Sohrabi C, Alsafi Z, O’Neill N, Khan M, Kerwan A, Al-Jabir A, et al. World Health Organization declares global emergency: a review of the 2019 novel coronavirus (COVID-19). Int J Surg (London, England). 2020;76:71–6. https://doi.org/10.1016/j.ijsu.2020.02.034.
Article
Google Scholar
BourBour F, Mirzaei Dahka S, Gholamalizadeh M, Akbari ME, Shadnoush M, Haghighi M, et al. Nutrients in prevention, treatment, and management of viral infections; special focus on Coronavirus. Arch Physiol Biochem. 2020:1–10. https://doi.org/10.1080/13813455.2020.1791188.
Rothenberg E. Coronavirus disease 19 from the perspective of ageing with focus on nutritional status and nutrition management—a narrative review. Nutrients. 2021;13(4):1294. https://doi.org/10.3390/nu13041294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lake MA. What we know so far: COVID-19 current clinical knowledge and research. Clin Med. 2020;20(2):124. https://doi.org/10.7861/clinmed.2019-coron.
Article
Google Scholar
Brem A, Viardot E, Nylund PA. Implications of the coronavirus (COVID-19) outbreak for innovation: which technologies will improve our lives? Technol Forecast Soc Chang. 2021;163:120451. https://doi.org/10.1016/j.techfore.2020.120451.
Article
Google Scholar
Zahedipour F, Hosseini SA, Sathyapalan T, Majeed M, Jamialahmadi T, Al-Rasadi K, et al. Potential effects of curcumin in the treatment of COVID-19 infection. Phytother Res. 2020;34(11):2911–20. https://doi.org/10.1002/ptr.6738.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–4. https://doi.org/10.1016/S0140-6736(20)30628-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saber-Moghaddam N, Salari S, Hejazi S, Amini M, Taherzadeh Z, Eslami S, et al. Oral nano-curcumin formulation efficacy in management of mild to moderate hospitalized coronavirus disease-19 patients: an open label nonrandomized clinical trial. Phytother Res. 2021. https://doi.org/10.1002/ptr.7004.
Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet (London, England). 2020;395(10223):e30. https://doi.org/10.1016/S0140-6736(20)30304-4.
Article
CAS
Google Scholar
Farhood B, Mortezaee K, Goradel NH, Khanlarkhani N, Salehi E, Nashtaei MS, et al. Curcumin as an anti-inflammatory agent: implications to radiotherapy and chemotherapy. J Cell Physiol. 2019;234(5):5728–40. https://doi.org/10.1002/jcp.27442.
Article
CAS
PubMed
Google Scholar
Ternullo S, Gagnat E, Julin K, Johannessen M, Basnet P, Vanić Ž, et al. Liposomes augment biological benefits of curcumin for multitargeted skin therapy. Eur J Pharm Biopharm. 2019;144:154–64. https://doi.org/10.1016/j.ejpb.2019.09.016.
Article
CAS
PubMed
Google Scholar
Rafiq S, Raza MH, Younas M, Naeem F, Adeeb R, Iqbal J, et al. Molecular targets of curcumin and future therapeutic role in leukemia. J Biosci Med. 2018;6(04):33. https://doi.org/10.4236/JBM.2018.64003.
Article
CAS
Google Scholar
Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol. 2012;39(3):283–99. https://doi.org/10.1111/j.1440-1681.2011.05648.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keihanian F, Saeidinia A, Bagheri RK, Johnston TP, Sahebkar A. Curcumin, hemostasis, thrombosis, and coagulation. J Cell Physiol. 2018;233(6):4497–511. https://doi.org/10.1002/jcp.26249.
Article
CAS
PubMed
Google Scholar
Jain SK, Rains J, Croad J, Larson B, Jones K. Curcumin supplementation lowers TNF-α, IL-6, IL-8, and MCP-1 secretion in high glucose-treated cultured monocytes and blood levels of TNF-α, IL-6, MCP-1, glucose, and glycosylated hemoglobin in diabetic rats. Antioxid Redox Signal. 2009;11(2):241–9. https://doi.org/10.1089/ars.2008.2140.
