McDonald AM, Knight RC, Campbell MK, Entwistle VA, Grant AM, Cook JA, et al. What influences recruitment to randomised controlled trials? A review of trials funded by two UK funding agencies. Trials. 2006;7(9):1–8.
Google Scholar
Treweek S, Pitkethly M, Cook J, Fraser C, Mitchell E, Sullivan F, et al. Strategies to improve recruitment to randomised trials. Cochrane Database Syst Rev. 2018;2, MR000013 1–185.
Fletcher B, Gheorghe A, Moore D, Wilson S, Damery S. Improving the recruitment activity of clinicians in randomized controlled trials: a systematic review. BMJ Open 2012;2:e000496 1-14.
Campbell MK, Snowdon C, Francis D, Elbourne D, McDonald AM, Knight R, et al. Recruitment to randomised trials: strategies for trial enrolment and participation study. The STEPS study. Health Technol Assess. 2007;11(48):1–121.
Article
Google Scholar
Raftery J, Young A, Stanton L, Milne R, Cook A, Turner D, et al. Clinical trial metadata: defining and extracting metadata on the design, conduct, results and costs of 125 randomised clinical trials funded by the NIHR Health Technology Assessment Programme. Health Technol Assess. 2015;19(11):1–138.
Article
PubMed
PubMed Central
Google Scholar
Sully BGO, Julious SA, Nicholl J. A reinvestigation of recruitment to randomised, controlled, multicenter trials: a review of trials funded by two UK funding agencies. Trials. 2013;14:166 1-9.
Article
PubMed
PubMed Central
Google Scholar
Walters SJ, Henriques-Cadby IBDA, Bortolami O, Flight L, Hind D, Jacques RM, et al. Recruitment and retention of participants in randomised controlled trials: a review of trials funded and published by the United Kingdom Health Technology Assessment Programme. BMJ Open. 2017;7:e015276 1-10.
Article
PubMed
PubMed Central
Google Scholar
Watson JM, Torgerson DJ. Increasing recruitment to randomised trials: a review of randomised controlled trials. BMC Med Res Methodol. 2006;6(34):1–9.
Google Scholar
Bairu M, Weiner M. Global clinical trials for Alzheimer’s disease. Cambridge: Academic Press; 2013. p. 432.
Google Scholar
Lopienski K. Retention in clinical trials—keeping patients on protocols: forte research systems; 2015. Available from: https://forteresearch.com/news/infographic/infographic-retention-in-clinical-trials-keeping-patients-on-protocols/.
Google Scholar
Frampton GK, Shepherd J. Ambiguity of study population analysis and reporting in asthma clinical trials. Z Evid Fortbild Qual Gesundhwes. 2008;102(Suppl 6):76–7.
Google Scholar
Stuardi T, Cox H, Torgerson DJ. Database recruitment: a solution to poor recruitment in randomized trials? Fam Pract. 2011;28:329–33.
Article
PubMed
Google Scholar
Carlisle B, Kimmelman K, Ramsay T, MacKinnon N. Unsuccessful trial accrual and human subjects protections: an empirical analysis of recently closed trials. Clin Trials. 2015;12(1):77–83.
Article
PubMed
Google Scholar
Griesel D. Clinical trial recruitment in the digital era: some smart ideas. 2015. Available from: http://www.appliedclinicaltrialsonline.com/clinical-trial-recruitment-digital-era-some-smart-ideas.
Google Scholar
Weng C, Batres C, Borda T, Weiskopf NG, Wilcox AB, Bigger JT, et al. A real-time screening alert improves patient recruitment efficiency. AMIA Ann Symp Proc. 2011;2011(2011):1489–98.
Google Scholar
Akl EA, Briel M, You JJ, Sun X, Johnston BC, Busse JW, et al. Potential impact on estimated treatment effects of information lost to follow-up in randomised controlled trials (LOST-IT): systematic review. BMJ. 2012;344:e2809 1-12.
Article
PubMed
Google Scholar
Salman RA-S, Beller E, Kagan J, Hemminki E, Phillips RS, Savulescu J, et al. Increasing value and reducing waste in biomedical research regulation and management. Lancet. 2014;383(9912):156–65.
Article
Google Scholar
Kearney A, Daykin A, Shaw ARG, Lane AJ, Blazeby JM, Clarke M, et al. Identifying research priorities for effective retention strategies in clinical trials. Trials. 2017;18(406):1–12.
Google Scholar
Tudur Smith C, Hickey H, Clarke M, Blazeby J, Williamson P. The trials methodological research agenda: results from a priority setting exercise. Trials. 2014;15(1):32 1-7.
Article
PubMed
PubMed Central
Google Scholar
Köpcke F, Prokosch H-U. Employing computers for the recruitment into clinical trials: a comprehensive systematic review. J Med Internet Res. 2014;16(7):e161 1-18.
Article
PubMed
PubMed Central
Google Scholar
Leonard A, Hutchesson M, Patterson A, Chalmers K, Collins C. Recruitment and retention of young women into nutrition research studies: practical considerations. Trials. 2014;15(23):1–7.
Google Scholar
Afolabi MO, Bojang K, D’Alessandro U, Imoukhuede EB, Ravinetto RM, Larson HJ, et al. Multimedia informed consent tool for a low literacy African reserach population: development and pilot-testing. J Clin Res Bioeth. 2014;5(3):1–8.
Google Scholar
Nguyen TT, Jayadeva V, Cizza G, Brown RJ, Nandagopal R, Rodriguez LM, et al. Challenging recruitment of youth with type 2 diabetes into clinical trials. J Adolesc Health. 2014;54:247–54.
Article
PubMed
Google Scholar
Scholle SH, Peele PB, Kelleher KJ, Frank E, Jansen-McWilliams L, Kupfer D. Effect of different recruitment sources on the composition of a bipolar disorder case registry. Soc Psychiatry Psychiatr Epidemiol. 2000;35:220–7.
