Skip to main content
  • Study protocol
  • Open access
  • Published:

Role of vitamin D3 in Treatment of Lumbar Disc Herniation—Pain and Sensory Aspects: Study Protocol for a Randomized Controlled Trial

Abstract

Background

Vitamin D receptors have been identified in the spinal cord, nerve roots, dorsal root ganglia and glial cells, and its genetic polymorphism association with the development of lumbar disc degeneration and herniation has been documented. Metabolic effects of active vitamin D metabolites in the nucleus pulposus and annulus fibrosus cells have been studied. Lumbar disc herniation is a process that involves immune and inflammatory cells and processes that are targets for immune regulatory actions of vitamin D as a neurosteroid hormone. In addition to vitamin D’s immune modulatory properties, its receptors have been identified in skeletal muscles. It also affects sensory neurons to modulate pain. In this study, we aim to study the role of vitamin D3 in discogenic pain and related sensory deficits. Additionally, we will address how post-treatment 25-hydroxy vitamin D3 level influences pain and sensory deficits severity. The cut-off value for serum 25-hydroxy vitamin D3 that would be efficacious in improving pain and sensory deficits in lumbar disc herniation will also be studied.

Methods/Design

We will conduct a randomized, placebo-controlled, double-blind clinical trial. Our study population will include 380 cases with one-level and unilateral lumbar disc herniation with duration of discogenic pain less than 8 weeks. Individuals who do not have any contraindications, will be divided into three groups based on serum 25-hydroxy vitamin D3 level, and each group will be randomized to receive either a single-dose 300,000-IU intramuscular injection of vitamin D3 or placebo. All patients will be under conservative treatment. Pre-treatment and post-treatment assessments will be performed with the McGill Pain Questionnaire and a visual analogue scale. For the 15-day duration of this study, questionnaires will be filled out during telephone interviews every 3 days (a total of five times). The initial and final interviews will be scheduled at our clinic. After 15 days, serum 25-hydroxy vitamin D3 levels will be measured for those who have received vitamin D3 (190 individuals).

Trial registration

Iranian Registry for Clinical Trials ID: IRCT2014050317534N1 (trial registration: 5 June 2014)

Peer Review reports

Background

Medical treatment is the first step in therapy for lumbar disc herniation (LDH), except for patients who require immediate surgical decompression. Drugs that are utilized in treatment of LDH pain and sensory deficits include muscle relaxants [13], analgesics [1, 2, 49], corticosteroids [1, 2, 10], antidepressants [4, 8, 11, 12] and antiepileptics [4, 8, 1117].

Vitamin D is a secosteroid hormone that has many skeletal and nonskeletal functions [1894]. In addition to its classic action on bone metabolism and osteoporosis [18, 19], its links and roles in relation to other diseases have been addressed in the literature (diabetes mellitus [18, 2023], hypertension [24, 25], cardiovascular diseases [18, 2629], multiple sclerosis [3035], neurodegenerative diseases [3639], neuropsychiatric diseases [3944], inflammatory bowel disease [33, 4549], dermatologic diseases [5058], rheumatoid arthritis [47, 53, 5961], systemic lupus erythematosus [60, 6267], transplant rejection [6870], cancer [18, 52, 68, 7173], postherpetic neuralgia [74], corneal neuralgia [75], respiratory diseases [7679], pregnancy complications [8082], human reproductive issues [8385], migraine headache [86], chronic low back pain [87, 88], chronic painful conditions and fibromyalgia [89, 90] and diabetic neuropathy [9193]). Studies that have shed light on areas that have given us the scientific underpinning for our present proposal are described below.

  1. 1.

    Vitamin D has been called a neurosteroid hormone [39, 74, 94109], given its protective role against neurotoxicity and detoxification pathways [74, 94, 96108] and also its receptors in different parts of the central nervous system [36, 9496, 106114].

  2. 2.

    Vitamin D receptors are present in the spinal cord, nerve roots, dorsal root ganglia and glial cells [94, 96, 97, 113, 115118].

  3. 3.

    Vitamin D receptor gene polymorphism has a role in the development of lumbar disc degeneration and herniation [119123].

  4. 4.

    Discs are composed largely of avascular tissue with a great sensitivity to its nutritional supply and excretion of waste products, and the balance between these two processes is an important factor that could lead to disc degeneration [124127]. The effects of active vitamin D metabolites in nucleus pulposus and annulus fibrosus cells have been studied [128]. Vitamin D inhibits and decreases production of monocyte chemoattractant protein 1, thrombopoietin, vascular endothelial growth factor and angiogenin by human annulus cells in vitro [129]. As mentioned above, vitamin D affects detoxification pathways which are of importance in disc cell nutritional balance.

  5. 5.

    Vitamin D possesses immune regulatory properties which can downregulate proinflammatory cytokines and upregulate anti-inflammatory cytokines [22, 32, 36, 4648, 58, 67, 70, 74, 78, 90, 94, 96, 130146].

  6. 6.

    Vitamin D has properties that defend against cell injury caused via free radicals, reactive oxygen species, glutathione and glutamate [74, 94, 96108, 136, 147149].

  7. 7.

    Vitamin D has a role in pain by downregulating inflammatory cytokines that produce pain (a) directly, (b) by stimulating release of pain mediators, (c) by upregulating anti-inflammatory cytokines to help the body combat inflammation, (d) by its role in eliminating toxic metabolites or (e) by increasing the antioxidant pool. It also affects sensory neurons to modulate pain [114], influences neuron excitability [96] and acts at the level of substantia gelatinosa and spinal ganglion in the process of sensory perception [118]. In addition, its status affects pain sensitivity and opiate activity [150].

  8. 8.

    The role of the vitamin D receptor in skeletal muscles [151155] and its effects on muscle strength and function have been identified [156159].

In addition to the information described above, many studies about changes that occur in LDH have been done, as outlined below.

  1. 1.

    The contribution of inflammatory cytokines in the pathogenesis of LDH has been widely addressed in the literature. The herniated nucleus pulposus, either with immunogenic properties itself or by inducing an immunologic response in the nerve roots, dorsal root ganglia and surrounding muscles, is the starting point for the cascade of inflammation initiated through immune cell activation and infiltration and cytokine release [160184].

  2. 2.

    Neuropathic pain involves the activation of neurons, glial cells and the immune system [185, 186]. Dorsal root ganglia and dorsal roots play important roles in LDH, not only by the effect of released inflammatory cytokines but also by actively amplifying inflammation by producing proinflammatory cytokines and pain mediators that affect pain perception and nociception. Among these substances is brain-derived neurotrophic factor. Its receptor has been identified in intervertebral discs, with its expression being increased during inflammatory conditions such as LDH and its neuroimmunomodulatory role in the dorsal root of the spinal cord [185, 187204]. The other factor is glial cell–derived neurotrophic factor (GDNF). It has been shown that GDNF reduces neuropathic pain states [188, 190, 205208]. Interestingly, vitamin D affects neuropathic pain by directly suppressing inducible nitric oxide that is expressed in glial cells [96, 136] or by affecting other substances, such as reactive oxygen species or glutamate. Given the immunomodulatory action of vitamin D, it is possible that it could downregulate inflammatory chemokines released by glial cells [96, 185189, 209215]. It has been suggested that vitamin D attenuates ischemia-induced brain injury that is thought to be mediated through upregulation of GDNF, in addition to its role in nitric oxide (NO) suppression [216]. The results of other studies support the hypothesis that GDNF is upregulated by vitamin D [90, 94, 96, 190, 217]. Interleukin 6 (IL-6) and tumor necrosis factor α produced by glial cells were shown to be downregulated by vitamin D [94, 96, 136], as were glial cell release of NO [188, 218, 219], prostaglandin [188], IL-1 and IL-6 [218], which, as described below, could be suppressed by vitamin D administration. Glial cells have glutamate receptors that are important in the process of nociception [220224]. Therefore, vitamin D, through its immunoregulatory properties, affects another important cell population that is inflamed in disc herniation, either through suppressing neurotoxic agents or by its action on neurotrophins.

Some specific inflammatory cytokines and pain mediators that are involved in LDH and vitamin D immunomodulatory effects with regard to these specific substances are described in Table 1.

Table 1 Vitamin D effects on substances involved in lumbar disc herniation
  1. 3.

    Detailed study of inflammatory cytokines and subsequent pain mediators released in LDH has shown that there is a shift toward type 1 T-helper cell activity [164, 177, 181, 182, 228].

  2. 4.

    Vitamin D decreases the number and function of type 1 T-helper cells [47, 48, 67, 90, 253].

  3. 5.

    Muscle changes associated with low back pain have been studied [254258]. Studies have shown how muscles are affected by LDH [259266]. Atrophy of type II muscle fibers [259261, 263] or atrophy of both types I and II muscle fibers [260] and adipocyte enlargement are examples of how muscles are targeted by LDH [264]. Vitamin D deficiency–associated histochemical changes in muscles somehow resemble those seen in LDH-affected muscles with atrophy of type II muscle fibers [267271] and enlarged interfibrillar spaces and fat infiltration and glycogen granules [271274]. Another interesting aspect of vitamin D deficiency is how it promotes skeletal muscle hypersensitivity and sensory hyperinnervation [275]. Vitamin D supplementation was shown to increase the diameter of type II muscle fibers [181, 276]. It also influences transdifferentiation of muscle cells to adipose cells [277]. With regard to the presence of vitamin D receptor in skeletal muscles [151155], its effect on muscle growth and proliferation [278282] and the changes seen in muscles after LDH, we propose that vitamin D supplementation also influences muscle changes in this condition.

Methods/Design

Design of the study

We will conduct a randomized, placebo-controlled, double-blind clinical trial.

Statement of ethical approval

This study was approved by the local research ethics committee of Shiraz University of Medical Sciences, Shiraz, Iran (CT-P-92-6632).

Informed consent

Informed consent will be obtained from all participants.

Setting

We will recruit patients who have appointments at the neurosurgery outpatient departments of the university-affiliated hospitals of Shiraz, Iran.

Participants

We will recruit 380 patients with LDH proven by physical examination and confirmed by magnetic resonance imaging.

Intervention

Patients in the intervention arm will receive single-dose intramuscular injections of 300,000 IU of vitamin D3 (1 ml). Individuals will be informed about the nature of this study.

Inclusion criteria

The following are the inclusion criteria:

  1. 1.

    Single-level LDH

  2. 2.

    No coexistent or preexisting spine pathology (for example, spondylolysis, spondylolisthesis, infection, tumors, fracture)

  3. 3.

    Discogenic pain duration less than 8 weeks from onset to physician’s evaluation

  4. 4.

    Compliance with the study protocol

  5. 5.

    Normal laboratory studies that do not contraindicate vitamin D3 injection

Exclusion criteria

The following are the exclusion criteria:

  1. 1.

    Daily supplementation of more than 800 IU of vitamin D3

  2. 2.

    Serum calcium level above 10.5 mg/dl

  3. 3.

    Hypercalciuria (spot urine calcium/creatinine ratio above 0.4)

  4. 4.

    Lymphoma, sarcoidosis, tuberculosis (TB), hyperparathyroidism, celiac disease or malabsorption syndromes

  5. 5.

    History of kidney stones

  6. 6.

    History of inflammatory back pain

  7. 7.

    Impaired renal function tests (glomerular filtration rate less than 30 ml/min/1.73 m2)

  8. 8.

    Impaired hepatic function tests

  9. 9.