Article
CAS
PubMed
PubMed Central
Google Scholar
Avasarala S, Zhang F, Liu G, Wang R, London SD, London L. Curcumin modulates the inflammatory response and inhibits subsequent fibrosis in a mouse model of viral-induced acute respiratory distress syndrome. PLoS One. 2013;8(2):e57285. https://doi.org/10.1371/journal.pone.0134982.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maurya VK, Kumar S, Prasad AK, Bhatt ML, Saxena SK. Structure-based drug designing for potential antiviral activity of selected natural products from Ayurveda against SARS-CoV-2 spike glycoprotein and its cellular receptor. Virusdisease. 2020;31(2):179–93. https://doi.org/10.1007/s13337-020-00598-8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rocha FAC, de Assis MR. Curcumin as a potential treatment for COVID-19. Phytother Res. 2020;34(9):2085–7. https://doi.org/10.1002/ptr.6745.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thimmulappa RK, Kumar MNK, Shivamallu C, Subramaniam KT, Radhakrishnan A, Suresh B, et al. Antiviral and immunomodulatory activity of curcumin: a case for prophylactic therapy for COVID-19. Heliyon. 2021;7(2):e06350. https://doi.org/10.1016/j.heliyon.2021.e06350.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bagherniya M, Khedmatgozar H, Fakheran O, Xu S, Johnston TP, Sahebkar A. Medicinal plants and bioactive natural products as inhibitors of NLRP3 inflammasome. Phytother Res. 2021;35(9):4804–33. https://doi.org/10.1002/ptr.7118.
Article
CAS
PubMed
Google Scholar
Alikiaii B, Bagherniya M, Askari G, Sathyapalan T, Sahebkar A. Evaluation of the effect of curcumin on pneumonia: a systematic review of preclinical studies. Phytother Res. 2021;35(4):1939–52. https://doi.org/10.1002/ptr.6939.
Article
CAS
PubMed
Google Scholar
Zorofchian Moghadamtousi S, Abdul Kadir H, Hassandarvish P, Tajik H, Abubakar S, Zandi K. A review on antibacterial, antiviral, and antifungal activity of curcumin. Biomed Res Int. 2014;2014:186864. https://doi.org/10.1155/2014/186864.
Article
CAS
PubMed Central
Google Scholar
Soni VK, Mehta A, Ratre YK, Tiwari AK, Amit A, Singh RP, et al. Curcumin, a traditional spice component, can hold the promise against COVID-19? Eur J Pharmacol. 2020;886:173551. https://doi.org/10.1016/j.ejphar.2020.173551.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pawar KS, Mastud RN, Pawar SK, Pawar SS, Bhoite RR, Bhoite RR, et al. Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: a randomized clinical trial. Front Pharmacol. 2021;12:669362. https://doi.org/10.3389/fphar.2021.669362.
Article
CAS
PubMed
PubMed Central
Google Scholar
Babaei F, Nassiri-Asl M, Hosseinzadeh H. Curcumin (a constituent of turmeric): New treatment option against COVID-19. Food Sci Nutr. 2020;8(10):5215–27. https://doi.org/10.1002/fsn3.1858.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vahedian-Azimi A, Abbasifard M, Rahimi-Bashar F, Guest PC, Majeed M, Mohammadi A, et al. Effectiveness of curcumin on outcomes of hospitalized COVID-19 patients: a systematic review of clinical trials. Nutrients. 2022;14(2):256. https://doi.org/10.3390/nu14020256.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miryan M, Soleimani D, Askari G, Jamialahmadi T, Guest PC, Bagherniya M, et al. Curcumin and piperine in COVID-19: a promising duo to the rescue? Adv Exp Med Biol. 2021;1327:197–204. https://doi.org/10.1007/978-3-030-71697-4_16.
Article
PubMed
Google Scholar
Subhan F, Khalil AAK, Zeeshan M, Haider A, Tauseef I, Haleem SK, et al. Curcumin: from ancient spice to modern anti-viral drug in COVID-19 pandemic. Life Sci. 2020;1(supplement):5.