Article
CAS
PubMed
Google Scholar
Gupta A, Calfas KJ, Marshall SJ, Robinson TN, Rock CL, Huang JS, et al. Clinical trial management of participant recruitment, enrollment, engagement, and retention in the SMART study using a Marketing and Information Technology (MARKIT) model. Contemp Clin Trials. 2015;42:185–95.
Article
PubMed
PubMed Central
Google Scholar
Etter J-F, Perneger TV. A comparison of cigarette smokers recruited through the Internet or by mail. Int J Epidemiol. 2001;30:521–5.
Article
CAS
PubMed
Google Scholar
Yuan P, Bare MG, Johnson MO, Saberi P. Using online social media for recruitment of human immunodeficiency virus-positive participants: a cross-sectional survey. J Med Internet Res. 2014;16(5):e117 1-9.
Article
PubMed
PubMed Central
Google Scholar
Frandsen M, Walters J, Ferguson SG. Exploring the viability of using online social media advertising as a recruitment method for smoking cessation clinical trials. Nicotine Tob Res. 2014;16(2):247–51.
Article
PubMed
Google Scholar
Bower P, Brueton V, Gamble C, Treweek S, Smith CT, Young B, et al. Interventions to improve recruitment and retention in clinical trials: a survey and workshop to assess current practice and future priorities. Trials. 2014;15(399):1–9.
Google Scholar
Clinithink Limited. A paradigm shift in patient recruitment for clinical trials. White paper. 2017.
Google Scholar
Köpcke F, Kraus S, Scholler A, Nau C, Schüttler J, Prokosch H-U, et al. Secondary use of routinely collected patient data in a clinical trial: an evaluation of the effects on patient recruitment and acquisition. Int J Med Inform. 2013;82:185–92.
Article
PubMed
Google Scholar
Köpcke F, Lubgan D, Fietkau R, Scholler A, Nau C, Stürzl M, et al. Evaluating predictive modeling algorithms to assess patient eligibility for clinical trials from routine data. BMC Med Inform Decis Mak. 2013;13(134):1–9.
Google Scholar
Miotto R, Weng C. Case-based reasoning using electronic health records efficiently identifies eligible patients for clinical trials. J Am Med Inform Assoc. 2015;22:e141–50.
Article
PubMed
PubMed Central
Google Scholar
Ni Y, Kennebeck S, Dexheimer JW, McAneney CM, Tang H, Lingren T, et al. Automated clinical trial eligibility prescreening: increasing the efficiency of patient identification for clinical trials in the emergency department. J Am Med Inform Assoc. 2015;22:166–78.
Article
PubMed
Google Scholar
Penberthy L, Brown R, Puma F, Dahman B. Automated matching software for clinical trials eligibility: measuring efficiency and flexibility. Contemp Clin Trials. 2010;31:207–17.
Article
PubMed
PubMed Central
Google Scholar
Schmickl CN, Li M, Li G, Wetzstein MM, Herasevich V, Gajic O, et al. The accuracy and efficiency of electronic screening for recruitment into a clinical trial on COPD. Respir Med. 2011;105(10):1501–6.
Article
PubMed
PubMed Central
Google Scholar
Shivade C, Hebert C, Regan K, Fosler-Lussier E, Lai AM. Automatic data source identification for clinical trial eligibility criteria resolution. AMIA Ann Symp Proc. 2016;2016:1149–58.
Google Scholar
Gorman JR, Roberts SC, Dominick SA, Malcame VL, Dietz AC, Su HI. A diversified recruitment approach incorporating social media leads to research participation among young adult-aged female cancer survivors. J Adolesc Young Adult Oncol. 2014;3(2):59–65.
Article
PubMed
PubMed Central
Google Scholar
Alshaikh F, Ramzan F, Rawaf S, Majeed A. Social network sites as a mode to collect health data: a systematic review. J Med Internet Res. 2014;16(7):e171.
Article
PubMed
PubMed Central
Google Scholar
Amon KL, Campbell AJ, Hawke C, Steinbeck K. Facebook as a recruitment tool for adolescent health research: a systematic review. Acad Pediatr. 2014;14(5):439–447.e434.
Article
PubMed
Google Scholar
Boland J, Currow DC, Wilcock A, Tieman J, Hussain JA, Pitsillides C, et al. A systematic review of strategies used to increase recruitment of people with cancer or organ failure into clinical trials: implications for palliative care research. J Pain Symptom Manag. 2015;49(4):762–72.
Article
Google Scholar
Bonevski B, Randell M, Paul C, Chapman K, Twyman L, Bryant J, et al. Reaching the hard-to-reach: a systematic review of strategies for improving health and medical research with socially disadvantaged groups. BMC Med Res Methodol. 2014;14:42.
Article
PubMed
PubMed Central
Google Scholar
Brueton VC, Tierney J, Stenning S, Harding S, Meredith S, Nazareth I, et al. Strategies to improve retention in randomised trials. Cochrane Database Syst Rev. 2013;12:MR000032 1-127.
Google Scholar
Caldwell PHY, Hamilton S, Tan A, Craig JC. Strategies for increasing recruitment to randomised controlled trials: systematic review. PLoS Med. 2010;7(11):e1000368 1-16.
Article
PubMed
PubMed Central
Google Scholar
Cuggia M, Besana P, Glasspool D. Comparing semi-automatic systems for recruitment of patients to clinical trials. Int J Med Inform. 2011;80:371–88.
Article
PubMed
Google Scholar
Foster CE, Brennan G, Matthews A, McAdam C, Fitzsimons C, Mutrie N. Recruiting participants to walking intervention studies: a systematic review. Int J Behav Nutr Phys Act. 2011;8:137.
Article
PubMed
PubMed Central
Google Scholar
Lam E, Partridge SR, Allman-Farinelli M. Strategies for successful recruitment of young adults to healthy lifestyle programmes for the prevention of weight gain: a systematic review. Obes Rev. 2016;17(2):178–200.
