Jastreboff PJ. Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res. 1990;8(4):221–54.
Article
CAS
PubMed
Google Scholar
Noreña AJ, Lacher-Fougère S, Fraysse MJ, Bizaguet E, Grevin P, Thai-Van H, et al. A contribution to the debate on tinnitus definition. Prog Brain Res. 2021;262:469–85.
Article
PubMed
Google Scholar
McCormack A, Edmondson-Jones M, Somerset S, Hall D. A systematic review of the reporting of tinnitus prevalence and severity. Hear Res. 2016;337:70–9.
Article
PubMed
Google Scholar
Vanneste S, De Ridder D. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks. Front Syst Neurosci. 2012;6:31.
Article
PubMed
PubMed Central
Google Scholar
Adams ME, Huang TC, Nagarajan S, Cheung SW. Tinnitus neuroimaging. Otolaryngol Clin North Am. 2020;53(4):583–603.
Article
PubMed
Google Scholar
Yousef A, Hinkley LB, Nagarajan SS, Cheung SW. Neuroanatomic volume differences in tinnitus and hearing loss. Laryngoscope. 2021;131(8):1863–8.
Article
PubMed
Google Scholar
Meyer M, Neff P, Liem F, Kleinjung T, Weidt S, Langguth B, et al. Differential tinnitus-related neuroplastic alterations of cortical thickness and surface area. Hear Res. 2016;342:1–12.
Article
PubMed
Google Scholar
Hu J, Cui J, Xu J-J, Yin X, Wu Y, Qi J. The neural mechanisms of tinnitus: a perspective from functional magnetic resonance imaging. Front Neurosci. 2021;15:621145.
Article
PubMed
PubMed Central
Google Scholar
Kleinjung T, Langguth B. Avenue for future tinnitus treatments. Otolaryngol Clin North Am. 2020;53(4):667–83.
Article
PubMed
Google Scholar
Polanía R, Nitsche MA, Ruff CC. Studying and modifying brain function with non-invasive brain stimulation. Nat Neurosci. 2018;21(2):174–87.
Article
PubMed
CAS
Google Scholar
Paulus W. Transcranial electrical stimulation (tES – tDCS; tRNS, tACS) methods. Neuropsychological Rehabilitation. 2011;21(5):602–17.
Article
PubMed
Google Scholar
Reed T, Cohen KR. Transcranial electrical stimulation (tES) mechanisms and its effects on cortical excitability and connectivity. J Inherited Metab Dis. 2018;41(6):1123–30.
Article
Google Scholar
Langguth B. Non-Invasive Neuromodulation for Tinnitus. J Audiol Otol. 2020;24(3):113–8.
Article
PubMed
PubMed Central
Google Scholar
Terney D, Chaieb L, Moliadze V, Antal A, Paulus W. Increasing human brain excitability by transcranial high-frequency random noise stimulation. J Neurosci. 2008;28(52):14147–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chaieb L, Paulus W, Antal A. Evaluating aftereffects of short-duration transcranial random noise stimulation on cortical excitability. Neural Plasticity. 2011;2011:105927.
Article
PubMed
PubMed Central
Google Scholar
Van Doren J, Langguth B, Schecklmann M. Electroencephalographic effects of transcranial random noise stimulation in the auditory cortex. Brain Stimul. 2014;7(6):807–12.
Article
PubMed
Google Scholar
Joos K, De Ridder D, Vanneste S. The differential effect of low- versus high-frequency random noise stimulation in the treatment of tinnitus. Exp Brain Res. 2015;233(5):1433–40.
Article
PubMed
Google Scholar
Kreuzer PM, Poeppl TB, Rupprecht R, Vielsmeier V, Lehner A, Langguth B, et al. Daily high-frequency transcranial random noise stimulation of bilateral temporal cortex in chronic tinnitus - a pilot study. Sci Rep. 2019;9(1):12274.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kreuzer PM, Vielsmeier V, Poeppl TB, Langguth B. A case report on red ear syndrome with tinnitus successfully treated with transcranial random noise stimulation. Pain Physician. 2017;20(1):E199–e205.
Article
PubMed
Google Scholar
Mohsen S, Mahmoudian S, Talebian S, Pourbakht A. Multisite transcranial random noise stimulation (tRNS) modulates the distress network activity and oscillatory powers in subjects with chronic tinnitus. J Clin Neurosci. 2019;67:178–84.