Article
Google Scholar
Valizadeh H, Abdolmohammadi-Vahid S, Danshina S, Gencer MZ, Ammari A, Sadeghi A, et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. Int Immunopharmacol. 2020;89(Pt B):107088. https://doi.org/10.1016/j.intimp.2020.107088.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bhutani MK, Bishnoi M, Kulkarni SK. Anti-depressant like effect of curcumin and its combination with piperine in unpredictable chronic stress-induced behavioral, biochemical and neurochemical changes. Pharmacol Biochem Behav. 2009;92(1):39–43. https://doi.org/10.1016/j.pbb.2008.10.007.
Article
CAS
PubMed
Google Scholar
Kulkarni SK, Bhutani MK, Bishnoi M. Antidepressant activity of curcumin: involvement of serotonin and dopamine system. Psychopharmacology. 2008;201(3):435–42. https://doi.org/10.1007/s00213-008-1300-y.
Article
CAS
PubMed
Google Scholar
Miryan M, Soleimani D, Askari G, Jamialahmadi T, Guest PC, Bagherniya M, et al. Curcumin and piperine in COVID-19: a promising duo to the rescue? In: Identification of biomarkers, new treatments, and vaccines for COVID-19. Switzerland: Springer; 2021. p. 197–204.
Anand P, Kunnumakkara AB, Newman RA, Aggarwal BB. Bioavailability of curcumin: problems and promises. Mol Pharm. 2007;4(6):807–18. https://doi.org/10.1021/mp700113r.
Article
CAS
PubMed
Google Scholar
Miryan M, Bagherniya M, Sahebkar A, Soleimani D, Rouhani MH, Iraj B, et al. Effects of curcumin-piperine co-supplementation on clinical signs, duration, severity, and inflammatory factors in patients with COVID-19: a structured summary of a study protocol for a randomised controlled trial. Trials. 2020;21(1):1–2. https://doi.org/10.1186/s13063-020-04924-9.
Article
CAS
Google Scholar
Cevik M, Bamford CGG, Ho A. COVID-19 pandemic-a focused review for clinicians. Clin Microbiol Infect. 2020;26(7):842–7. https://doi.org/10.1016/j.cmi.2020.04.023.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ali MJ, Hanif M, Haider MA, Ahmed MU, Sundas F, Hirani A, et al. Treatment options for COVID-19: a review. Front Med (Lausanne). 2020;7:480. https://doi.org/10.3389/fmed.2020.00480.
Article
Google Scholar
Ahmadi R, Salari S, Sharifi MD, Reihani H, Rostamiani MB, Behmadi M, et al. Oral nano-curcumin formulation efficacy in the management of mild to moderate outpatient COVID-19: a randomized triple-blind placebo-controlled clinical trial. Food Sci Nutr. 2021;9(8):4068–75. https://doi.org/10.1002/fsn3.2226.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hassaniazad M, Eftekhar E, Inchehsablagh BR, Kamali H, Tousi A, Jaafari MR, et al. A triple-blind, placebo-controlled, randomized clinical trial to evaluate the effect of curcumin-containing nanomicelles on cellular immune responses subtypes and clinical outcome in COVID-19 patients. Phytother Res. 2021;35(11):6417–27. https://doi.org/10.1002/ptr.7294.
Article
CAS
PubMed
PubMed Central
Google Scholar
Honarkar Shafie E, Taheri F, Alijani N, Okhovvat AR, Goudarzi R, Borumandnia N, et al. Effect of nanocurcumin supplementation on the severity of symptoms and length of hospital stay in patients with COVID-19: a randomized double-blind placebo-controlled trial. Phytother Res. 2022;36(2):1013–22. https://doi.org/10.1002/ptr.7374.
Article
CAS
PubMed
Google Scholar
Tahmasebi S, Saeed BQ, Temirgalieva E, Yumashev AV, El-Esawi MA, Navashenaq JG, et al. Nanocurcumin improves Treg cell responses in patients with mild and severe SARS-CoV2. Life Sci. 2021;276:119437. https://doi.org/10.1016/j.lfs.2021.119437.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rattis BAC, Ramos SG, Celes MRN. Curcumin as a potential treatment for COVID-19. Front Pharmacol. 2021;12:675287. https://doi.org/10.3389/fphar.2021.675287.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sfera A, Osorio C, Del Campo CMZM, Pereida S, Maurer S, Maldonado JC, et al. Endothelial senescence and chronic fatigue syndrome, a COVID-19 based hypothesis. Front Cell Neurosci. 2021;15:673217. https://doi.org/10.3389/fncel.2021.673217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wilson C. Concern coronavirus may trigger post-viral fatigue syndromes. New Sci (1971). 2020;246(3278):10. https://doi.org/10.1016/S0262-4079(20)30746-6.