Article
CAS
PubMed
Google Scholar
Marcano Belisario JS, Bruggeling MN, Gunn LH, Brusamento S, Car J. Interventions for recruiting smokers into cessation programmes. Cochrane Database Syst Rev. 2012;12:CD009187.
PubMed
Google Scholar
Park BK, Calamaro C. A systematic review of social networking sites: innovative platforms for health research targeting adolescents and young adults. J Nurs Scholarsh. 2013;45(3):256–64.
PubMed
Google Scholar
Rosenbaum DL, Piers AD, Schumacher LM, Kase CA, Butryn ML. Racial and ethnic minority enrollment in randomized clinical trials of behavioural weight loss utilizing technology: a systematic review. Obes Rev. 2017;18(7):808–17.
Article
CAS
PubMed
Google Scholar
Thornton L, Batterham PJ, Fassnacht DB, Kay-Lambkin F, Calear AL, Hunt S. Recruiting for health, medical or psychosocial research using Facebook: systematic review. Internet Interv. 2016;4(1):72–81.
Article
PubMed
PubMed Central
Google Scholar
Topolovec-Vranic J, Natarajan K. The use of social media in recruitment for medical research studies: a scoping review. J Med Internet Res. 2016;18(11):e286.
Article
PubMed
PubMed Central
Google Scholar
Whitaker C, Stevelink S, Fear N. The use of Facebook in recruiting participants for health research purposes: a systematic review. J Med Internet Res. 2017;19(8):e290.
Article
PubMed
PubMed Central
Google Scholar
Lane TS, Armin J, Gordon JS. Online recruitment methods for web-based and mobile health studies: a review of the literature. J Med Internet Res. 2015;17(7):e183.
Article
PubMed
PubMed Central
Google Scholar
James KL, Randall NP, Haddaway NR. A methodology for systematic mapping in environmental sciences. Environ Evid. 2016;5:7.
Article
Google Scholar
Althuis MD, Weed DL. Evidence mapping: methodologic foundations and application to intervention and observational research on sugar-sweetened beverages and health outcomes. Am J Clin Nutr. 2013;98(3):755–68.
Article
CAS
PubMed
Google Scholar
Frampton GK, Harris P, Cooper K, Cooper T, Cleland J, Jones J, et al. Educational interventions for preventing vascular catheter bloodstream infections in critical care: evidence map, systematic review and economic evaluation. Health Technol Assess. 2014;18(15):1–365.
Article
PubMed
PubMed Central
Google Scholar
Miake-Lye IM, Hempel S, Shanman R, Shekelle PG. What is an evidence map? A systematic review of published evidence maps and their definitions, methods, and products. Syst Rev. 2016;5(1):1–21.
Article
Google Scholar
Schuchan Bird K, Newman M, Hargreaves K, Sawtell M. Workplace-based learning for undergraduate and pre-registration healthcare professionals: a systematic map of the UK research literature 2003-2013. London; 2015.
Shepherd J, Frampton GK, Pickett K, Wyatt JC. Peer review of health research funding proposals: a systematic map and systematic review of innovations for effectiveness and efficiency. PLoS One. 2018;12(5):e0196914 1-26.
Article
CAS
Google Scholar
Shepherd J, Kavanagh J, Picot J, Cooper K, Harden A, Barnett-Page E, et al. The effectiveness and cost-effectiveness of behavioural interventions for the prevention of sexually transmitted infections in young people aged 13-19: a systematic review and economic evaluation. Health Technol Assess. 2010;14(7):1–206.
Article
CAS
PubMed
Google Scholar
Wang DD, Shams-White M, Bright OJM, Parrott JS, Chung M. Creating a literature database of low-calorie sweeteners and health studies: evidence mapping. BMC Med Res Methodol. 2016;16(1):1–11.
Article
PubMed
PubMed Central
Google Scholar
Blatch-Jones AJ, Nuttall J, Bull A, Worswick L, Mullee M, Peveler R, et al. Using digital tools in the recruitment and retention in randomised controlled trials: Survey of UK Clinical Trial Units and a qualitative study. Trials. 2020;21:1–11.
Article
Google Scholar
Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA Statement. BMJ. 2009;339:b2535 1-8.
Article
PubMed
PubMed Central
Google Scholar
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA Statement for reporting reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700 1-27.
Article
PubMed
PubMed Central
Google Scholar
Treweek S, Bevan S, Bower P, Campbell M, Christie J, Clarke M, et al. Trial forge guidance 1: what is a study within a trial (SWAT)? Trials. 2018;19(139):1–5.
Google Scholar
Arch JJ, Carr AL. Using mechanical turk for research on cancer survivors. Psychooncology. 2017;26(10):1593–603.
Article
PubMed
Google Scholar
van Oosterhout WP, Weller CM, Stam AH, Bakels F, Stijnen T, Ferrari MD, et al. Validation of the web-based LUMINA questionnaire for recruiting large cohorts of migraineurs. Cephalalgia. 2011;31(13):1359–67.
Article
PubMed
Google Scholar
Wasilewski MB, Stinson JN, Webster F, Cameron JI. Using Twitter to recruit participants for health research: an example from a caregiving study. Health Inform J. 2018. https://doi.org/10.1177/1460458218775158.
Adam LM, Manca DP, Bell RC. Can Facebook be used for research? Experiences using Facebook to recruit pregnant women for a randomized controlled trial. J Med Internet Res. 2016;18(9):e250.
Article
PubMed
PubMed Central
Google Scholar
Aguiar EJ, Morgan PJ, Collins CE, Plotnikoff RC, Young MD, Callister R. Process evaluation of the type 2 diabetes mellitus PULSE program randomized controlled trial: recruitment, engagement, and overall satisfaction. Am J Mens Health. 2017;11(4):1055–68.
Article
PubMed
PubMed Central
Google Scholar
Alheresh R, Allaire SH, Lavalley MP, Vaughan M, Emmetts R, Keysor JJ. ‘Work it’ recruitment: lessons learned from an arthritis work disability prevention randomized trial. Arthritis Rheum. 2013;10:S1220.
Google Scholar
Bailey JV, Pavlou M, Copas A, McCarthy O, Carswell K, Rait G, et al. The sexunzipped trial: optimizing the design of online randomized controlled trials. J Med Internet Res. 2013;15(12):e278.
Article
PubMed
PubMed Central
Google Scholar
Beauharnais CC, Larkin ME, Zai AH, Boykin EC, Luttrell J, Wexler DJ. Efficacy and cost-effectiveness of an automated screening algorithm in an inpatient clinical trial. Clin Trials. 2012;9(2):198–203.
Article
PubMed
PubMed Central
Google Scholar
Berk S, Greco BL, Biglan K, Kopil CM, Holloway RG, Meunier C, et al. Increasing efficiency of recruitment in early Parkinson’s disease trials: a case study examination of the STEADY-PD III Trial. J Park Dis. 2017;7(4):685–93.
Google Scholar
Bickmore TW, Utami D, Matsuyama R, Paasche-Orlow MK. Improving access to online health information with conversational agents: a randomized controlled experiment. J Med Internet Res. 2016;18(1):e1.
Article
PubMed
PubMed Central
Google Scholar
Brodar KE, Hall MG, Butler EN, Parada H, Stein-Seroussi A, Hanley S, et al. Recruiting diverse smokers: enrollment yields and cost. Int J Environ Res Public Health. 2016;13(12):16.
Article
Google Scholar
Buckingham L, Becher J, Voytek CD, Fiore D, Dunbar D, Davis-Vogel A, et al. Going social: success in online recruitment of men who have sex with men for prevention HIV vaccine research. Vaccine. 2017;35(27):3498–505.
Article
PubMed
PubMed Central
Google Scholar
Bull S, Pratte K, Whitesell N, Rietmeijer C, McFarlane M. Effects of an Internet-based intervention for HIV prevention: the Youthnet trials. AIDS Behav. 2009;13(3):474–87.
Article
PubMed
Google Scholar
Bull SS, Vallejos D, Levine D, Ortiz C. Improving recruitment and retention for an online randomized controlled trial: experience from the Youthnet study. AIDS Care. 2008;20(8):887–93.
Article
CAS
PubMed
Google Scholar
Buller DB, Meenan R, Severson H, Halperin A, Edwards E, Magnusson B. Comparison of 4 recruiting strategies in a smoking cessation trial. Am J Health Behav. 2012;36(5):577–88.
Article
PubMed
PubMed Central
Google Scholar
Bunge E, Cook HM, Bond M, Williamson RE, Cano M, Barrera AZ, et al. Comparing Amazon Mechanical Turk with unpaid Internet resources in online clinical trials. Internet Interv. 2018;12:68–73.
Article
PubMed
PubMed Central
Google Scholar
Burrell ER, Pines HA, Robbie E, Coleman L, Murphy RD, Hess KL, et al. Use of the location-based social networking application GRINDR as a recruitment tool in rectal microbicide development research. AIDS Behav. 2012;16(7):1816–20.
Article
PubMed
PubMed Central
Google Scholar
Caperchione CM, Duncan MJ, Rosenkranz RR, Vandelanotte C, Van Itallie AK, Savage TN, et al. Recruitment, screening, and baseline participant characteristics in the WALK 2.0 study: a randomized controlled trial using web 2.0 applications to promote physical activity. Contemp Clin Trials Commun. 2016;2:25–33.
Article
PubMed
Google Scholar
Carmi L, Zohar J. A comparison between print vs. Internet methods for a clinical trial recruitment—a pan European OCD study. Eur Neuropsychopharmacol. 2014;24(6):874–8.
Article
CAS
PubMed
Google Scholar
Chin Feman SP, Nguyen LT, Quilty MT, Kerr CE, Nam BH, Conboy LA, et al. Effectiveness of recruitment in clinical trials: an analysis of methods used in a trial for irritable bowel syndrome patients. Contemp Clin Trials. 2008;29(2):241–51.
Article
PubMed
Google Scholar
Coday M, Richey P, Thomas F, Tran QT, Terrell SB, Tylavsky F, et al. The recruitment experience of a randomized clinical trial to aid young adult smokers to stop smoking without weight gain with interactive technology. Contemp Clin Trials Commun. 2016;2:61–8.
Article
PubMed
PubMed Central
Google Scholar
Cornelius VR, McDermott L, Forster AS, Ashworth M, Wright AJ, Gulliford MC. Automated recruitment and randomisation for an efficient randomised controlled trial in primary care. Trials. 2018;19(1):341.
Article
PubMed
PubMed Central
Google Scholar
Coronado GD, Ondelacy S, Schwarz Y, Duggan C, Lampe JW, Neuhouser ML. Recruiting underrepresented groups into the Carbohydrates and Related Biomarkers (CARB) cancer prevention feeding study. Contemp Clin Trials. 2012;33(4):641–6.
Article
PubMed
PubMed Central
Google Scholar
Cuggia M, Campillo-Gimenez B, Bouzille G, Besana P, Jouini W, Dufour JC, et al. Automatic selection of clinical trials based on a semantic web approach. Stud Health Technol Inf. 2015;216:564–8.
Google Scholar
Du W, Mood D, Gadgeel S, Simon MS. An educational video to increase clinical trials enrollment among breast cancer patients. Breast Cancer Res Treat. 2009;117(2):339–47.
Article
PubMed
PubMed Central
Google Scholar
Dugas M, Lange M, Berdel WE, Muller-Tidow C. Workflow to improve patient recruitment for clinical trials within hospital information systems - a case-study. Trials. 2008;9:2.