Article
PubMed
Google Scholar
Mohsen S, Mahmoudian S, Talebian S, Pourbakht A. Prefrontal and auditory tRNS in sequence for treating chronic tinnitus: a modified multisite protocol. Brain Stimulation. 2018;11(5):1177–9.
Article
PubMed
Google Scholar
Mohsen S, Pourbakht A, Farhadi M, Mahmoudian S. The efficacy and safety of multiple sessions of multisite transcranial random noise stimulation in treating chronic tinnitus. Braz J Otorhinolaryngol. 2019;85(5):628–35.
Article
PubMed
Google Scholar
To WT, Ost J, Hart J Jr, De Ridder D, Vanneste S. The added value of auditory cortex transcranial random noise stimulation (tRNS) after bifrontal transcranial direct current stimulation (tDCS) for tinnitus. J Neural Transm (Vienna). 2017;124(1):79–88.
Article
PubMed
Google Scholar
Vanneste S, Fregni F, De Ridder D. Head-to-head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for tinnitus. Front Psychiatry. 2013;4:158.
Article
PubMed
PubMed Central
Google Scholar
Jastreboff PJ, Hazell JW. A neurophysiological approach to tinnitus: clinical implications. Br J Audiol. 1993;27(1):7–17.
Article
CAS
PubMed
Google Scholar
Tass PA, Adamchic I, Freund H-J, von Stackelberg T, Hauptmann C. Counteracting tinnitus by acoustic coordinated reset neuromodulation. Restor Neurol Neurosci. 2012;30:137–59.
PubMed
Google Scholar
Okamoto H, Stracke H, Stoll W, Pantev C. Listening to tailor-made notched music reduces tinnitus loudness and tinnitus-related auditory cortex activity. Proc Natl Acad Sci. 2010;107(3):1207–10.
Article
CAS
PubMed
Google Scholar
Neff P, Michels J, Meyer M, Schecklmann M, Langguth B, Schlee W. 10 Hz amplitude modulated sounds induce short-term tinnitus suppression. Front Aging Neurosci. 2017;9:130.
Article
PubMed
PubMed Central
Google Scholar
Roberts LE, Moffat G, Baumann M, Ward LM, Bosnyak DJ. Residual inhibition functions overlap tinnitus spectra and the region of auditory threshold shift. J Assoc Res Otolaryngol. 2008;9(4):417–35.
Article
PubMed
PubMed Central
Google Scholar
Shekhawat GS, Kobayashi K, Searchfield GD. Methodology for studying the transient effects of transcranial direct current stimulation combined with auditory residual inhibition on tinnitus. J Neurosci Methods. 2015;239:28–33.
Article
PubMed
Google Scholar
Teismann H, Wollbrink A, Okamoto H, Schlaug G, Rudack C, Pantev C. Combining transcranial direct current stimulation and tailor-made notched music training to decrease tinnitus-related distress – a pilot study. PLOS ONE. 2014;9(2):e89904.
Article
PubMed
PubMed Central
CAS
Google Scholar
Henin S, Fein D, Smouha E, Parra LC. The effects of compensatory auditory stimulation and high-definition transcranial direct current stimulation (HD-tDCS) on tinnitus perception - a randomized pilot study. PLoS One. 2016;11(11):e0166208.
Article
PubMed
PubMed Central
CAS
Google Scholar
Rabau S, Van Rompaey V, Van de Heyning P. The effect of transcranial direct current stimulation in addition to tinnitus retraining therapy for treatment of chronic tinnitus patients: a study protocol for a double-blind controlled randomised trial. Trials. 2015;16(1):514.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lee HY, Choi MS, Chang DS, Cho C-S. Combined bifrontal transcranial direct current stimulation and tailor-made notched music training in chronic tinnitus. J Audiol Otol. 2017;21(1):22–7.
Article
PubMed
PubMed Central
Google Scholar
Claes L, Stamberger H, Van de Heyning P, De Ridder D, Vanneste S. Auditory cortex tACS and tRNS for tinnitus: single versus multiple sessions. Neural Plasticity. 2014;2014:436713.
Article
PubMed
PubMed Central
Google Scholar
Antal A, Herrmann CS. Transcranial alternating current and random noise stimulation: possible mechanisms. Neural Plasticity. 2016;2016:3616807.