Article
Google Scholar
Yong SJ. Long COVID or post-COVID-19 syndrome: putative pathophysiology, risk factors, and treatments. Infect Dis. 2021;53(10):1–18. https://doi.org/10.1080/23744235.2021.1924397.
Article
CAS
Google Scholar
Sun Y, Zhou J, Ye K. White blood cells and severe COVID-19: a Mendelian randomization study. medRxiv. 2020:2020.10.14.20212993. https://doi.org/10.1101/2020.10.14.20212993.
Sarma P. Chapter 152. Red cell indices. In: Clinical methods: the history, physical, and laboratory examinations. 3rd ed. Boston: Butterworths; 1990.
Strandberg O. CHAPTER VII: The influence of corticosteroid therapy on hematological values, bone marrow iron and iron absorption in patients with rheumatoid arthritis. Acta Med Scand. 1966;180(S454):127–41. https://doi.org/10.1111/j.0954-6820.1966.tb01372.x.
Article
Google Scholar
Bani-Sadr F, Hentzien M, Pascard M, N'Guyen Y, Servettaz A, Andreoletti L, et al. Corticosteroid therapy for patients with COVID-19 pneumonia: a before–after study. Int J Antimicrob Agents. 2020;56(2):106077. https://doi.org/10.1016/j.ijantimicag.2020.106077.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zha L, Li S, Pan L, Tefsen B, Li Y, French N, et al. Corticosteroid treatment of patients with coronavirus disease 2019 (COVID-19). Med J Aust. 2020;212(9):416–20. https://doi.org/10.5694/mja2.50577.
Article
PubMed
PubMed Central
Google Scholar
Smith TJ, Ashar BH. Iron deficiency anemia due to high-dose turmeric. Cureus. 2019;11(1):e3858. https://doi.org/10.7759/cureus.3858.
Article
PubMed
PubMed Central
Google Scholar
Chin D, Huebbe P, Frank J, Rimbach G, Pallauf K. Curcumin may impair iron status when fed to mice for six months. Redox Biol. 2014;2:563–9. https://doi.org/10.1016/j.redox.2014.01.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sultana GS, Haque SA, Sultana T, Ahmed AN. Value of red cell distribution width (RDW) and RBC indices in the detection of iron deficiency anemia. Mymensingh Med J. 2013;22(2):370–6.
CAS
PubMed
Google Scholar
Liu A, Cong J, Wang Q, Mei Y, Peng Y, Zhou M, et al. Risk of malnutrition is common in patients with coronavirus disease 2019 (COVID-19) in Wuhan, China: a cross-sectional study. J Nutr. 2021;151(nxab009):1591–6. https://doi.org/10.1093/jn/nxab009.
Article
PubMed
Google Scholar
Hong N, Kim CO, Youm Y, Choi JY, Kim HC, Rhee Y. Elevated red blood cell distribution width is associated with morphometric vertebral fracture in community-dwelling older adults, independent of anemia, inflammation, and nutritional status: the Korean Urban Rural Elderly (KURE) study. Calcif Tissue Int. 2019;104(1):26–33. https://doi.org/10.1007/s00223-018-0470-9.
Article
CAS
PubMed
Google Scholar
García-Escobar A, Grande Ingelmo JM. Red cell volume distribution width as another biomarker. Card Fail Rev. 2019;5(3):176–9. https://doi.org/10.15420/cfr.2019.13.1.
Article
PubMed
PubMed Central
Google Scholar
Ford J. Red blood cell morphology. Int J Lab Hematol. 2013;35(3):351–7. https://doi.org/10.1111/ijlh.12082.
Article
CAS
PubMed
Google Scholar
Hu X, Chen D, Wu L, He G, Ye W. Low serum cholesterol level among patients with COVID-19 infection in Wenzhou, China. SSRN Electron J. 2020. https://doi.org/10.2139/ssrn.3544826.
Feingold KR, Grunfeld C. The Effect of Inflammation and Infection on Lipids and Lipoproteins. 2022 Mar 7.
Ferguson JJA, Stojanovski E, MacDonald-Wicks L, Garg ML. Curcumin potentiates cholesterol-lowering effects of phytosterols in hypercholesterolaemic individuals. A randomised controlled trial. Metabolism. 2018;82:22–35. https://doi.org/10.1016/j.metabol.2017.12.009.
Article
CAS
PubMed
Google Scholar
Alwi I, Santoso T, Suyono S, Sutrisna B, Suyatna FD, Kresno SB, et al. The effect of curcumin on lipid level in patients with acute coronary syndrome. Acta Med Indones. 2008;40(4):201–10.
PubMed
Google Scholar
Townsend L, Dyer AH, Jones K, Dunne J, Mooney A, Gaffney F, et al. Persistent fatigue following SARS-CoV-2 infection is common and independent of severity of initial infection. PLoS One. 2020;15(11):e0240784. https://doi.org/10.1371/journal.pone.0240784.
Article
CAS
PubMed
PubMed Central
Google Scholar
Çalıca Utku A, Budak G, Karabay O, Güçlü E, Okan HD, Vatan A. Main symptoms in patients presenting in the COVID-19 period. Scott Med J. 2020;65(4):127–32. https://doi.org/10.1177/0036933020949253.
Article
PubMed
Google Scholar
Holbrook JH. Weakness and fatigue; 2011.
Google Scholar
Wang P-Y, Li Y, Wang Q. Sarcopenia: an underlying treatment target during the COVID-19 pandemic. Nutrition. 2021;84:111104. https://doi.org/10.1016/j.nut.2020.111104.
Article
CAS
PubMed
Google Scholar
Alamdari N, O'Neal P, Hasselgren P-O. Curcumin and muscle wasting: a new role for an old drug? Nutrition. 2009;25(2):125–9. https://doi.org/10.1016/j.nut.2008.09.002.
Article
CAS
PubMed
Google Scholar
Penner CG, Gang G, Wray C, Fischer JE, Hasselgren P-O. The transcription factors NF-κB and AP-1 are differentially regulated in skeletal muscle during sepsis. Biochem Biophys Res Commun. 2001;281(5):1331–6. https://doi.org/10.1006/bbrc.2001.4497.
Article
CAS
PubMed
Google Scholar
Li Y-P, Reid MB. NF-κB mediates the protein loss induced by TNF-α in differentiated skeletal muscle myotubes. Am J Phys Regul Integr Comp Phys. 2000;279(4):R1165–R70. https://doi.org/10.1152/ajpregu.2000.279.4.R1165.
Article
CAS
Google Scholar
Ladner KJ, Caligiuri MA, Guttridge DC. Tumor necrosis factor-regulated biphasic activation of NF-κB is required for cytokine-induced loss of skeletal muscle gene products. J Biol Chem. 2003;278(4):2294–303. https://doi.org/10.1074/jbc.M207129200.
Article
CAS
PubMed
Google Scholar
Cai D, Frantz JD, Tawa NE Jr, Melendez PA, Oh B-C, Lidov HG, et al. IKKβ/NF-κB activation causes severe muscle wasting in mice. Cell. 2004;119(2):285–98. https://doi.org/10.1016/j.cell.2004.09.027.
Article
CAS
PubMed
Google Scholar
Wyke S, Russell ST, Tisdale MJ. Induction of proteasome expression in skeletal muscle is attenuated by inhibitors of NF-κ B activation. Br J Cancer. 2004;91(9):1742–50. https://doi.org/10.1038/sj.bjc.6602165.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pawar KS, Mastud RN, Pawar SK, Pawar SS, Bhoite RR, Bhoite RR, et al. Oral curcumin with piperine as adjuvant therapy for the treatment of COVID-19: a randomized clinical trial. Front Pharmacol. 2021;12:1056. https://doi.org/10.3389/fphar.2021.669362.
Article
CAS
Google Scholar