    Abnormal serum phosphorus, alkaline phosphatase and parathyroid hormone values

  10. 10.

    Fasting blood sugar above 126 mg/dl

  11. 11.

    Previous spine surgery

  12. 12.

    History of trauma

  13. 13.

    Taking anticonvulsant, anti-TB medications or vitamin D3 analogues

  14. 14.

    Cauda equine syndrome that requires emergency surgical decompression

Laboratory Assessments

The following laboratory workups will be performed for all included participants: serum 25-hydroxy vitamin D3 level, serum calcium, serum phosphorus, alkaline phosphatase, parathyroid hormone, liver function tests (bilirubin (direct and total), alanine transaminase, aspartate transaminase, total protein, total albumin), blood urea nitrogen, creatinine, spot urine for calcium and fasting blood sugar. Clinic-based pre-intervention interviews and physical examinations will include the following:

  1. 1.

    McGill Pain Questionnaire: The McGill Pain Questionnaire is used to evaluate different pain qualities and intensities. This questionnaire consists of four major descriptors: sensory, affective, evaluative and miscellaneous. Each descriptor has its own rank value. The sum of these rank values is the pain rating index. Present pain intensity is measured on scale from 0 to 5 [281].

  2. 2.

    Visual analogue scale (VAS) to evaluate low back pain and radicular pain: A VAS is a pain measurement scale that incorporates numbers and faces to depict the severity of pain. It is usually a 100-mm line. Its ends show the pain extremes [229, 282].

  3. 3.

    A physical examination to detect any sensory deficits.

Randomization

Patients will be categorized on the basis of their serum 25-hydroxy vitamin D3 levels into three groups:

  •  Group 1: Optimum 25-hydroxy vitamin D3 level (32 to 50 ng/ml)

  •  Group 2: Deficient 25-hydroxy vitamin D3 level (less than 10 ng/ml)

  •  Group 3: Insufficient 25-hydroxy vitamin D3 level (less than 32 ng/ml)

Each of the groups will be randomized, based on randomly computer-generated numbers, into two groups to receive intramuscular injection of either 300,000 IU of vitamin D3 (1 ml) or distilled water (1 ml). All patients will be prescribed daily 15 mg Meloxicam capsules. Our study population will be warned verbally and in writing about the potential for severe adverse side effects of vitamin D3 (nausea, vomiting, abdominal pain, metallic taste, breathing difficulties). They will have access to emergency department care should side effects occur.

The study will last 15 days. After vitamin D3 injection, patients will be contacted by telephone every 3 days to assess the sensory and pain effects of vitamin D3 with the McGill Pain Questionnaire and the VAS (a total of five times). Participants will be provided with the VAS so that they can look at the scale and report their pain severity during the telephone interviews.

The following are the final post-treatment evaluations that will be carried out at the clinic:

  1. 1.

    McGill Pain Questionnaire

  2. 2.

    VAS (for low back pain and radicular pain)

  3. 3.

    Physical examination to detect any sensory deficits

Post-treatment 25-hydroxy vitamin D3 levels (after 15 days) will be measured for those participants who have received vitamin D3 (N = 190).

Statistical analysis

Data will be assessed by analysis of variance and paired tests.

Discussion

On the basis of the inflammatory nature of disc herniation and the immunomodulatory effects of vitamin D, as well as the existence of vitamin D receptors in various parts of areas that are affected in the process of disc herniation, we propose a novel role for vitamin D in the treatment of discogenic pain and sensory deficits related to this pathology. We hypothesized that vitamin D3 plays a role in reducing the severity of discogenic pain and that vitamin D3 can improve discogenic-related sensory deficits.

The following are our general objectives in this trial:

  1. 1.

    Effect of vitamin D3 on discogenic pain

  2. 2.

    Effect of vitamin D3 on discogenic sensory deficits

  3. 3.

    Effect of posttreatment 25-hydroxy vitamin D3 level on pain and sensory deficit severity

  4. 4.

    Determining a cut-off level of 25-hydroxy vitamin D3 that is efficient in improving pain and sensory deficits

The following are our applicative objectives:

  1. 1.

    Proposing vitamin D3 as part of medical treatment for LDH

  2. 2.

    Improving LDH patients’ quality of life

  3. 3.

    Decreasing the economic and health burden of LDH

Our ultimate goal in this study is to introduce a new treatment strategy for the treatment of discogenic pain.

Trial status

The study protocol has been approved by the Vice-Chancellor for Research of Shiraz University for Medical Sciences. Recruitment has not been initiated.

Abbreviations

ALT:

Alanine transaminase

AST:

Aspartate transaminase

D:

Downregulation

E:

Expression

I:

Inhibition

IL:

Interleukin

IFN-γ:

Interferon γ

LDH:

Lumbar disc herniation

MCP:

Monocyte chemoattractant protein

MMP:

Matrix metalloproteinase

NO:

Nitric oxide

PG:

Prostaglandin

ROS:

Reactive oxygen species

U:

Upregulation.

References

  1. Smeal WL, Tyburski M, Alleva J: Discogenic/radicular pain. Dis Mon. 2004, 50: 636-669.

    PubMed  Google Scholar 

  2. Valat J-P, Genevay S, Marty M, Rozenberg S, Koes B: Sciatica. Best Pract Res Clin Rheumatol. 2010, 24: 241-252.

    PubMed  Google Scholar 

  3. Legrand E, Bouvard B, Audran M, Fournier D, Valat JP: Sciatica from disk herniation: Medical treatment or surgery?. Joint Bone Spine. 2007, 74: 530-535.

    PubMed  Google Scholar 

  4. Stafford MA, Peng P, Hill DA: Sciatica: a review of history, epidemiology, pathogenesis, and the role of epidural steroid injection in management. Br J Anaesth. 2007, 99: 461-473.

    CAS  PubMed  Google Scholar 

  5. Van Boxem K, Cheng J, Patijn J, Van Kleef M, Lataster A, Mekhail N, Van Zundert J: 11. Lumbosacral radicular pain. Pain Pract. 2010, 10: 339-358.

    PubMed  Google Scholar 

  6. Koes BW, Van Tulder MW, Peul WC: Diagnosis and treatment of sciatica. BMJ. 2007, 334: 1313-1317.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Tarulli AW, Raynor EM: Lumbosacral radiculopathy. Neurol Clin. 2007, 25: 387-405.

    PubMed  Google Scholar 

  8. Pinto RZ, Maher CG, Ferreira ML, Ferreira PH, Hancock M, Oliveira VC, McLachlan AJ, Koes B: Drugs for relief of pain in patients with sciatica: systematic review and meta-analysis. BMJ. 2012, 344:

    Google Scholar 

  9. Ito T, Takano Y, Yuasa N: Types of lumbar herniated disc and clinical course. Spine. 2001, 26: 648-651.

    CAS  PubMed  Google Scholar 

  10. Green LN: Dexamethasone in the management of symptoms due to herniated lumbar disc. J Neurol Neurosurg Psychiatry. 1975, 38: 1211-1217.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chou R: Treating sciatica in the face of poor evidence. BMJ-British Med J. 2012, 344: 12.

    Google Scholar 

  12. Levin KH: Nonsurgical interventions for spine pain. Neurol Clin. 2007, 25: 495-505.

    PubMed  Google Scholar 

  13. Kasimcan O, Kaptan H: Efficacy of gabapentin for radiculopathy caused by lumbar spinal stenosis and lumbar disk hernia. Neurol Med Chir. 2010, 50: 1070-1073.

    Google Scholar 

  14. Eisenberg E, Damunni G, Hoffer E, Baum Y, Krivoy N: Lamotrigine for intractable sciatica: correlation between dose, plasma concentration and analgesia. Eur J Pain. 2003, 7: 485-491.

    CAS  PubMed  Google Scholar 

  15. Zaremba PD, Bialek M, Blaszczyk B, Cioczek P, Czuczwar Sa J: Non-epilepsy uses of antiepileptic drugs. Pharmacol Rep. 2006, 58: 1-12.

    CAS  PubMed  Google Scholar 

  16. Saldaña MT, Navarro A, Pérez C, Masramón X, Rejas J: Patient-reported-outcomes in subjects with painful lumbar or cervical radiculopathy treated with pregabalin: evidence from medical practice in primary care settings. Rheumatol Int. 2010, 30: 1005-1015.

    PubMed  Google Scholar 

  17. Leo RJ: Treatment considerations in neuropathic pain. Curr Treat Options Neurol. 2006, 8: 389-400.

    PubMed  Google Scholar 

  18. Holick MF: Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr. 2004, 79: 362-371.

    CAS  PubMed  Google Scholar 

  19. Holick MF: The vitamin D epidemic and its health consequences. J Nutr. 2005, 135: 2739S-2748S.

    CAS  PubMed  Google Scholar 

  20. Pittas AG, Lau J, Hu FB, Dawson-Hughes B: The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. J Clin Endocrinol Metab. 2007, 92: 2017-2029.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mathieu C, Badenhoop K: Vitamin D and type 1 diabetes mellitus: state of the art. Trends Endocrinol Metab. 2005, 16: 261-266.

    CAS  PubMed  Google Scholar 

  22. Arnson Y, Amital H, Shoenfeld Y: Vitamin D and autoimmunity: new aetiological and therapeutic considerations. Ann Rheum Dis. 2007, 66: 1137-1142.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kamen DL, Tangpricha V: Vitamin D and molecular actions on the immune system: modulation of innate and autoimmunity. J Mol Med (Berl). 2010, 88: 441-450.

    CAS  Google Scholar 

  24. Forman JP, Giovannucci E, Holmes MD, Bischoff-Ferrari HA, Tworoger SS, Willett WC, Curhan GC: Plasma 25-hydroxyvitamin D levels and risk of incident hypertension. Hypertension. 2007, 49: 1063-1069.

    CAS  PubMed  Google Scholar 

  25. Li YC, Qiao G, Uskokovic M, Xiang W, Zheng W, Kong J: Vitamin D: a negative endocrine regulator of the renin–angiotensin system and blood pressure. J Steroid Biochem Mol Biol. 2004, 89: 387-392.

    PubMed  Google Scholar 

  26. Dror Y, Giveon SM, Hoshen M, Feldhamer I, Balicer RD, Feldman BS: Vitamin D levels for preventing acute coronary syndrome and mortality: evidence of a nonlinear association. J Clin Endocrinol Metab. 2013, 98: 2160-2167.

    CAS  PubMed  Google Scholar 

  27. Nemerovski CW, Dorsch MP, Simpson RU, Bone HG, Aaronson KD, Bleske BE: Vitamin D and cardiovascular disease. Pharmacother: J Human Pharmacol Drug Ther. 2009, 29: 691-708.

    CAS  Google Scholar 

  28. Wang TJ, Pencina MJ, Booth SL, Jacques PF, Ingelsson E, Lanier K, Benjamin EJ, D’Agostino RB, Wolf M, Vasan RS: Vitamin D deficiency and risk of cardiovascular disease. Circulation. 2008, 117: 503-511.

    CAS  PubMed  Google Scholar 

  29. Lee JH, O'Keefe JH, Bell D, Hensrud DD, Holick MF: Vitamin D DeficiencyAn Important, Common, and Easily Treatable Cardiovascular Risk Factor?. J Am Coll Cardiol. 2008, 52: 1949-1956.

    CAS  PubMed  Google Scholar 

  30. Mahon BD, Gordon SA, Cruz J, Cosman F, Cantorna MT: Cytokine profile in patients with multiple sclerosis following vitamin D supplementation. J Neuroimmunol. 2003, 134: 128-132.

    CAS  PubMed  Google Scholar 

  31. Cantorna MT, Hayes CE, DeLuca HF: 1,25-Dihydroxyvitamin D3 reversibly blocks the progression of relapsing encephalomyelitis, a model of multiple sclerosis. Proc Natl Acad Sci U S A. 1996, 93: 7861-7864.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Correale J, Ysrraelit MC, Gaitan MI: Immunomodulatory effects of Vitamin D in multiple sclerosis. Brain. 2009, 132: 1146-1160.

    PubMed  Google Scholar 

  33. Cantorna MT: Vitamin D and its role in immunology: multiple sclerosis, and inflammatory bowel disease. Prog Biophys Mol Biol. 2006, 92: 60-64.

    CAS  PubMed  Google Scholar 

  34. VanAmerongen BM, Dijkstra CD, Lips P, Polman CH: Multiple sclerosis and vitamin D: an update. Eur J Clin Nutr. 2004, 58: 1095-1109.

    CAS  PubMed  Google Scholar 

  35. Cantorna MT, Woodward WD, Hayes CE, DeLuca HF: 1,25-dihydroxyvitamin D3 is a positive regulator for the two anti-encephalitogenic cytokines TGF-beta 1 and IL-4. J Immunol. 1998, 160: 5314-5319.

    CAS  PubMed  Google Scholar 

  36. de Abreu DAF, Eyles D, Feron F: Vitamin D, a neuro-immunomodulator: implications for neurodegenerative and autoimmune diseases. Psychoneuroendocrinology. 2009, 34 (Suppl 1): S265-S277.

    Google Scholar 

  37. Przybelski RJ, Binkley NC: Is vitamin D important for preserving cognition? A positive correlation of serum 25-hydroxyvitamin D concentration with cognitive function. Arch Biochem Biophys. 2007, 460: 202-205.

    CAS  PubMed  Google Scholar 

  38. Buell JS, Dawson-Hughes B: Vitamin D and neurocognitive dysfunction: preventing "D"ecline?. Mol Aspects Med. 2008, 29: 415-422.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Stewart A, Wong K, Cachat J, Elegante M, Gilder T, Mohnot S, Wu N, Minasyan A, Tuohimaa P, Kalueff AV: Neurosteroid vitamin D system as a nontraditional drug target in neuropsychopharmacology. Behav Pharmacol. 2010, 21: 420-426.

    CAS  PubMed  Google Scholar 

  40. Eyles DW, Burne TH, McGrath JJ: Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol. 2013, 34: 47-64.

    CAS  PubMed  Google Scholar 

  41. Jorde R, Waterloo K, Saleh F, Haug E, Svartberg J: Neuropsychological function in relation to serum parathyroid hormone and serum 25-hydroxyvitamin D levels. The Tromso study. Neurol Psychiatry. 2006, 253: 464-470.

    CAS  Google Scholar 

  42. Hoogendijk WJ, Lips P, Dik MG, Deeg DJ, Beekman AT, Penninx BW: Depression is associated with decreased 25-hydroxyvitamin D and increased parathyroid hormone levels in older adults. Arch Gen Psychiatry. 2008, 65: 508-512.

    CAS  PubMed  Google Scholar 

  43. Anglin RE, Samaan Z, Walter SD, McDonald SD: Vitamin D deficiency and depression in adults: systematic review and meta-analysis. Br J Psychiatry. 2013, 202: 100-107.

    PubMed  Google Scholar 

  44. Spedding S: Vitamin D and depression: a systematic review and meta-analysis comparing studies with and without biological flaws. Nutrients. 2014, 6: 1501-1518.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu N, Nguyen L, Chun RF, Lagishetty V, Ren S, Wu S, Hollis B, DeLuca HF, Adams JS, Hewison M: Altered endocrine and autocrine metabolism of vitamin D in a mouse model of gastrointestinal inflammation. Endocrinology. 2008, 149: 4799-4808.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu Y, Mahon BD, Froicu M, Cantorna MT: Calcium and 1α, 25‒dihydroxyvitamin D3 target the TNF‒α pathway to suppress experimental inflammatory bowel disease. Eur J Immunol. 2005, 35: 217-224.

    CAS  PubMed  Google Scholar 

  47. Guillot X, Semerano L, Saidenberg-Kermanac'h N, Falgarone G, Boissier MC: Vitamin D and inflammation. Joint Bone Spine. 2010, 77: 552-557.

    CAS  PubMed  Google Scholar 

  48. Cantorna MT, Mahon BD: Mounting evidence for vitamin D as an environmental factor affecting autoimmune disease prevalence. Exp Biol Med (Maywood). 2004, 229: 1136-1142.

    CAS  Google Scholar 

  49. Cantorna MT, Zhu Y, Froicu M, Wittke A: Vitamin D status, 1, 25-dihydroxyvitamin D3, and the immune system. Am J Clin Nutr. 2004, 80: 1717S-1720S.

    CAS  PubMed  Google Scholar 

  50. Kragballe K: Treatment of psoriasis with calcipotriol and other vitamin D analogues. J Am Acad Dermatol. 1992, 27: 1001-1008.

    CAS  PubMed  Google Scholar 

  51. Holick MF: Vitamin D: A millenium perspective. J Cell Biochem. 2003, 88: 296-307.

    CAS  PubMed  Google Scholar 

  52. Holick MF: Vitamin D deficiency. N Engl J Med. 2007, 357: 266-281.

    CAS  PubMed  Google Scholar 

  53. Atwa MA, Balata MG, Hussein AM, Abdelrahman NI, Elminshawy HH: Serum 25-hydroxyvitamin D concentration in patients with psoriasis and rheumatoid arthritis and its association with disease activity and serum tumor necrosis factor-alpha. Saudi Med J. 2013, 34: 806-813.

    PubMed  Google Scholar 

  54. Reichrath J: Vitamin D and the skin: an ancient friend, revisited. Exp Dermatol. 2007, 16: 618-625.

    CAS  PubMed  Google Scholar 

  55. Benson AA, Toh JA, Vernon N, Jariwala SP: The role of vitamin D in the immunopathogenesis of allergic skin diseases. Allergy. 2012, 67: 296-301.

    CAS  PubMed  Google Scholar 

  56. Samochocki Z, Bogaczewicz J, Jeziorkowska R, Sysa-Jedrzejowska A, Glinska O, Karczmarewicz E, McCauliffe DP, Wozniacka A: Vitamin D effects in atopic dermatitis. J Am Acad Dermatol. 2013, 69: 238-244.

    CAS  PubMed  Google Scholar 

  57. Searing DA, Leung DYM: Vitamin D in atopic dermatitis, asthma and allergic diseases. Immunol Allergy Clin N Am. 2010, 30: 397.

    Google Scholar 

  58. Adorini L: Intervention in autoimmunity: the potential of vitamin D receptor agonists. Cell Immunol. 2005, 233: 115-124.

    CAS  PubMed  Google Scholar 

  59. Cutolo M, Otsa K, Uprus M, Paolino S, Seriolo B: Vitamin D in rheumatoid arthritis. Autoimmun Rev. 2007, 7: 59-64.

    CAS  PubMed  Google Scholar 

  60. Pelajo CF, Lopez-Benitez JM, Miller LC: Vitamin D and autoimmune rheumatologic disorders. Autoimmun Rev. 2010, 9: 507-510.

    CAS  PubMed  Google Scholar 

  61. Adorini L, Penna G: Control of autoimmune diseases by the vitamin D endocrine system. Nat Clin Pract Rheumatol. 2008, 4: 404-412.

    CAS  PubMed  Google Scholar 

  62. Kamen DL, Cooper GS, Bouali H, Shaftman SR, Hollis BW, Gilkeson GS: Vitamin D deficiency in systemic lupus erythematosus. Autoimmun Rev. 2006, 5: 114-117.

    CAS  PubMed  Google Scholar 

  63. Kamen DL, Aranow C: The link between vitamin D deficiency and systemic lupus erythematosus. Curr Rheumatol Rep. 2008, 10: 273-280.

    CAS  PubMed  Google Scholar 

  64. Ben-Zvi I, Aranow C, Mackay M, Stanevsky A, Kamen DL, Marinescu LM, Collins CE, Gilkeson GS, Diamond B, Hardin JA: The impact of vitamin D on dendritic cell function in patients with systemic lupus erythematosus. PLoS One. 2010, 5: e9193.

    PubMed  PubMed Central  Google Scholar 

  65. Cutolo M, Otsa K: Review: vitamin D, immunity and lupus. Lupus. 2008, 17: 6-10.

    CAS  PubMed  Google Scholar 

  66. Ruiz-Irastorza G, Egurbide MV, Olivares N, Martinez-Berriotxoa A, Aguirre C: Vitamin D deficiency in systemic lupus erythematosus: prevalence, predictors and clinical consequences. Rheumatology (Oxford, England). 2008, 47: 920-923.

    CAS  Google Scholar 

  67. Szodoray P, Nakken B, Gaal J, Jonsson R, Szegedi A, Zold E, Szegedi G, Brun JG, Gesztelyi R, Zeher M, Bodolay E: The complex role of vitamin D in autoimmune diseases. Scand J Immunol. 2008, 68: 261-269.

    CAS  PubMed  Google Scholar 

  68. Deluca HF, Cantorna MT: Vitamin D: its role and uses in immunology. FASEB J. 2001, 15: 2579-2585.

    CAS  PubMed  Google Scholar 

  69. DeLuca HF: Overview of general physiologic features and functions of vitamin D. Am J Clin Nutr. 2004, 80: 1689S-1696S.

    CAS  PubMed  Google Scholar 

  70. Hayes CE, Nashold FE, Spach KM, Pedersen LB: The immunological functions of the vitamin D endocrine system. Cell Mol Biol. 2003, 49: 277-300.

    CAS  PubMed  Google Scholar 

  71. Holick MF, Chen TC: Vitamin D deficiency: a worldwide problem with health consequences. Am J Clin Nutr. 2008, 87: 1080S-1086S.

    CAS  PubMed  Google Scholar 

  72. Nagpal S, Na S, Rathnachalam R: Noncalcemic actions of vitamin D receptor ligands. Endocr Rev. 2005, 26: 662-687.

    CAS  PubMed  Google Scholar 

  73. Krishnan AV, Feldman D: Mechanisms of the anti-cancer and anti-inflammatory actions of vitamin D. Annu Rev Pharmacol Toxicol. 2011, 51: 311-336.

    CAS  PubMed  Google Scholar 

  74. Bartley J: Post herpetic neuralgia, schwann cell activation and vitamin D. Med Hypotheses. 2009, 73: 927-929.

    CAS  PubMed  Google Scholar 

  75. Singman EL, Poon D, Jun AS: Putative Corneal Neuralgia Responding to Vitamin D Supplementation. Case Rep Ophthalmol. 2013, 4: 105-108.

    PubMed  PubMed Central  Google Scholar 

  76. Hughes DA, Norton R: Vitamin D and respiratory health. Clin Exp Immunol. 2009, 158: 20-25.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Rance K: The emerging role of Vitamin D in asthma management. J Am Assoc Nurse Pract. 2014, 26: 263-267.