Article
PubMed
PubMed Central
CAS
Google Scholar
Peter N, Kleinjung T. Neuromodulation for tinnitus treatment: an overview of invasive and non-invasive techniques. J Zhejiang Univ Sci B. 2019;20(2):116–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hoare DJ, Adjamian P, Sereda M. Electrical stimulation of the ear, head, cranial nerve, or cortex for the treatment of tinnitus: a scoping review. Neural Plasticity. 2016;2016:5130503.
Article
PubMed
PubMed Central
Google Scholar
Cima RFF, Mazurek B, Haider H, Kikidis D, Lapira A, Noreña A, et al. A multidisciplinary European guideline for tinnitus: diagnostics, assessment, and treatment. Hno. 2019;67(Suppl 1):10–42.
Article
CAS
PubMed
Google Scholar
Attias J, Urbach D, Gold S, Shemesh Z. Auditory event related potentials in chronic tinnitus patients with noise induced hearing loss. Hear Res. 1993;71(1-2):106–13.
Article
CAS
PubMed
Google Scholar
De Ridder D, Schlee W, Vanneste S, Londero A, Weisz N, Kleinjung T, et al. Tinnitus and tinnitus disorder: theoretical and operational definitions (an international multidisciplinary proposal). Prog Brain Res. 2021;260:1–25.
Article
PubMed
Google Scholar
Brodmann K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Verlag von Johann Abrosius Barth; 1909.
Rademacher J, Morosan P, Schormann T, Schleicher A, Werner C, Freund HJ, et al. Probabilistic mapping and volume measurement of human primary auditory cortex. NeuroImage. 2001;13(4):669–83.
Article
CAS
PubMed
Google Scholar
Oostenveld R, Praamstra P. The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol. 2001;112(4):713–9.
Article
CAS
PubMed
Google Scholar
Jurcak V, Tsuzuki D, Dan I. 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage. 2007;34(4):1600–11.
Article
PubMed
Google Scholar
MATLAB. version 2019b. Natick, Massachusetts: The MathWorks Inc.; 2020.
Brainard DH. The Psychophysics Toolbox. Spat Vis. 1997;10:433–6.
Pelli DG. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spat Vis. 1997;10:437–42.
Kleiner M, Brainard D, Pelli D. What's new in Psychtoolbox-3?. Perception. 2007;36:14–4.
Hartmann T, Weisz N. An Introduction to the Objective Psychophysics Toolbox. Front Psychol. 2020;11:585437.
Sedley W, Alter K, Gander PE, Berger J, Griffiths TD. Exposing pathological sensory predictions in tinnitus using auditory intensity deviant evoked responses. J Neurosci. 2019;39(50):10096–103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mahmoudian S, Farhadi M, Najafi-Koopaie M, Darestani-Farahani E, Mohebbi M, Dengler R, et al. Central auditory processing during chronic tinnitus as indexed by topographical maps of the mismatch negativity obtained with the multi-feature paradigm. Brain Res. 2013;1527:161–73.
Article
CAS
PubMed
Google Scholar
Asadpour A, Jahed M, Mahmoudian S. Aberrant frequency related change-detection activity in chronic tinnitus. Front Neurosci. 2020;14:543134.
Article
PubMed
PubMed Central
Google Scholar
Näätänen R, Pakarinen S, Rinne T, Takegata R. The mismatch negativity (MMN): towards the optimal paradigm. Clin Neurophysiol. 2004;115(1):140–4.
Article
PubMed
Google Scholar
Pakarinen S, Huotilainen M, Näätänen R. The mismatch negativity (MMN) with no standard stimulus. Clin Neurophysiol. 2010;121(7):1043–50.
Article
PubMed
Google Scholar
Green DM. A maximum-likelihood method for estimating thresholds in a yes-no task. J Acoust Soc Am. 1993;93(4 Pt 1):2096–105.
Article
CAS
PubMed
Google Scholar
Lecluyse W, Meddis R. A simple single-interval adaptive procedure for estimating thresholds in normal and impaired listeners. J Acoust Soc Am. 2009;126(5):2570–9.
Article
PubMed
Google Scholar
Tinnitus: assessment and management: in Evidence review for audiological assessment, NICE Evidence Reviews Collection. 2020.
Sherlock LP, Formby C. Estimates of loudness, loudness discomfort, and the auditory dynamic range: normative estimates, comparison of procedures, and test-retest reliability. J Am Acad Audiol. 2005;16(2):85–100.
Article
PubMed
Google Scholar
Pérez-González P, Johannesen PT, Lopez-Poveda EA. Forward-masking recovery and the assumptions of the temporal masking curve method of inferring cochlear compression. