. Biochim Biophys Acta. 2008;1779:697–701.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dehwah MA, Xu A, Huang Q. MicroRNAs and type 2 diabetes/obesity. J Genet Genomics. 2012;39:11–8.
Article
CAS
PubMed
Google Scholar
Ortega FJ, Mercader JM, Moreno-Navarrete JM, Rovira O, Guerra E, Esteve E, Xifra G, Martinez C, Ricart W, Rieusset J, et al. Profiling of circulating microRNAs reveals common microRNAs linked to type 2 diabetes that change with insulin sensitization. Diabetes Care. 2014;37:1375–83.
Article
CAS
PubMed
Google Scholar
Abente EJ, Subramanian M, Ramachandran V, Najafi-Shoushtari SH. MicroRNAs in obesity-associated disorders. Arch Biochem Biophys. 2016;589:108–19.
Article
CAS
PubMed
Google Scholar
Parrizas M, Brugnara L, Esteban Y, Gonzalez-Franquesa A, Canivell S, Murillo S, Gordillo-Bastidas E, Cusso R, Cadefau JA, Garcia-Roves PM, et al. Circulating miR-192 and miR-193b are markers of prediabetes and are modulated by an exercise intervention. J Clin Endocrinol Metab. 2015;100:E407–15.
Article
CAS
PubMed
Google Scholar
Khalyfa A, Kheirandish-Gozal L, Bhattacharjee R, Khalyfa AA, Gozal D. Circulating microRNAs as potential biomarkers of endothelial dysfunction in obese children. Chest. 2016;149:786–800.
Article
PubMed
Google Scholar
American Diabetes Association. Type 2 diabetes in children and adolescents. American Diabetes Association. Diabetes Care. 2000;23:381–9.
Ferguson MA, Gutin B, Le NA, Karp W, Litaker M, Humphries M, Okuyama T, Riggs S, Owens S. Effects of exercise training and its cessation on components of the insulin resistance syndrome in obese children. Int J Obes Relat Metab Disord. 1999;23:889–95.
Article
CAS
PubMed
Google Scholar
Owens S, Gutin B, Allison J, Riggs S, Ferguson M, Litaker M, Thompson W. Effect of physical training on total and visceral fat in obese children. Med Sci Sports Exerc. 1999;31:143–8.
Article
CAS
PubMed
Google Scholar
Medrano M, Maiz E, Maldonado-Martin S, Arenaza L, Rodriguez-Vigil B, Ortega FB, Ruiz JR, Larrarte E, Diez-Lopez I, Sarasua-Miranda A, et al. The effect of a multidisciplinary intervention program on hepatic adiposity in overweight-obese children: protocol of the EFIGRO study. Contemp Clin Trials. 2015;45:346–55.
Article
CAS
PubMed
Google Scholar
Keskin M, Kurtoglu S, Kendirci M, Atabek ME, Yazici C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics. 2005;115:e500–3.
Article
PubMed
Google Scholar
Wallace TM, Levy JC, Matthews DR. Use and abuse of HOMA modeling. Diabetes Care. 2004;27:1487–95.
Article
PubMed
Google Scholar
NHBPEP: National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114:555–76.
Article
Google Scholar
Wittmeier KD, Wicklow BA, MacIntosh AC, Sellers EA, Ryner LN, Serrai H, Gardiner PF, Dean HJ, McGavock JM. Hepatic steatosis and low cardiorespiratory fitness in youth with type 2 diabetes. Obesity (Silver Spring). 2012;20:1034–40.
Article
CAS
Google Scholar
Alderete TL, Toledo-Corral CM, Goran MI. Metabolic basis of ethnic differences in diabetes risk in overweight and obese youth. Curr Diab Rep. 2014;14:455.
Article
PubMed
PubMed Central
Google Scholar
Toledo-Corral CM, Alderete TL, Hu HH, Nayak K, Esplana S, Liu T, Goran MI, Weigensberg MJ. Ectopic fat deposition in prediabetic overweight and obese minority adolescents. J Clin Endocrinol Metab. 2013;98:1115–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le KA, Ventura EE, Fisher JQ, Davis JN, Weigensberg MJ, Punyanitya M, Hu HH, Nayak KS, Goran MI. Ethnic differences in pancreatic fat accumulation and its relationship with other fat depots and inflammatory markers. Diabetes Care. 2011;34:485–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wicklow BA, Griffith AT, Dumontet JN, Venugopal N, Ryner LN, McGavock JM. Pancreatic lipid content is not associated with beta cell dysfunction in youth-onset type 2 diabetes. Can J Diabetes. 2015;39:398–404.
Article
PubMed
Google Scholar
Jae SY, Franklin BA, Choo J, Yoon ES, Choi YH, Park WH. Fitness, body habitus, and the risk of incident type 2 diabetes mellitus in Korean men. Am J Cardiol. 2016;117:585–9.
Article
PubMed
Google Scholar
Ruiz JR, Ortega FB, Rizzo NS, Villa I, Hurtig-Wennlof A, Oja L, Sjostrom M. High cardiovascular fitness is associated with low metabolic risk score in children: the European Youth Heart Study. Pediatr Res. 2007;61:350–5.
Article
PubMed
Google Scholar
Senechal M, Wicklow B, Wittmeier K, Hay J, MacIntosh AC, Eskicioglu P, Venugopal N, McGavock JM. Cardiorespiratory fitness and adiposity in metabolically healthy overweight and obese youth. Pediatrics. 2013;132:e85–92.
Article
PubMed
Google Scholar
Leger LA, Mercier D, Gadoury C, Lambert J. The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci. 1988;6:93–101.
Article
CAS
PubMed
Google Scholar
Thompson PD, Arena R, Riebe D, Pescatello LS. ACSM’s new preparticipation health screening recommendations from ACSM’s guidelines for exercise testing and prescription, ninth edition. Curr Sports Med Rep. 2013;12:215–17.
Shah AS, Dolan LM, Kimball TR, Gao Z, Khoury PR, Daniels SR, Urbina EM. Influence of duration of diabetes, glycemic control, and traditional cardiovascular risk factors on early atherosclerotic vascular changes in adolescents and young adults with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2009;94:3740–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shah AS, Gao Z, Urbina EM, Kimball TR, Dolan LM. Prediabetes: the effects on arterial thickness and stiffness in obese youth. J Clin Endocrinol Metab. 2014;99:1037–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Donath MY. Multiple benefits of targeting inflammation in the treatment of type 2 diabetes. Diabetologia. 2016;59:679–82.
Article
CAS
PubMed
Google Scholar
Syrenicz A, Garanty-Bogacka B, Syrenicz M, Gebala A, Walczak M. Low-grade systemic inflammation and the risk of type 2 diabetes in obese children and adolescents. Neuro Endocrinol Lett. 2006;27:453–8.
CAS
PubMed
Google Scholar
Reinehr T, Karges B, Meissner T, Wiegand S, Fritsch M, Holl RW, Woelfle J. Fibroblast growth factor 21 and fetuin-A in obese adolescents with and without type 2 diabetes. J Clin Endocrinol Metab. 2015;100:3004–10.
Article
CAS
PubMed
Google Scholar
Reinehr T, Woelfle J, Wiegand S, Karges B, Meissner T, Nagl K, Holl RW. Leptin but not adiponectin is related to type 2 diabetes mellitus in obese adolescents. Pediatr Diabetes. 2016;17(4):281–8.
Reinehr T, Karges B, Meissner T, Wiegand S, Stoffel-Wagner B, Holl RW, Woelfle J. Inflammatory markers in obese adolescents with type 2 diabetes and their relationship to hepatokines and adipokines. J Pediatr. 2016.
Rey-Lopez JP, Vicente-Rodriguez G, Ortega FB, Ruiz JR, Martinez-Gomez D, De Henauw S, Manios Y, Molnar D, Polito A, Verloigne M, et al. Sedentary patterns and media availability in European adolescents: The HELENA study. Prev Med. 2010;51:50–5.
Article
PubMed
Google Scholar
Guay C, Regazzi R. Circulating microRNAs as novel biomarkers for diabetes mellitus. Nat Rev Endocrinol. 2013;9:513–21.
Article
CAS
PubMed
Google Scholar
Guay C, Regazzi R. New emerging tasks for microRNAs in the control of beta-cell activities. Biochim Biophys Acta. 2016;1861:2121–9.
Article
CAS
PubMed
Google Scholar
Currie CE, Elton RA, Todd J, Platt S. Indicators of socioeconomic status for adolescents: the WHO Health Behaviour in School-aged Children Survey. Health Educ Res. 1997;12:385–97.
Article
CAS
PubMed
Google Scholar
Ortega FB, Lavie CJ, Blair SN. Obesity and cardiovascular disease. Circ Res. 2016;118:1752–70.
Article
CAS
PubMed
Google Scholar
Deiuliis JA. MicroRNAs as regulators of metabolic disease: pathophysiologic significance and emerging role as biomarkers and therapeutics. Int J Obes (Lond). 2016;40:88–101.
Article
CAS
Google Scholar
Khalyfa A, Gozal D. Exosomal miRNAs as potential biomarkers of cardiovascular risk in children. J Transl Med. 2014;12:162.
Article
PubMed
PubMed Central
Google Scholar