    PubMed  Google Scholar 

  78. Adams JS, Hewison M: Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nat Clin Pract Endocrinol Metab. 2008, 4: 80-90.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Hewison M: Vitamin D and the immune system: new perspectives on an old theme. Endocrinol Metab Clin North Am. 2010, 39: 365-379.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Haugen M, Brantsaeter AL, Trogstad L, Alexander J, Roth C, Magnus P, Meltzer HM: Vitamin D supplementation and reduced risk of preeclampsia in nulliparous women. Epidemiology (Cambridge, Mass). 2009, 20: 720-726.

    Google Scholar 

  81. Shand AW, Nassar N, Von Dadelszen P, Innis SM, Green TJ: Maternal vitamin D status in pregnancy and adverse pregnancy outcomes in a group at high risk for pre-eclampsia. BJOG. 2010, 117: 1593-1598.

    CAS  PubMed  Google Scholar 

  82. Robinson CJ, Alanis MC, Wagner CL, Hollis BW, Johnson DD: Plasma 25-hydroxyvitamin D levels in early-onset severe preeclampsia. Am J Obstet Gynecol. 2010, 203: 366-e361-366

    PubMed  PubMed Central  Google Scholar 

  83. Pérez-López FR: Vitamin D: The secosteroid hormone and human reproduction. Gynecol Endocrinol. 2007, 23: 13-24.

    PubMed  Google Scholar 

  84. Grundmann M, von Versen-Hoynck F: Vitamin D - roles in women's reproductive health?. Reprod Biol Endocrinol. 2011, 9: 146.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Luk J, Torrealday S, Neal Perry G, Pal L: Relevance of vitamin D in reproduction. Hum Reprod. 2012, 27: 3015-3027.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Thys-Jacobs S: Vitamin D and calcium in menstrual migraine. Headache. 1994, 34: 544-546.

    CAS  PubMed  Google Scholar 

  87. Al Faraj S, Al Mutairi K: Vitamin D deficiency and chronic low back pain in Saudi Arabia. Spine. 2003, 28: 177-179.

    PubMed  Google Scholar 

  88. Lotfi A, Abdel-Nasser AM, Hamdy A, Omran AA, El-Rehany MA: Hypovitaminosis D in female patients with chronic low back pain. Clin Rheumatol. 2007, 26: 1895-1901.

    PubMed  Google Scholar 

  89. Jesus CA, Feder D, Peres MF: The role of vitamin D in pathophysiology and treatment of fibromyalgia. Curr Pain Headache Rep. 2013, 17: 355.

    PubMed  Google Scholar 

  90. Turner MK, Hooten WM, Schmidt JE, Kerkvliet JL, Townsend CO, Bruce BK: Prevalence and clinical correlates of vitamin D inadequacy among patients with chronic pain. Pain Med. 2008, 9: 979-984.

    PubMed  Google Scholar 

  91. Soderstrom LH, Johnson SP, Diaz VA, Mainous AG: Association between vitamin D and diabetic neuropathy in a nationally representative sample: results from 2001-2004 NHANES. Diabet Med. 2012, 29: 50-55.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Bell DS: Reversal of the Symptoms of Diabetic Neuropathy through Correction of Vitamin D Deficiency in a Type 1 Diabetic Patient. Case Rep Endocrinol. 2012, 2012: 165056.

    PubMed  PubMed Central  Google Scholar 

  93. Lee P, Chen R: Vitamin D as an analgesic for patients with type 2 diabetes and neuropathic pain. Arch Intern Med. 2008, 168: 771-772.

    PubMed  Google Scholar 

  94. Kalueff AV, Minasyan A, Keisala T, Kuuslahti M, Miettinen S, Tuohimaa P: The vitamin D neuroendocrine system as a target for novel neurotropic drugs. CNS Neurol Disord Drug Targets. 2006, 5: 363-371.

    CAS  PubMed  Google Scholar 

  95. Eyles DW, Smith S, Kinobe R, Hewison M, McGrath JJ: Distribution of the vitamin D receptor and 1 alpha-hydroxylase in human brain. J Chem Neuroanat. 2005, 29: 21-30.

    CAS  PubMed  Google Scholar 

  96. Garcion E, Wion-Barbot N, Montero-Menei CN, Berger F, Wion D: New clues about vitamin D functions in the nervous system. Trends Endocrinol Metab. 2002, 13: 100-105.

    CAS  PubMed  Google Scholar 

  97. Malcok U, Sengul G, Kadioglu H, Aydin I: Therapeutic Effect of Vitamin D3 in a Rat Diffuse Axonal Injury Model. J Int Med Res. 2005, 33: 90-95.

    CAS  PubMed  Google Scholar 

  98. Wang JY, Wu JN, Cherng TL, Hoffer BJ, Chen HH, Borlongan CV, Wang Y: Vitamin D(3) attenuates 6-hydroxydopamine-induced neurotoxicity in rats. Brain Res. 2001, 904: 67-75.

    CAS  PubMed  Google Scholar 

  99. Chen KB, Lin AM, Chiu TH: Systemic vitamin D3 attenuated oxidative injuries in the locus coeruleus of rat brain. Ann N Y Acad Sci. 2003, 993: 313-324. discussion 345-319

    CAS  PubMed  Google Scholar 

  100. Cass WA, Smith MP, Peters LE: Calcitriol protects against the dopamine- and serotonin-depleting effects of neurotoxic doses of methamphetamine. Ann N Y Acad Sci. 2006, 1074: 261-271.

    CAS  PubMed  Google Scholar 

  101. Ibi M, Sawada H, Nakanishi M, Kume T, Katsuki H, Kaneko S, Shimohama S, Akaike A: Protective effects of 1α, 25-(OH) < sub > 2</sub > D < sub > 3</sub > against the neurotoxicity of glutamate and reactive oxygen species in mesencephalic culture. Neuropharmacology. 2001, 40: 761-771.

    CAS  PubMed  Google Scholar 

  102. Kalueff AV, Eremin KO, Tuohimaa P: Mechanisms of neuroprotective action of vitamin D(3). Biochemistry (Mosc). 2004, 69: 738-741.

    CAS  Google Scholar 

  103. Garcion E, Sindji L, Leblondel G, Brachet P, Darcy F: 1,25-dihydroxyvitamin D3 regulates the synthesis of gamma-glutamyl transpeptidase and glutathione levels in rat primary astrocytes. J Neurochem. 1999, 73: 859-866.

    CAS  PubMed  Google Scholar 

  104. Eyles DW, Feron F, Cui X, Kesby JP, Harms LH, Ko P, McGrath JJ, Burne TH: Developmental vitamin D deficiency causes abnormal brain development. Psychoneuroendocrinology. 2009, 34 (Suppl 1): S247-S257.

    CAS  PubMed  Google Scholar 

  105. Brewer LD, Thibault V, Chen KC, Langub MC, Landfield PW, Porter NM: Vitamin D hormone confers neuroprotection in parallel with downregulation of L-type calcium channel expression in hippocampal neurons. J Neurosci. 2001, 21: 98-108.

    CAS  PubMed  Google Scholar 

  106. Kiraly SJ, Kiraly MA, Hawe RD, Makhani N: Vitamin D as a neuroactive substance: review. ScientificWorldJournal. 2006, 6: 125-139.

    CAS  PubMed  Google Scholar 

  107. Cekic M, Sayeed I, Stein DG: Combination treatment with progesterone and vitamin D hormone may be more effective than monotherapy for nervous system injury and disease. Front Neuroendocrinol. 2009, 30: 158-172.

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Harms LR, Burne TH, Eyles DW, McGrath JJ: Vitamin D and the brain. Best Pract Res Clin Endocrinol Metab. 2011, 25: 657-669.

    CAS  PubMed  Google Scholar 

  109. Brown J, Bianco JI, McGrath JJ, Eyles DW: 1,25-Dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett. 2003, 343: 139-143.

    CAS  PubMed  Google Scholar 

  110. Eyles D, Brown J, Mackay-Sim A, McGrath J, Feron F: Vitamin d3 and brain development. Neuroscience. 2003, 118: 641-653.

    CAS  PubMed  Google Scholar 

  111. Musiol IM, Stumpf WE, Bidmon HJ, Heiss C, Mayerhofer A, Bartke A: Vitamin D nuclear binding to neurons of the septal, substriatal and amygdaloid area in the Siberian hamster (Phodopus sungorus) brain. Neuroscience. 1992, 48: 841-848.

    CAS  PubMed  Google Scholar 

  112. Prufer K, Veenstra TD, Jirikowski GF, Kumar R: Distribution of 1,25-dihydroxyvitamin D3 receptor immunoreactivity in the rat brain and spinal cord. J Chem Neuroanat. 1999, 16: 135-145.

    CAS  PubMed  Google Scholar 

  113. Smolders J, Moen SM, Damoiseaux J, Huitinga I, Holmoy T: Vitamin D in the healthy and inflamed central nervous system: access and function. J Neurol Sci. 2011, 311: 37-43.

    CAS  PubMed  Google Scholar 

  114. Stumpf WE, O'Brien LP: 1,25 (OH)2 vitamin D3 sites of action in the brain. An autoradiographic study. Histochemistry. 1987, 87: 393-406.

    CAS  PubMed  Google Scholar 

  115. Tague SE, Smith PG: Vitamin D receptor and enzyme expression in dorsal root ganglia of adult female rats: modulation by ovarian hormones. J Chem Neuroanat. 2011, 41: 1-12.

    CAS  PubMed  Google Scholar 

  116. Haussler MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD, Selznick SH, Dominguez CE, Jurutka PW: The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res. 1998, 13: 325-349.

    CAS  PubMed  Google Scholar 

  117. Veenstra TD, Prufer K, Koenigsberger C, Brimijoin SW, Grande JP, Kumar R: 1,25-Dihydroxyvitamin D3 receptors in the central nervous system of the rat embryo. Brain Res. 1998, 804: 193-205.

    CAS  PubMed  Google Scholar 

  118. Stumpf WE, Clark SA, O'Brien LP, Reid FA: 1,25(OH)2 vitamin D3 sites of action in spinal cord and sensory ganglion. Anat Embryol (Berl). 1988, 177: 307-310.

    CAS  Google Scholar 

  119. Videman T, Leppavuori J, Kaprio J, Battie MC, Gibbons LE, Peltonen L, Koskenvuo M: Intragenic polymorphisms of the vitamin D receptor gene associated with intervertebral disc degeneration. Spine. 1998, 23: 2477-2485.

    CAS  PubMed  Google Scholar 

  120. Kawaguchi Y, Kanamori M, Ishihara H, Ohmori K, Matsui H, Kimura T: The association of lumbar disc disease with vitamin-D receptor gene polymorphism. J Bone Joint Surg Am. 2002, 84-A: 2022-2028.

    PubMed  Google Scholar 

  121. Eser B, Cora T, Eser O, Kalkan E, Haktanir A, Erdogan MO, Solak M: Association of the polymorphisms of vitamin D receptor and aggrecan genes with degenerative disc disease. Genet Test Mol Biomarkers. 2010, 14: 313-317.

    CAS  PubMed  Google Scholar 

  122. Yuan H-Y, Tang Y, Liang Y-X, Lei L, Xiao G-B, Wang S, Xia Z-L: Matrix metalloproteinase-3 and vitamin d receptor genetic polymorphisms, and their interactions with occupational exposure in lumbar disc degeneration. J Occup Health. 2010, 52: 23-30.

    CAS  PubMed  Google Scholar 

  123. Cheung KM, Chan D, Karppinen J, Chen Y, Jim JJ, Yip SP, Ott J, Wong KK, Sham P, Luk KD, Cheah KS, Leong JC, Song YQ: Association of the Taq I allele in vitamin D receptor with degenerative disc disease and disc bulge in a Chinese population. Spine. 2006, 31: 1143-1148.

    PubMed  Google Scholar 

  124. Paesold G, Nerlich AG, Boos N: Biological treatment strategies for disc degeneration: potentials and shortcomings. Eur Spine J. 2007, 16: 447-468.

    PubMed  Google Scholar 

  125. Shankar H, Scarlett JA, Abram SE: Anatomy and pathophysiology of intervertebral disc disease. Tech Reg Anesthesia Pain Manage. 2009, 13: 67-75.

    Google Scholar 

  126. Anderson DG, Tannoury C: Molecular pathogenic factors in symptomatic disc degeneration. Spine J. 2005, 5: 260S-266S.

    PubMed  Google Scholar 

  127. Horner HA, Urban JP: Volvo Award Winner in Basic Science Studies: Effect of nutrient supply on the viability of cells from the nucleus pulposus of the intervertebral disc. Spine. 2001, 2001 (26): 2543-2549.

    Google Scholar 

  128. Colombini A, Lanteri P, Lombardi G, Grasso D, Recordati C, Lovi A, Banfi G, Bassani R, Brayda-Bruno M: Metabolic effects of vitamin D active metabolites in monolayer and micromass cultures of nucleus pulposus and annulus fibrosus cells isolated from human intervertebral disc. Int J Biochem Cell Biol. 2012, 44: 1019-1030.

    CAS  PubMed  Google Scholar 

  129. Gruber HE, Hoelscher G, Ingram JA, Chow Y, Loeffler B, Hanley EN: 1,25(OH)2-vitamin D3 inhibits proliferation and decreases production of monocyte chemoattractant protein-1, thrombopoietin, VEGF, and angiogenin by human annulus cells in vitro. Spine. 2008, 33: 755-765.

    PubMed  Google Scholar 

  130. Griffin MD, Xing N, Kumar R: Vitamin D and its analogs as regulators of immune activation and antigen presentation. Annu Rev Nutr. 2003, 23: 117-145.

    CAS  PubMed  Google Scholar 

  131. van Etten E, Mathieu C: Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol. 2005, 97: 93-101.

    CAS  PubMed  Google Scholar 

  132. Bikle DD: Vitamin D: newly discovered actions require reconsideration of physiologic requirements. Trends Endocrinol Metab. 2010, 21: 375-384.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Hewison M: Antibacterial effects of vitamin D. Nat Rev Endocrinol. 2011, 7: 337-345.

    CAS  PubMed  Google Scholar 

  134. Bikle D: Nonclassic actions of vitamin D. J Clin Endocrinol Metab. 2009, 94: 26-34.

    CAS  PubMed  Google Scholar 

  135. Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C: Vitamin D: modulator of the immune system. Curr Opin Pharmacol. 2010, 10: 482-496.

    CAS  PubMed  Google Scholar 

  136. Lefebvre d'Hellencourt C, Montero-Menei CN, Bernard R, Couez D: Vitamin D3 inhibits proinflammatory cytokines and nitric oxide production by the EOC13 microglial cell line. J Neurosci Res. 2003, 71: 575-582.

    PubMed  Google Scholar 

  137. Michel G, Gailis A, Jarzebska-Deussen B, Muschen A, Mirmohammadsadegh A, Ruzicka T: 1,25-(OH)2-vitamin D3 and calcipotriol induce IL-10 receptor gene expression in human epidermal cells. Inflamm Res. 1997, 46: 32-34.

    CAS  PubMed  Google Scholar 

  138. Dickie LJ, Church LD, Coulthard LR, Mathews RJ, Emery P, McDermott MF: Vitamin D3 down-regulates intracellular Toll-like receptor 9 expression and Toll-like receptor 9-induced IL-6 production in human monocytes. Rheumatology (Oxford, England). 2010, 49: 1466-1471.

    CAS  Google Scholar 

  139. D'Ambrosio D, Cippitelli M, Cocciolo MG, Mazzeo D, Di Lucia P, Lang R, Sinigaglia F, Panina-Bordignon P: Inhibition of IL-12 production by 1,25-dihydroxyvitamin D3. Involvement of NF-kappaB downregulation in transcriptional repression of the p40 gene. J Clin Invest. 1998, 101: 252-262.

    PubMed  PubMed Central  Google Scholar 

  140. Griffin MD, Lutz W, Phan VA, Bachman LA, McKean DJ, Kumar R: Dendritic cell modulation by 1alpha,25 dihydroxyvitamin D3 and its analogs: a vitamin D receptor-dependent pathway that promotes a persistent state of immaturity in vitro and in vivo. Proc Natl Acad Sci U S A. 2001, 98: 6800-6805.

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Bemiss CJ, Mahon BD, Henry A, Weaver V, Cantorna MT: Interleukin-2 is one of the targets of 1,25-dihydroxyvitamin D3 in the immune system. Arch Biochem Biophys. 2002, 402: 249-254.

    CAS  PubMed  Google Scholar 

  142. Canning MO, Grotenhuis K, de Wit H, Ruwhof C, Drexhage HA: 1-alpha,25-Dihydroxyvitamin D3 (1,25(OH)(2)D(3)) hampers the maturation of fully active immature dendritic cells from monocytes. Eur J Endocrinol. 2001, 145: 351-357.

    CAS  PubMed  Google Scholar 

  143. Zhang Y, Leung DY, Richers BN, Liu Y, Remigio LK, Riches DW, Goleva E: Vitamin D inhibits monocyte/macrophage proinflammatory cytokine production by targeting MAPK phosphatase-1. J Immunol. 2012, 188: 2127-2135.

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Schleithoff SS, Zittermann A, Tenderich G, Berthold HK, Stehle P, Koerfer R: Vitamin D supplementation improves cytokine profiles in patients with congestive heart failure: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr. 2006, 83: 754-759.

    CAS  PubMed  Google Scholar 

  145. Kuo YT, Kuo CH, Lam KP, Chu YT, Wang WL, Huang CH, Hung CH: Effects of vitamin D3 on expression of tumor necrosis factor-alpha and chemokines by monocytes. J Food Sci. 2010, 75: H200-H204.

    CAS  PubMed  Google Scholar 

  146. Cippitelli M, Santoni A: Vitamin D3: a transcriptional modulator of the interferon-gamma gene. Eur J Immunol. 1998, 28: 3017-3030.

    CAS  PubMed  Google Scholar 

  147. Taniura H, Ito M, Sanada N, Kuramoto N, Ohno Y, Nakamichi N, Yoneda Y: Chronic vitamin D3 treatment protects against neurotoxicity by glutamate in association with upregulation of vitamin D receptor mRNA expression in cultured rat cortical neurons. J Neurosci Res. 2006, 83: 1179-1189.

    CAS  PubMed  Google Scholar 

  148. Staud R: Vitamin D: more than just affecting calcium and bone. Curr Rheumatol Rep. 2005, 7: 356-364.

    CAS  PubMed  Google Scholar 

  149. Garcion E, Nataf S, Berod A, Darcy F, Brachet P: 1,25-Dihydroxyvitamin D3 inhibits the expression of inducible nitric oxide synthase in rat central nervous system during experimental allergic encephalomyelitis. Brain Res Mol Brain Res. 1997, 45: 255-267.

    CAS  PubMed  Google Scholar 

  150. Bazzani C, Arletti R, Bertolini A: Pain threshold and morphine activity in vitamin D-deficient rats. Life Sci. 1984, 34: 461-466.

    CAS  PubMed  Google Scholar 

  151. Bischoff HA, Borchers M, Gudat F, Duermueller U, Theiler R, Stahelin HB, Dick W: In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J. 2001, 33: 19-24.

    CAS  PubMed  Google Scholar 

  152. Boland R, Norman A, Ritz E, Hasselbach W: Presence of a 1,25-dihydroxy-vitamin D3 receptor in chick skeletal muscle myoblasts. Biochem Biophys Res Commun. 1985, 128: 305-311.

    CAS  PubMed  Google Scholar 

  153. Costa EM, Blau HM, Feldman D: 1,25-dihydroxyvitamin D3 receptors and hormonal responses in cloned human skeletal muscle cells. Endocrinology. 1986, 119: 2214-2220.

    CAS  PubMed  Google Scholar 

  154. Ceglia L, da Silva MM, Park LK, Morris E, Harris SS, Bischoff-Ferrari HA, Fielding RA, Dawson-Hughes B: Multi-step immunofluorescent analysis of vitamin D receptor loci and myosin heavy chain isoforms in human skeletal muscle. J Mol Histol. 2010, 41: 137-142.

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Garcia LA, Ferrini MG, Norris KC, Artaza JN: 1,25(OH)(2)vitamin D(3) enhances myogenic differentiation by modulating the expression of key angiogenic growth factors and angiogenic inhibitors in C(2)C(12) skeletal muscle cells. J Steroid Biochem Mol Biol. 2013, 133: 1-11.

    CAS  PubMed  Google Scholar 

  156. Montero-Odasso M, Duque G: Vitamin D in the aging musculoskeletal system: an authentic strength preserving hormone. Mol Aspects Med. 2005, 26: 203-219.

    CAS  PubMed  Google Scholar 

  157. Ceglia L, Niramitmahapanya S, da Silva Morais M, Rivas DA, Harris SS, Bischoff-Ferrari H, Fielding RA, Dawson-Hughes B: A randomized study on the effect of vitamin d3 supplementation on skeletal muscle morphology and vitamin d receptor concentration in older women. J Clin Endocrinol Metab. 2013, 98: E1927-E1935.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Barker T, Henriksen VT, Martins TB, Hill HR, Kjeldsberg CR, Schneider ED, Dixon BM, Weaver LK: Higher serum 25-hydroxyvitamin D concentrations associate with a faster recovery of skeletal muscle strength after muscular injury. Nutrients. 2013, 5: 1253-1275.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Stockton KA, Mengersen K, Paratz JD, Kandiah D, Bennell KL: Effect of vitamin D supplementation on muscle strength: a systematic review and meta-analysis. Osteoporos Int. 2011, 22: 859-871.

    CAS  PubMed  Google Scholar 

  160. Rand N, Reichert F, Floman Y, Rotshenker S: Murine nucleus pulposus-derived cells secrete interleukins-1-beta, -6, and -10 and granulocyte-macrophage colony-stimulating factor in cell culture. Spine. 1997, 22: 2598-2601. discussion 2602

    CAS  PubMed  Google Scholar 

  161. Omarker K, Myers RR: Pathogenesis of sciatic pain: role of herniated nucleus pulposus and deformation of spinal nerve root and dorsal root ganglion. Pain. 1998, 78: 99-105.

    CAS  PubMed  Google Scholar 

  162. Mulleman D, Mammou S, Griffoul I, Watier H, Goupille P: Pathophysiology of disk-related sciatica. I.–Evidence supporting a chemical component. Joint Bone Spine. 2006, 73: 151-158.

    PubMed  Google Scholar 

  163. Xu JT, Xin WJ, Zang Y, Wu CY, Liu XG: The role of tumor necrosis factor-alpha in the neuropathic pain induced by Lumbar 5 ventral root transection in rat. Pain. 2006, 123: 306-321.