Article
PubMed
PubMed Central
Google Scholar
Dugas M, Lange M, Muller-Tidow C, Kirchhof P, Prokosch HU. Routine data from hospital information systems can support patient recruitment for clinical studies. Clin Trials. 2010;7(2):183–9.
Article
PubMed
Google Scholar
Edwards L, Salisbury C, Horspool K, Foster A, Garner K, Montgomery AA. Increasing follow-up questionnaire response rates in a randomized controlled trial of telehealth for depression: three embedded controlled studies. Trials. 2016;17.
Effoe VS, Katula JA, Kirk JK, Pedley CF, Bollhalter LY, Brown WM, et al. The use of electronic medical records for recruitment in clinical trials: Findings from the Lifestyle Intervention for Treatment of Diabetes trial. Trials. 2016;17:496.
Article
PubMed
PubMed Central
Google Scholar
Erickson LC, Ritchie JB, Javors JM, Golomb BA. Recruiting a special sample with sparse resources: lessons from a study of Gulf War veterans. Clin Trials. 2013;10(3):473–82.
Article
PubMed
Google Scholar
Ethier JF, Curcin V, McGilchrist MM, Choi Keung SNL, Zhao L, Andreasson A, et al. eSource for clinical trials: implementation and evaluation of a standards-based approach in a real world trial. Int J Med Inform. 2017;106:17–24.
Article
PubMed
Google Scholar
Fazzino TL, Rose GL, Pollack SM, Helzer JE. Recruiting U.S. and Canadian college students via social media for participation in a web-based brief intervention study. J Stud Alcohol Drugs. 2015;76(1):127–32.
Article
PubMed
PubMed Central
Google Scholar
Frandsen M, Thow M, Ferguson SG. The effectiveness of social media (Facebook) compared with more traditional advertising methods for recruiting eligible participants to health research studies: a randomized, controlled clinical trial. JMIR Res Protoc. 2016;5(3):215–24.
Article
Google Scholar
Frawley H, Whitburn L, Daly JO, Galea M. E-recruitment: the future for clinical trials in a digital world? Neurourol Urodyn. 2011;30(6):811–2.
Google Scholar
Free C, Hoile E, Robertson S, Knight R. Three controlled trials of interventions to increase recruitment to a randomized controlled trial of mobile phone based smoking cessation support. Clin Trials. 2010;7(3):265–73.
Article
PubMed
Google Scholar
Funk KL, Elder CR, Lindberg NM, Gullion CM, DeBar LL, Meltesen G, et al. Comparison of characteristics and outcomes by initial study contact (website versus staff) for participants enrolled in a weight management study. Clin Trials. 2012;9(2):226–31.
Article
PubMed
PubMed Central
Google Scholar
Gioia CJ, Sobell LC, Sobell MB, Agrawal S. Craigslist versus print newspaper advertising for recruiting research participants for alcohol studies: cost and participant characteristics. Addict Behav. 2016;54:24–32.
Article
PubMed
Google Scholar
Hamilton FL, Hornby J, Sheringham J, Linke S, Ashton C, Moore K, et al. DIAMOND (DIgital Alcohol Management ON Demand): a feasibility RCT and embedded process evaluation of a digital health intervention to reduce hazardous and harmful alcohol use recruiting in hospital emergency departments and online. Pilot Feasibility Stud. 2018;4:114.
Article
PubMed
PubMed Central
Google Scholar
Heffner JL, Wyszynski CM, Comstock B, Mercer LD, Bricker J. Overcoming recruitment challenges of web-based interventions for tobacco use: the case of web-based acceptance and commitment therapy for smoking cessation. Addict Behav. 2013;38(10):2473–6.
Article
PubMed
PubMed Central
Google Scholar
Horvath KJ, Nygaard K, Danilenko GP, Goknur S, Oakes JM, Rosser BR. Strategies to retain participants in a long-term HIV prevention randomized controlled trial: lessons from the MINTS-II study. AIDS Behav. 2012;16(2):469–79.
Article
PubMed
PubMed Central
Google Scholar
Iribarren SJ, Ghazzawi A, Sheinfil AZ, Frasca T, Brown W 3rd, Lopez-Rios J, et al. Mixed-method evaluation of social media-based tools and traditional strategies to recruit high-risk and hard-to-reach populations into an HIV prevention intervention study. AIDS Behav. 2018;22(1):347–57.
Article
PubMed
PubMed Central
Google Scholar
Johnson EJ, Niles BL, Mori DL. Targeted recruitment of adults with type 2 diabetes for a physical activity intervention. Diab Spectr. 2015;28(2):99–105.
Article
Google Scholar
Jones L, Saksvig BI, Grieser M, Young DR. Recruiting adolescent girls into a follow-up study: benefits of using a social networking website. Contemp Clin Trials. 2012;33(2):268–72.
Article
PubMed
Google Scholar
Jones R, Lacroix LJ, Porcher E. Facebook advertising to recruit young, urban women into an HIV prevention clinical trial. AIDS Behav. 2017;21(11):3141–53.
Article
PubMed
PubMed Central
Google Scholar
Jonnalagadda SR, Adupa AK, Garg RP, Corona-Cox J, Shah SJ. Text mining of the electronic health record: an information extraction approach for automated identification and subphenotyping of HFpEF patients for clinical trials. J Cardiovasc Transl Res. 2017;10(3):313–21.
Article
PubMed
Google Scholar
Juraschek SP, Plante TB, Charleston J, Miller ER, Yeh HC, Appel LJ, et al. Use of online recruitment strategies in a randomized trial of cancer survivors. Clin Trials. 2018;15(2):130–8.
Article
PubMed
PubMed Central
Google Scholar
Kennedy BM, Kumanyika S, Ard JD, Reams P, Johnson CA, Karanja N, et al. Overall and minority-focused recruitment strategies in the PREMIER multicenter trial of lifestyle interventions for blood pressure control. Contemp Clin Trials. 2010;31(1):49–54.
Article
PubMed
Google Scholar
Kim R, Hickman N, Gali K, Orozco N, Prochaska JJ. Maximizing retention with high risk participants in a clinical trial. Am J Health Promot. 2014;28(4):268–74.
Article
PubMed
Google Scholar
Klein JP, Gamon C, Spath C, Berger T, Meyer B, Hohagen F, et al. Does recruitment source moderate treatment effectiveness? A subgroup analysis from the EVIDENT study, a randomised controlled trial of an Internet intervention for depressive symptoms. BMJ Open. 2017;7(7):e015391.
Article
PubMed
PubMed Central
Google Scholar
Korde LA, Micheli A, Smith AW, Venzon D, Prindiville SA, Drinkard B, et al. Recruitment to a physical activity intervention study in women at increased risk of breast cancer. BMC Med Res Methodol. 2009;9:27.
Article
PubMed
PubMed Central
Google Scholar
Koziol-McLain J, McLean C, Rohan M, Sisk R, Dobbs T, Nada-Raja S, et al. Participant recruitment and engagement in automated eHealth trial registration: challenges and opportunities for recruiting women who experience violence. J Med Internet Res. 2016;18(10):e281.
Article
PubMed
PubMed Central
Google Scholar
Krischer J, Cronholm PF, Burroughs C, McAlear CA, Borchin R, Easley E, et al. Experience with direct-to-patient recruitment for enrollment into a clinical trial in a rare disease: a web-based study. J Med Internet Res. 2017;19(2):e50.
Article
PubMed
PubMed Central
Google Scholar
Krusche A, Rudolf von Rohr I, Muse K, Duggan D, Crane C, Williams JM. An evaluation of the effectiveness of recruitment methods: the staying well after depression randomized controlled trial. Clin Trials. 2014;11(2):141–9.
Article
PubMed
PubMed Central
Google Scholar
Kye SH, Tashkin DP, Roth MD, Adams B, Nie WX, Mao JT. Recruitment strategies for a lung cancer chemoprevention trial involving ex-smokers. Contemp Clin Trials. 2009;30(5):464–72.
Article
PubMed
Google Scholar
Layi G, Albright CA, Berenberg J, Plant K, Ritter P, Laurent D, et al. UH Cancer Center Hotline: recruiting cancer survivors for an online health-behavior change intervention: are different strategies more beneficial? Hawaii Med J. 2011;70(10):222–3.
PubMed
PubMed Central
Google Scholar
Lesher LL, Matyas RA, Sjaarda LA, Newman SL, Silver RM, Galai N, et al. Recruitment for longitudinal, randomised pregnancy trials initiated preconception: lessons from the effects of aspirin in gestation and reproduction trial. Paediatr Perinat Epidemiol. 2015;29(2):162–7.
Article
PubMed
PubMed Central
Google Scholar
Li L, Chase HS, Patel CO, Friedman C, Weng C. Comparing ICD9-encoded diagnoses and NLP-processed discharge summaries for clinical trials pre-screening: a case study. Proc AMIA Symp. 2008;2008:404–8.
PubMed Central
Google Scholar
McGregor J, Brooks C, Chalasani P, Chukwuma J, Hutchings H, Lyons RA, et al. The Health Informatics Trial Enhancement Project (HITE): using routinely collected primary care data to identify potential participants for a depression trial. Trials. 2010;11:39.
Article
PubMed
PubMed Central
Google Scholar
Miller EG, Nowson CA, Dunstan DW, Kerr DA, Solah V, Menzies D, et al. Recruitment of older adults with type 2 diabetes into a community-based exercise and nutrition randomised controlled trial. Trials. 2016;17(1):467.
Article
PubMed
PubMed Central
CAS
Google Scholar
Mohan Y, Cornejo M, Sidell M, Smith J, Young DR. Re-recruiting young adult women into a second follow-up study. Contemp Clin Trials Commun. 2017;5:160–7.
Article
PubMed
PubMed Central
Google Scholar
Moreno MA, Waite A, Pumper M, Colburn T, Holm M, Mendoza J. Recruiting adolescent research participants: in-person compared to social media approaches. Cyberpsychol Behav Soc Netw. 2017;20(1):64–7.
Article
PubMed
Google Scholar
Morgan AJ, Jorm AF, Mackinnon AJ. Internet-based recruitment to a depression prevention intervention: lessons from the Mood Memos study. J Med Internet Res. 2013;15(2):e31.
Article
PubMed
PubMed Central
Google Scholar
Nash EL, Gilroy D, Srikusalanukul W, Abhayaratna WP, Stanton T, Mitchell G, et al. Facebook advertising for participant recruitment into a blood pressure clinical trial. J Hypertens. 2017;35(12):2527–31.
Article
CAS
PubMed
Google Scholar
Ni Y, Wright J, Perentesis J, Lingren T, Deleger L, Kaiser M, et al. Increasing the efficiency of trial-patient matching: automated clinical trial eligibility pre-screening for pediatric oncology patients. BMC Med Inf Decis Making. 2015;15:28.
Article
Google Scholar
Partridge SR, Balestracci K, Wong AT, Hebden L, McGeechan K, Denney-Wilson E, et al. Effective strategies to recruit young adults into the TXT2BFiT mHealth randomized controlled trial for weight gain prevention. JMIR Res Protoc. 2015;4(2):e66.
Article
PubMed
PubMed Central
Google Scholar
Polak E, Apfel A, Privitera M, Buse D, Haut S. Daily diaries in epilepsy research: does electronic format improve adherence? Epilepsy Curr. 2014;1:180.
Google Scholar
Pressler TR, Yen PY, Ding J, Liu J, Embi PJ, Payne PR. Computational challenges and human factors influencing the design and use of clinical research participant eligibility pre-screening tools. BMC Med Inf Decis Making. 2012;12:47.
Article
Google Scholar
Rabin C, Horowitz S, Marcus B. Recruiting young adult cancer survivors for behavioral research. J Clin Psychol Med Settings. 2013;20(1):33–6.
Article
PubMed
PubMed Central
Google Scholar
Ramsey TM, Snyder JK, Lovato LC, Roumie CL, Glasser SP, Cosgrove NM, et al. Recruitment strategies and challenges in a large intervention trial: systolic blood pressure intervention trial. Clin Trials. 2015;13(3):319–30.
Article
Google Scholar
Raviotta JM, Nowalk MP, Lin CJ, Huang HH, Zimmerman RK. Using FacebookTM to recruit college-age men for a human papillomavirus vaccine trial. Am J Mens Health. 2016;10(2):110–9.
Article
PubMed
Google Scholar
Rellis L, Haidari G, Ridgers H, Jones CB, Miller A, Shattock R, et al. How the use of social media and online platforms can enhance recruitment to HIV clinical trials. HIV Med. 2015;2:64–5.
Google Scholar
Rollman BL, Fischer GS, Zhu F, Belnap BH. Comparison of electronic physician prompts versus waitroom case-finding on clinical trial enrollment. J Gen Intern Med. 2008;23(4):447–50.
Article
PubMed
PubMed Central
Google Scholar
Rorie DA, Flynn RWV, Mackenzie IS, MacDonald TM, Rogers A. The treatment in morning versus evening (TIME) study: analysis of recruitment, follow-up and retention rates post-recruitment. Trials. 2017;18:557.
Article
PubMed
PubMed Central
Google Scholar
Routledge FS, Davis TD, Dunbar SB. Recruitment strategies and costs associated with enrolling people with insomnia and high blood pressure into an online behavioral sleep intervention: a single-site pilot study. J Cardiovasc Nurs. 2017;32(5):439–47.
Article
PubMed
Google Scholar
Ryan C, Dadabhoy H, Baranowski T. Participant outcomes from methods of recruitment for videogame research. Games Health J. 2018;7(1):16–23.
Article
PubMed
PubMed Central
Google Scholar
Sahoo SS, Tao S, Parchman A, Luo Z, Cui L, Mergler P, et al. Trial prospector: matching patients with cancer research studies using an automated and scalable approach. Cancer Informat. 2014;13:157–66.
Article
Google Scholar
Sanders KM, Stuart AL, Merriman EN, Read ML, Kotowicz MA, Young D, et al. Trials and tribulations of recruiting 2000 older women onto a clinical trial investigating falls and fractures: Vital D study. BMC Med Res Methodol. 2009;9(1):78.
Article
PubMed
PubMed Central
CAS
Google Scholar
Schroy IPC, Glick JT, Robinson P, Lydotes MA, Heeren TC, Prout M, et al. A cost-effectiveness analysis of subject recruitment strategies in the HIPAA era: Results from a colorectal cancer screening adherence trial. Clin Trials. 2009;6(6):597–609.
Article
PubMed
Google Scholar
Severi E, Free C, Knight R, Robertson S, Edwards P, Hoile E. Two controlled trials to increase participant retention in a randomized controlled trial of mobile phone-based smoking cessation support in the United Kingdom. Clin Trials. 2011;8(5):654–60.
Article
PubMed
PubMed Central
Google Scholar
Sharp LK, Fitzgibbon ML, Schiffer L. Recruitment of obese black women into a physical activity and nutrition intervention trial. J Phys Act Health. 2008;5(6):870–81.
Article
PubMed
Google Scholar
Shere M, Zhao XY, Koren G. The role of social media in recruiting for clinical trials in pregnancy. PLoS ONE. 2014;9(3):e92744.
Article
PubMed
PubMed Central
Google Scholar
Spokoyny I, Lansberg M, Thiessen R, Kemp SM, Aksoy D, Lee Y, et al. Development of a mobile tool that semiautomatically screens patients for stroke clinical trials. Stroke. 2016;47(10):2652–5.
Article
PubMed
PubMed Central
Google Scholar
Staffileno BA, Zschunke J, Weber M, Gross LE, Fogg L, Tangney CC. The feasibility of using Facebook, Craigslist, and other online strategies to recruit young African American women for a web-based healthy lifestyle behavior change Intervention. J Cardiovasc Nurs. 2017;32(4):365–71.
Article
PubMed
Google Scholar
Stanczyk NE, Bolman C, Smit ES, Candel MJ, Muris JW, de Vries H. How to encourage smokers to participate in web-based computer-tailored smoking cessation programs: a comparison of different recruitment strategies. Health Educ Res. 2014;29(1):23–40.
Article
CAS
PubMed
Google Scholar
Stanton AL, Morra ME, Diefenbach MA, Miller SM, Perocchia RS, Raich PC, et al. Responding to a significant recruitment challenge within three nationwide psychoeducational trials for cancer patients. J Cancer Surviv. 2013;7:392–403.
Article
PubMed
PubMed Central
Google Scholar
Switzer JA, Hall CE, Close B, Nichols FT, Gross H, Bruno A, et al. A telestroke network enhances recruitment into acute stroke clinical trials. Stroke. 2010;41(3):566–9.
Article
PubMed
Google Scholar
Sygna K, Johansen S, Ruland CM. Recruitment challenges in clinical research including cancer patients and their caregivers. A randomized controlled trial study and lessons learned. [Erratum appears in Trials. 2016;17(1):133; PMID: 26965306]. Trials. 2015;16:428.
Article
PubMed
PubMed Central
Google Scholar
Tate DF, LaRose JG, Griffin LP, Erickson KE, Robichaud EF, Perdue L, et al. Recruitment of young adults into a randomized controlled trial of weight gain prevention: message development, methods, and cost. Trials. 2014;15:326.
Article
PubMed
PubMed Central
Google Scholar
Taylor-Piliae RE, Boros D, Coull BM. Strategies to improve recruitment and retention of older stroke survivors to a randomized clinical exercise trial. J Stroke Cerebrovasc Dis. 2014;23(3):462–8.
Article
PubMed
Google Scholar
Thadani SR, Weng C, Bigger JT, Ennever JF, Wajngurt D. Electronic screening improves efficiency in clinical trial recruitment. J Am Med Inform Assoc. 2009;16(6):869–73.
Article
PubMed
PubMed Central
Google Scholar
Treweek S, Barnett K, Maclennan G, Bonetti D, Eccles MP, Francis JJ, et al. E-mail invitations to general practitioners were as effective as postal invitations and were more efficient. J Clin Epidemiol. 2012;65(7):793–7.
Article
PubMed
Google Scholar
Treweek S, Pearson E, Smith N, Neville R, Sargeant P, Boswell B, et al. Desktop software to identify patients eligible for recruitment into a clinical trial: using SARMA to recruit to the ROAD feasibility trial. Inform Prim Care. 2010;18(1):51–8.
PubMed
Google Scholar
Unlu Ince B, Cuijpers P, van’t Hof E, Riper H. Reaching and recruiting Turkish migrants for a clinical trial through Facebook: a process evaluation. Internet Interv. 2014;1(2):74–83.
Article
Google Scholar
Usadi RS, Diamond MP, Legro RS, Schlaff WD, Hansen KR, Casson P, et al. Recruitment strategies in two reproductive medicine network infertility trials. Contemp Clin Trials. 2015;45(Pt B):196–200.
Article
PubMed
PubMed Central
Google Scholar
Varner C, McLeod S, Nahiddi N, Borgundvaag B. Text messaging research participants as a follow-up strategy to decrease emergency department study attrition. Can J Emerg Med. 2018;20(1):148–53.
Google Scholar
Volkova E, Michie J, Corrigan C, Sundborn G, Eyles H, Jiang Y, et al. Effectiveness of recruitment to a smartphone-delivered nutrition intervention in New Zealand: analysis of a randomised controlled trial. BMJ Open. 2017;7(6):e016198.
Article
PubMed
PubMed Central
Google Scholar
Weng C, Bigger JT, Busacca L, Wilcox A, Getaneh A. Comparing the effectiveness of a clinical registry and a clinical data warehouse for supporting clinical trial recruitment: a case study. AMIA Ann Symp Proc. 2010;2010(2010):867–71.
Google Scholar
Ashby R, Turner G, Cross B, Mitchell N, Torgerson D. A randomized trial of electronic reminders showed a reduction in the time to respond to postal questionnaires. J Clin Epidemiol. 2011;64:208–12.
Article
PubMed
Google Scholar
Clark L, Ronaldson S, Dyson L, Hewitt C, Torgerson D, Adamson J. Electronic prompts significantly increase response rates to postal questionnaires: a randomized trial within a randomized trial and meta-analysis. J Clin Epidemiol. 2015;68:1446–50.
Article
PubMed
Google Scholar
Man MS, Tilbrook HE, Jayakody S, Hewitt CE, Cox H, Cross B, et al. Electronic reminders did not improve postal questionnaire response rates or response times: a randomized controlled trial. J Clin Epidemiol. 2011;64:1001–4.
Article
PubMed
Google Scholar
Starr K, McPherson G, Forrest M, Cotton SC. SMS text pre-notification and delivery of reminder e-mails to increase response rates to postal questionnaires in the SUSPEND trial: a factorial design, randomised controlled trial. Trials. 2015;16(295):1–8.
Google Scholar
Kearney A, Harman NL, Bacon N, Daykin A, Heawood AJ, Lane A, et al. Online resource for recruitment research in clinical trials research (ORRCA). Trials Conference: 4th International Clinical Trials Methodology Conference , ICTMC and the 38th Annual Meeting of the Society for Clinical Trials United Kingdom. 2017;18 Suppl 1.
PRIORITY Study. Prioritising recruitment and retention in randomised trials (PRioRiTy) Galway. Ireland: University of Galway; 2019. Available from: https://priorityresearch.ie/wp-content/uploads/2017/04/priority-research-logo-small.jpg.
Google Scholar
Pew Research Center. Social media use by age. 2018.
Google Scholar
Sensis. Sensis social media report 2017. How Australian people and businesses are using social media. 2017.
Google Scholar
Office for National Statistics. Internet users in the UK: 2016. 2016.
Google Scholar
Pew Research Center. Internet/broadband fact sheet. 2017.
Google Scholar
Arigo D, Pagoto S, Carter-Harris L, Lillie SE, Nebeker C. Using social media for health research: methodological and ethical considerations for recruitment and intervention delivery. Digit Health. 2018;4:1–15.
Google Scholar
Parker A, Arundel C, Beard D, Bower P, Brocklehurst P, Coleman E, et al. PROMoting THE USE OF SWATs (PROMETHEUS): routinely embedding recruitment and retention interventions within randomised trials. Trials. 2019;20(Suppl 1:579):160.
Google Scholar
D’Avolio L, Ferguson R, Goryachev S, Woods P, Sabin T, O’Neil J, et al. Implementation of the Department of Veterans Affairs’ first point-of-care clinical trial. J Am Med Inform Assoc. 2012;19:e170–6.
Article
PubMed
PubMed Central
Google Scholar
van Staa P, Goldacre B, Gulliford M, Cassell J, Pirmohamed M, Taweel A, et al. Pragmatic randomised trials using routine electronic health records: putting them to the test. BMJ. 2012;344:e55 1-7.
Article
PubMed
PubMed Central
Google Scholar
Hoffman TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of interventions: Template for Intervention Description and Replication (TIDieR) Checklist and Guide. BMJ. 2014;348(g1687):1–12.
Google Scholar
Madurasinghe VW, Eldridge S, Forbes G. Guidelines for reporting embedded recruitment trials. Trials. 2016;17(27):1–25.
Google Scholar