    CAS  PubMed  Google Scholar 

  164. Burke JG, Watson RW, McCormack D, Dowling FE, Walsh MG, Fitzpatrick JM: Spontaneous production of monocyte chemoattractant protein-1 and interleukin-8 by the human lumbar intervertebral disc. Spine. 2002, 27: 1402-1407.

    PubMed  Google Scholar 

  165. Specchia N, Pagnotta A, Toesca A, Greco F: Cytokines and growth factors in the protruded intervertebral disc of the lumbar spine. Eur Spine J. 2002, 11: 145-151.

    PubMed  PubMed Central  Google Scholar 

  166. Doita M, Kanatani T, Harada T, Mizuno K: Immunohistologic study of the ruptured intervertebral disc of the lumbar spine. Spine. 1996, 21: 235-241.

    CAS  PubMed  Google Scholar 

  167. Grönblad M, Virri J, Tolonen J, Seitsalo S, Kääpä E, Kankare J, Myllynen P, Karaharju EO: A controlled immunohistochemical study of inflammatory cells in disc herniation tissue. Spine. 1994, 19: 2744-2751.

    PubMed  Google Scholar 

  168. Takahashi H, Suguro T, Okazima Y, Motegi M, Okada Y, Kakiuchi T: Inflammatory cytokines in the herniated disc of the lumbar spine. Spine. 1996, 21: 218-224.

    CAS  PubMed  Google Scholar 

  169. Kobayashi S, Yoshizawa H, Yamada S: Pathology of lumbar nerve root compression Part 1: Intraradicular inflammatory changes induced by mechanical compression. J Orthop Res. 2004, 22: 170-179.

    PubMed  Google Scholar 

  170. Burke JG, Watson RW, McCormack D, Dowling FE, Walsh MG, Fitzpatrick JM: Intervertebral discs which cause low back pain secrete high levels of proinflammatory mediators. J Bone Joint Surgery British Volume. 2002, 84: 196-201.

    CAS  Google Scholar 

  171. Olmarker K, Blomquist J, Stromberg J, Nannmark U, Thomsen P, Rydevik B: Inflammatogenic properties of nucleus pulposus. Spine. 1995, 20: 665-669.

    CAS  PubMed  Google Scholar 

  172. Saal JS: The role of inflammation in lumbar pain. Spine. 1995, 20: 1821-1827.

    CAS  PubMed  Google Scholar 

  173. Cuellar JM, Montesano PX, Carstens E: Role of TNF-alpha in sensitization of nociceptive dorsal horn neurons induced by application of nucleus pulposus to L5 dorsal root ganglion in rats. Pain. 2004, 110: 578-587.

    CAS  PubMed  Google Scholar 

  174. Anzai H, Hamba M, Onda A, Konno S, Kikuchi S: Epidural application of nucleus pulposus enhances nociresponses of rat dorsal horn neurons. Spine. 2002, 27: E50-E55.

    PubMed  Google Scholar 

  175. Yoshida M, Nakamura T, Sei A, Kikuchi T, Takagi K, Matsukawa A: Intervertebral disc cells produce tumor necrosis factor alpha, interleukin-1beta, and monocyte chemoattractant protein-1 immediately after herniation: an experimental study using a new hernia model. Spine. 2005, 30: 55-61.

    PubMed  Google Scholar 

  176. Omoigui S: The biochemical origin of pain: the origin of all pain is inflammation and the inflammatory response. Part 2 of 3 - inflammatory profile of pain syndromes. Med Hypotheses. 2007, 69: 1169-1178.

    CAS  PubMed  PubMed Central  Google Scholar 

  177. Murai K, Sakai D, Nakamura Y, Nakai T, Igarashi T, Seo N, Murakami T, Kobayashi E, Mochida J: Primary immune system responders to nucleus pulposus cells: evidence for immune response in disc herniation. Eur Cell Mater. 2010, 19: 13-21.

    CAS  PubMed  Google Scholar 

  178. Rothman SM, Huang Z, Lee KE, Weisshaar CL, Winkelstein BA: Cytokine mRNA expression in painful radiculopathy. J Pain. 2009, 10: 90-99.

    CAS  PubMed  Google Scholar 

  179. Olmarker K, Larsson K: Tumor necrosis factor alpha and nucleus-pulposus-induced nerve root injury. Spine. 1998, 23: 2538-2544.

    CAS  PubMed  Google Scholar 

  180. Onda A, Hamba M, Yabuki S, Kikuchi S: Exogenous tumor necrosis factor-alpha induces abnormal discharges in rat dorsal horn neurons. Spine. 2002, 27: 1618-1624. discussion 1624

    PubMed  Google Scholar 

  181. Shamji MF, Setton LA, Jarvis W, So S, Chen J, Jing L, Bullock R, Isaacs RE, Brown C, Richardson WJ: Proinflammatory cytokine expression profile in degenerated and herniated human intervertebral disc tissues. Arthritis Rheum. 2010, 62: 1974-1982.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Park JB, Chang H, Kim YS: The pattern of interleukin-12 and T-helper types 1 and 2 cytokine expression in herniated lumbar disc tissue. Spine. 2002, 27: 2125-2128.

    PubMed  Google Scholar 

  183. Olmarker K, Rydevik B: Selective inhibition of tumor necrosis factor-alpha prevents nucleus pulposus-induced thrombus formation, intraneural edema, and reduction of nerve conduction velocity: possible implications for future pharmacologic treatment strategies of sciatica. Spine. 2001, 26: 863-869.

    CAS  PubMed  Google Scholar 

  184. Ohtori S, Inoue G, Eguchi Y, Orita S, Takaso M, Ochiai N, Kishida S, Kuniyoshi K, Aoki Y, Nakamura J, Ishikawa T, Arai G, Miyagi M, Kamoda H, Suzuki M, Sakuma Y, Oikawa Y, Kubota G, Inage K, Sainoh T, Toyone T, Yamauchi K, Kotani T, Akazawa T, Minami S, Takahashi K: Tumor necrosis factor-alpha-immunoreactive cells in nucleus pulposus in adolescent patients with lumbar disc herniation. Spine. 2013, 38: 459-462.

    PubMed  Google Scholar 

  185. De Leo JA, Tawfik VL, LaCroix-Fralish ML: The tetrapartite synapse: path to CNS sensitization and chronic pain. Pain. 2006, 122: 17-21.

    CAS  PubMed  Google Scholar 

  186. Watkins LR, Milligan ED, Maier SF: Spinal cord glia: new players in pain. Pain. 2001, 93: 201-205.

    CAS  PubMed  Google Scholar 

  187. Yajima Y, Narita M, Usui A, Kaneko C, Miyatake M, Narita M, Yamaguchi T, Tamaki H, Wachi H, Seyama Y, Suzuki T: Direct evidence for the involvement of brain-derived neurotrophic factor in the development of a neuropathic pain-like state in mice. J Neurochem. 2005, 93: 584-594.

    CAS  PubMed  Google Scholar 

  188. Moalem G, Tracey DJ: Immune and inflammatory mechanisms in neuropathic pain. Brain Res Rev. 2006, 51: 240-264.

    CAS  PubMed  Google Scholar 

  189. Myers RR, Campana WM, Shubayev VI: The role of neuroinflammation in neuropathic pain: mechanisms and therapeutic targets. Drug Discov Today. 2006, 11: 8-20.

    CAS  PubMed  Google Scholar 

  190. Watkins LR, Maier SF: Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev. 2002, 82: 981-1011.

    CAS  PubMed  Google Scholar 

  191. Watkins LR, Maier SF: Glia: a novel drug discovery target for clinical pain. Nat Rev Drug Discov. 2003, 2: 973-985.

    CAS  PubMed  Google Scholar 

  192. Thompson SW, Bennett DL, Kerr BJ, Bradbury EJ, McMahon SB: Brain-derived neurotrophic factor is an endogenous modulator of nociceptive responses in the spinal cord. Proc Natl Acad Sci U S A. 1999, 96: 7714-7718.

    CAS  PubMed  PubMed Central  Google Scholar 

  193. Kerr BJ, Bradbury EJ, Bennett DL, Trivedi PM, Dassan P, French J, Shelton DB, McMahon SB, Thompson SW: Brain-derived neurotrophic factor modulates nociceptive sensory inputs and NMDA-evoked responses in the rat spinal cord. J Neurosci. 1999, 19: 5138-5148.

    CAS  PubMed  Google Scholar 

  194. Mannion RJ, Costigan M, Decosterd I, Amaya F, Ma QP, Holstege JC, Ji RR, Acheson A, Lindsay RM, Wilkinson GA, Woolf CJ: Neurotrophins: peripherally and centrally acting modulators of tactile stimulus-induced inflammatory pain hypersensitivity. Proc Natl Acad Sci U S A. 1999, 96: 9385-9390.

    CAS  PubMed  PubMed Central  Google Scholar 

  195. Ha SO, Kim JK, Hong HS, Kim DS, Cho HJ: Expression of brain-derived neurotrophic factor in rat dorsal root ganglia, spinal cord and gracile nuclei in experimental models of neuropathic pain. Neuroscience. 2001, 107: 301-309.

    CAS  PubMed  Google Scholar 

  196. Ohtori S, Takahashi K, Moriya H: Existence of brain-derived neurotrophic factor and vanilloid receptor subtype 1 immunoreactive sensory DRG neurons innervating L5/6 intervertebral discs in rats. J Orthop Sci. 2003, 8: 84-87.

    PubMed  Google Scholar 

  197. Cho HJ, Kim JK, Zhou XF, Rush RA: Increased brain-derived neurotrophic factor immunoreactivity in rat dorsal root ganglia and spinal cord following peripheral inflammation. Brain Res. 1997, 764: 269-272.

    CAS  PubMed  Google Scholar 

  198. Obata K, Tsujino H, Yamanaka H, Yi D, Fukuoka T, Hashimoto N, Yonenobu K, Yoshikawa H, Noguchi K: Expression of neurotrophic factors in the dorsal root ganglion in a rat model of lumbar disc herniation. Pain. 2002, 99: 121-132.

    CAS  PubMed  Google Scholar 

  199. Costigan M, Woolf CJ: Pain: Molecular mechanisms. J Pain. 2000, 1: 35-44.

    CAS  PubMed  Google Scholar 

  200. Marcol W, Kotulska K, Larysz-Brysz M, Kowalik JL: BDNF contributes to animal model neuropathic pain after peripheral nerve transection. Neurosurg Rev. 2007, 30: 235-243. discussion 243

    PubMed  Google Scholar 

  201. Fukuoka T, Kondo E, Dai Y, Hashimoto N, Noguchi K: Brain-derived neurotrophic factor increases in the uninjured dorsal root ganglion neurons in selective spinal nerve ligation model. J Neurosci. 2001, 21: 4891-4900.

    CAS  PubMed  Google Scholar 

  202. Gruber HE, Ingram JA, Hoelscher G, Zinchenko N, Norton HJ, Hanley EN: Brain-derived neurotrophic factor and its receptor in the human and the sand rat intervertebral disc. Arthritis Res Ther. 2008, 10: R82.

    PubMed  PubMed Central  Google Scholar 

  203. Zhou XF, Chie ET, Deng YS, Zhong JH, Xue Q, Rush RA, Xian CJ: Injured primary sensory neurons switch phenotype for brain-derived neurotrophic factor in the rat. Neuroscience. 1999, 92: 841-853.

    CAS  PubMed  Google Scholar 

  204. Onda A, Murata Y, Rydevik B, Larsson K, Kikuchi S, Olmarker K: Immunoreactivity of brain-derived neurotrophic factor in rat dorsal root ganglion and spinal cord dorsal horn following exposure to herniated nucleus pulposus. Neurosci Lett. 2003, 352: 49-52.

    CAS  PubMed  Google Scholar 

  205. Nagano M, Sakai A, Takahashi N, Umino M, Yoshioka K, Suzuki H: Decreased expression of glial cell line-derived neurotrophic factor signaling in rat models of neuropathic pain. Br J Pharmacol. 2003, 140: 1252-1260.

    CAS  PubMed  PubMed Central  Google Scholar 

  206. Boucher TJ, Okuse K, Bennett DL, Munson JB, Wood JN, McMahon SB: Potent analgesic effects of GDNF in neuropathic pain states. Science. 2000, 290: 124-127.

    CAS  PubMed  Google Scholar 

  207. Wang R, Guo W, Ossipov MH, Vanderah TW, Porreca F, Lai J: Glial cell line-derived neurotrophic factor normalizes neurochemical changes in injured dorsal root ganglion neurons and prevents the expression of experimental neuropathic pain. Neuroscience. 2003, 121: 815-824.

    CAS  PubMed  Google Scholar 

  208. Gardell LR, Wang R, Ehrenfels C, Ossipov MH, Rossomando AJ, Miller S, Buckley C, Cai AK, Tse A, Foley SF, Gong B, Walus L, Carmillo P, Worley D, Huang C, Engber T, Pepinsky B, Cate RL, Vanderah TW, Lai J, Sah DW, Porreca F: Multiple actions of systemic artemin in experimental neuropathy. Nat Med. 2003, 9: 1383-1389.

    CAS  PubMed  Google Scholar 

  209. Scholz J, Woolf CJ: The neuropathic pain triad: neurons, immune cells and glia. Nat Neurosci. 2007, 10: 1361-1368.

    CAS  PubMed  Google Scholar 

  210. Costigan M, Scholz J, Woolf CJ: Neuropathic pain: a maladaptive response of the nervous system to damage. Annu Rev Neurosci. 2009, 32: 1-32.

    CAS  PubMed  PubMed Central  Google Scholar 

  211. Sommer C, Kress M: Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett. 2004, 361: 184-187.

    CAS  PubMed  Google Scholar 

  212. Czeschik JC, Hagenacker T, Schafers M, Busselberg D: TNF-alpha differentially modulates ion channels of nociceptive neurons. Neurosci Lett. 2008, 434: 293-298.

    CAS  PubMed  Google Scholar 

  213. Sacerdote P, Franchi S, Trovato AE, Valsecchi AE, Panerai AE, Colleoni M: Transient early expression of TNF-alpha in sciatic nerve and dorsal root ganglia in a mouse model of painful peripheral neuropathy. Neurosci Lett. 2008, 436: 210-213.

    CAS  PubMed  Google Scholar 

  214. Tsuda M, Inoue K, Salter MW: Neuropathic pain and spinal microglia: a big problem from molecules in "small" glia. Trends Neurosci. 2005, 28: 101-107.

    CAS  PubMed  Google Scholar 

  215. Hanisch UK: Microglia as a source and target of cytokines. Glia. 2002, 40: 140-155.

    PubMed  Google Scholar 

  216. Wang Y, Chiang YH, Su TP, Hayashi T, Morales M, Hoffer BJ, Lin SZ: Vitamin D(3) attenuates cortical infarction induced by middle cerebral arterial ligation in rats. Neuropharmacology. 2000, 39: 873-880.

    CAS  PubMed  Google Scholar 

  217. Naveilhan P, Neveu I, Wion D, Brachet P: 1,25-Dihydroxyvitamin D3, an inducer of glial cell line-derived neurotrophic factor. Neuroreport. 1996, 7: 2171-2175.

    CAS  PubMed  Google Scholar 

  218. Kawakami M, Matsumoto T, Kuribayashi K, Tamaki T: mRNA expression of interleukins, phospholipase A2, and nitric oxide synthase in the nerve root and dorsal root ganglion induced by autologous nucleus pulposus in the rat. J Orthop Res. 1999, 17: 941-946.

    CAS  PubMed  Google Scholar 

  219. Levy D, Zochodne DW: NO pain: potential roles of nitric oxide in neuropathic pain. Pain Pract. 2004, 4: 11-18.

    PubMed  Google Scholar 

  220. Harrington JF, Messier AA, Bereiter D, Barnes B, Epstein MH: Herniated lumbar disc material as a source of free glutamate available to affect pain signals through the dorsal root ganglion. Spine. 2000, 25: 929-936.

    CAS  PubMed  Google Scholar 

  221. Harrington JF, Messier AA, Hoffman L, Yu E, Dykhuizen M, Barker K: Physiological and behavioral evidence for focal nociception induced by epidural glutamate infusion in rats. Spine. 2005, 30: 606-612.

    PubMed  Google Scholar 

  222. Persson JK, Lindh B, Elde R, Robertson B, Rivero-Melian C, Eriksson NP, Hokfelt T, Aldskogius H: The expression of different cytochemical markers in normal and axotomised dorsal root ganglion cells projecting to the nucleus gracilis in the adult rat. Exp Brain Res. 1995, 105: 331-344.

    CAS  PubMed  Google Scholar 

  223. Wilding TJ, Huettner JE: Differential antagonism of alpha-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid-preferring and kainate-preferring receptors by 2,3-benzodiazepines. Mol Pharmacol. 1995, 47: 582-587.

    CAS  PubMed  Google Scholar 

  224. Wong LA, Mayer ML: Differential modulation by cyclothiazide and concanavalin A of desensitization at native alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid- and kainate-preferring glutamate receptors. Mol Pharmacol. 1993, 44: 504-510.

    CAS  PubMed  Google Scholar 

  225. Ahn SH, Cho YW, Ahn MW, Jang SH, Sohn YK, Kim HS: mRNA expression of cytokines and chemokines in herniated lumbar intervertebral discs. Spine. 2002, 27: 911-917.

    PubMed  Google Scholar 

  226. Xystrakis E, Kusumakar S, Boswell S, Peek E, Urry Z, Richards DF, Adikibi T, Pridgeon C, Dallman M, Loke TK, Robinson DS, Barrat FJ, O'Garra A, Lavender P, Lee TH, Corrigan C, Hawrylowicz CM: Reversing the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patients. J Clin Invest. 2006, 116: 146-155.

    CAS  PubMed  Google Scholar 

  227. Almerighi C, Sinistro A, Cavazza A, Ciaprini C, Rocchi G, Bergamini A: 1Alpha,25-dihydroxyvitamin D3 inhibits CD40L-induced pro-inflammatory and immunomodulatory activity in human monocytes. Cytokine. 2009, 45: 190-197.

    CAS  PubMed  Google Scholar 

  228. Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Donaldson WF, Evans CH: Herniated lumbar intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine. 1996, 21: 271-277.

    CAS  PubMed  Google Scholar 

  229. Kang JD, Georgescu HI, McIntyre-Larkin L, Stefanovic-Racic M, Evans CH: Herniated cervical intervertebral discs spontaneously produce matrix metalloproteinases, nitric oxide, interleukin-6, and prostaglandin E2. Spine. 1995, 20: 2373-2378.

    CAS  PubMed  Google Scholar 

  230. Winkelstein BA, Rutkowski MD, Weinstein JN, DeLeo JA: Quantification of neural tissue injury in a rat radiculopathy model: comparison of local deformation, behavioral outcomes, and spinal cytokine mRNA for two surgeons. J Neurosci Methods. 2001, 111: 49-57.

    CAS  PubMed  Google Scholar 

  231. Kim SJ, Park SM, Cho YW, Jung YJ, Lee DG, Jang SH, Park HW, Hwang SJ, Ahn SH: Changes in expression of mRNA for interleukin-8 and effects of interleukin-8 receptor inhibitor in the spinal dorsal horn in a rat model of lumbar disc herniation. Spine. 2011, 36: 2139-2146.

    PubMed  Google Scholar 

  232. Bahar-Shany K, Ravid A, Koren R: Upregulation of MMP-9 production by TNFalpha in keratinocytes and its attenuation by vitamin D. J Cell Physiol. 2010, 222: 729-737.

    CAS  PubMed  Google Scholar 

  233. Maeda S, Dean DD, Sylvia VL, Boyan BD, Schwartz Z: Metalloproteinase activity in growth plate chondrocyte cultures is regulated by 1,25-(OH)(2)D(3) and 24,25-(OH)(2)D(3) and mediated through protein kinase C. Matrix Biol. 2001, 20: 87-97.

    CAS  PubMed  Google Scholar 

  234. Tetlow LC, Woolley DE: Expression of vitamin D receptors and matrix metalloproteinases in osteoarthritic cartilage and human articular chondrocytes in vitro. Osteoarthritis Cartilage. 2001, 9: 423-431.

    CAS  PubMed  Google Scholar 

  235. Schmitz JP, Schwartz Z, Sylvia VL, Dean DD, Calderon F, Boyan BD: Vitamin D3 regulation of stromelysin-1 (MMP-3) in chondrocyte cultures is mediated by protein kinase C. J Cell Physiol. 1996, 168: 570-579.

    CAS  PubMed  Google Scholar 

  236. Dean DD, Schwartz Z, Schmitz J, Muniz OE, Lu Y, Calderon F, Howell DS, Boyan BD: Vitamin D regulation of metalloproteinase activity in matrix vesicles. Connect Tissue Res. 1996, 35: 331-336.

    CAS  PubMed  Google Scholar 

  237. Boyan BD, Schwartz Z: 1,25-Dihydroxy vitamin D3 is an autocrine regulator of extracellular matrix turnover and growth factor release via ERp60-activated matrix vesicle matrix metalloproteinases. Cells Tissues Organs. 2009, 189: 70-74.

    CAS  PubMed  Google Scholar 

  238. Long K, Nguyen LT: Roles of vitamin D in amyotrophic lateral sclerosis: possible genetic and cellular signaling mechanisms. Mol Brain. 2013, 6: 16.

    PubMed  Google Scholar 

  239. Halder SK, Osteen KG, Al-Hendy A: Vitamin D3 inhibits expression and activities of matrix metalloproteinase-2 and -9 in human uterine fibroid cells. Hum Reprod. 2013, 28: 2407-2416.

    CAS  PubMed  PubMed Central  Google Scholar 

  240. Finklea JD, Grossmann RE, Tangpricha V: Vitamin D and chronic lung disease: a review of molecular mechanisms and clinical studies. Adv Nutr. 2011, 2: 244-253.

    CAS  PubMed  PubMed Central  Google Scholar 

  241. Kanemoto M, Hukuda S, Komiya Y, Katsuura A, Nishioka J: Immunohistochemical study of matrix metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 human intervertebral discs. Spine. 1996, 21: 1-8.

    CAS  PubMed  Google Scholar 

  242. Bachmeier BE, Nerlich A, Mittermaier N, Weiler C, Lumenta C, Wuertz K, Boos N: Matrix metalloproteinase expression levels suggest distinct enzyme roles during lumbar disc herniation and degeneration. Eur Spine J. 2009, 18: 1573-1586.

    PubMed  PubMed Central  Google Scholar 

  243. Benoist M: The natural history of lumbar disc herniation and radiculopathy. Joint Bone Spine. 2002, 69: 155-160.

    PubMed  Google Scholar 

  244. Kim HK, Park SK, Zhou JL, Taglialatela G, Chung K, Coggeshall RE, Chung JM: Reactive oxygen species (ROS) play an important role in a rat model of neuropathic pain. Pain. 2004, 111: 116-124.

    CAS  PubMed  Google Scholar 

  245. Furusawa N, Baba H, Miyoshi N, Maezawa Y, Uchida K, Kokubo Y, Fukuda M: Herniation of cervical intervertebral disc: immunohistochemical examination and measurement of nitric oxide production. Spine. 2001, 26: 1110-1116.

    CAS  PubMed  Google Scholar 

  246. Brisby H, Byrod G, Olmarker K, Miller VM, Aoki Y, Rydevik B: Nitric oxide as a mediator of nucleus pulposus-induced effects on spinal nerve roots. J Orthop Res. 2000, 18: 815-820.

    CAS  PubMed  Google Scholar 

  247. Kawakami M, Tamaki T, Hayashi N, Hashizume H, Nishi H: Possible mechanism of painful radiculopathy in lumbar disc herniation. Clin Orthop Relat Res. 1998, 241-251.

    Google Scholar 

  248. Levy D, Hoke A, Zochodne DW: Local expression of inducible nitric oxide synthase in an animal model of neuropathic pain. Neurosci Lett. 1999, 260: 207-209.

    CAS  PubMed  Google Scholar 

  249. Suzuki A, Tokuda H, Kotoyori J, Ito Y, Oiso Y, Kozawa O: Effect of vitamin D3 on prostaglandin E2 synthesis in osteoblast-like cells. Prostaglandins Leukot Essent Fatty Acids. 1994, 51: 27-31.

    CAS  PubMed  Google Scholar 

  250. Takahashi H: A mechanism for sciatic pain caused by lumbar disc herniation–involvement of inflammatory cytokines with sciatic pain. Nihon Seikeigeka Gakkai Zasshi. 1995, 69: 17-29.

    CAS  PubMed  Google Scholar 

  251. O'Donnell JL, O'Donnell AL: Prostaglandin E2 content in herniated lumbar disc disease. Spine. 1996, 21: 1653-1655. discussion 1655-1656

    PubMed  Google Scholar 

  252. Muramoto T, Atsuta Y, Iwahara T, Sato M, Takemitsu Y: The action of prostaglandin E2 and triamcinolone acetonide on the firing activity of lumbar nerve roots. Int Orthop. 1997, 21: 172-175.

    CAS  PubMed  PubMed Central  Google Scholar 

  253. Lemire JM, Archer DC: 1,25-dihydroxyvitamin D3 prevents the in vivo induction of murine experimental autoimmune encephalomyelitis. J Clin Invest. 1991, 87: 1103-1107.

    CAS  PubMed  PubMed Central  Google Scholar 

  254. Mannion AF, Kaser L, Weber E, Rhyner A, Dvorak J, Muntener M: Influence of age and duration of symptoms on fibre type distribution and size of the back muscles in chronic low back pain patients. Eur Spine J. 2000, 9: 273-281.

    CAS  PubMed  PubMed Central  Google Scholar 

  255. Demoulin C, Crielaard JM, Vanderthommen M: Spinal muscle evaluation in healthy individuals and low-back-pain patients: a literature review. Joint Bone Spine. 2007, 74: 9-13.

    PubMed  Google Scholar 

  256. Mannion AF: Fibre type characteristics and function of the human paraspinal muscles: normal values and changes in association with low back pain. J Electromyogr Kinesiol. 1999, 9: 363-377.

    CAS  PubMed  Google Scholar 

  257. Kjaer P, Bendix T, Sorensen JS, Korsholm L, Leboeuf-Yde C: Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain?. BMC Med. 2007, 5: 2.

    PubMed  PubMed Central  Google Scholar 

  258. Hides JA, Stokes MJ, Saide M, Jull GA, Cooper DH: Evidence of lumbar multifidus muscle wasting ipsilateral to symptoms in patients with acute/subacute low back pain. Spine. 1994, 19: 165-172.

    CAS  PubMed  Google Scholar 

  259. Zhu XZ, Parnianpour M, Nordin M, Kahanovitz N: Histochemistry and morphology of erector spinae muscle in lumbar disc herniation. Spine. 1989, 14: 391-397.

    CAS  PubMed  Google Scholar 

  260. Yoshihara K, Shirai Y, Nakayama Y, Uesaka S: Histochemical changes in the multifidus muscle in patients with lumbar intervertebral disc herniation. Spine. 2001, 26: 622-626.

    CAS  PubMed  Google Scholar 

  261. Zhao WP, Kawaguchi Y, Matsui H, Kanamori M, Kimura T: Histochemistry and morphology of the multifidus muscle in lumbar disc herniation: comparative study between diseased and normal sides. Spine. 2000, 25: 2191-2199.

    CAS  PubMed  Google Scholar 

  262. Franke J, Hesse T, Tournier C, Schuberth W, Mawrin C, LeHuec JC, Grasshoff H: Morphological changes of the multifidus muscle in patients with symptomatic lumbar disc herniation. J Neurosurg Spine. 2009, 11: 710-714.

    PubMed  Google Scholar 

  263. Mattila M, Hurme M, Alaranta H, Paljarvi L, Kalimo H, Falck B, Lehto M, Einola S, Jarvinen M: The multifidus muscle in patients with lumbar disc herniation. A histochemical and morphometric analysis of intraoperative biopsies. Spine. 1986, 11: 732-738.

    CAS  PubMed  Google Scholar 

  264. Hodges P, Holm AK, Hansson T, Holm S: Rapid atrophy of the lumbar multifidus follows experimental disc or nerve root injury. Spine. 2006, 31: 2926-2933.

    PubMed  Google Scholar 

  265. Hyun JK, Lee JY, Lee SJ, Jeon JY: Asymmetric atrophy of multifidus muscle in patients with unilateral lumbosacral radiculopathy. Spine. 2007, 32: E598-E602.

    PubMed  Google Scholar 

  266. Kader DF, Wardlaw D, Smith FW: Correlation between the MRI changes in the lumbar multifidus muscles and leg pain. Clin Radiol. 2000, 55: 145-149.

    CAS  PubMed  Google Scholar 

  267. Boland R: Role of vitamin D in skeletal muscle function. Endocr Rev. 1986, 7: 434-448.

    CAS  PubMed  Google Scholar 

  268. Floyd M, Ayyar DR, Barwick DD, Hudgson P, Weightman D: Myopathy in chronic renal failure. Q J Med. 1974, 43: 509-524.

    CAS  PubMed  Google Scholar 

  269. Lazaro RP, Kirshner HS: Proximal muscle weakness in uremia. Case reports and review of the literature. Arch Neurol. 1980, 37: 555-558.

    CAS  PubMed  Google Scholar 

  270. Snijder MB, van Schoor NM, Pluijm SM, van Dam RM, Visser M, Lips P: Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab. 2006, 91: 2980-2985.

    CAS  PubMed  Google Scholar 

  271. Ceglia L: Vitamin D and skeletal muscle tissue and function. Mol Aspects Med. 2008, 29: 407-414.

    CAS  PubMed  Google Scholar 

  272. Yoshikawa S, Nakamura T, Tanabe H, Imamura T: Osteomalacic myopathy. Endocrinol Jpn. 1979, 26: 65-72.

    CAS  PubMed  Google Scholar 

  273. Oh JH, Kim SH, Kim JH, Shin YH, Yoon JP, Oh CH: The level of vitamin D in the serum correlates with fatty degeneration of the muscles of the rotator cuff. J Bone Joint Surgery British Volume. 2009, 91: 1587-1593.

    CAS  Google Scholar 

  274. Tagliafico AS, Ameri P, Bovio M, Puntoni M, Capaccio E, Murialdo G, Martinoli C: Relationship between fatty degeneration of thigh muscles and vitamin D status in the elderly: a preliminary MRI study. AJR Am J Roentgenol. 2010, 194: 728-734.

    PubMed  Google Scholar 

  275. Tague SE, Clarke GL, Winter MK, McCarson KE, Wright DE, Smith PG: Vitamin D deficiency promotes skeletal muscle hypersensitivity and sensory hyperinnervation. J Neurosci. 2011, 31: 13728-13738.

    CAS  PubMed  PubMed Central  Google Scholar 

  276. Sorensen OH, Lund B, Saltin B, Lund B, Andersen RB, Hjorth L, Melsen F, Mosekilde L: Myopathy in bone loss of ageing: improvement by treatment with 1 alpha-hydroxycholecalciferol and calcium. Clin Sci (Lond). 1979, 56: 157-161.

    CAS  Google Scholar 

  277. Ryan KJ, Daniel ZC, Craggs LJ, Parr T, Brameld JM: Dose-dependent effects of vitamin D on transdifferentiation of skeletal muscle cells to adipose cells. J Endocrinol. 2013, 217: 45-58.

    CAS  PubMed  PubMed Central  Google Scholar 

  278. Wu Z, Woodring PJ, Bhakta KS, Tamura K, Wen F, Feramisco JR, Karin M, Wang JY, Puri PL: p38 and extracellular signal-regulated kinases regulate the myogenic program at multiple steps. Mol Cell Biol. 2000, 20: 3951-3964.

    CAS  PubMed  PubMed Central  Google Scholar 

  279. Widmann C, Gibson S, Jarpe MB, Johnson GL: Mitogen-activated protein kinase: conservation of a three-kinase module from yeast to human. Physiol Rev. 1999, 79: 143-180.

    CAS  PubMed  Google Scholar 

  280. Buitrago C, Boland R, de Boland AR: The tyrosine kinase c-Src is required for 1,25(OH)2-vitamin D3 signalling to the nucleus in muscle cells. Biochim Biophys Acta. 2001, 1541: 179-187.

    CAS  PubMed  Google Scholar 

  281. Buitrago CG, Pardo VG, de Boland AR, Boland R: Activation of RAF-1 through Ras and protein kinase Calpha mediates 1alpha,25(OH)2-vitamin D3 regulation of the mitogen-activated protein kinase pathway in muscle cells. J Biol Chem. 2003, 278: 2199-2205.

    CAS  PubMed  Google Scholar 

  282. Buitrago C, Gonzalez Pardo V, de Boland AR: Nongenomic action of 1 alpha,25(OH)(2)-vitamin D3. Activation of muscle cell PLC gamma through the tyrosine kinase c-Src and PtdIns 3-kinase. Eur J Biochem. 2002, 269: 2506-2515.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We appreciate Mohsen Akbarpour of Shiraz University of Medical Sciences for his contribution to the study statistical design and analysis. This study currently has no funding, but we are in the process of applying for grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Sedighi.

Additional information

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

MS contributed to the acquisition and study of background data, proposed the novel role for vitamin D in the treatment of lumbar disc herniation, suggested the design of the study and how it will be carried out, and helped develop the inclusion and exclusion criteria and laboratory studies. AH participated in the design of the study and how it will be carried out and developing the inclusion and exclusion criteria. Both authors read and approved the final manuscript.

Rights and permissions

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sedighi, M., Haghnegahdar, A. Role of vitamin D3 in Treatment of Lumbar Disc Herniation—Pain and Sensory Aspects: Study Protocol for a Randomized Controlled Trial. Trials 15, 373 (2014). https://doi.org/10.1186/1745-6215-15-373

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1186/1745-6215-15-373

Keywords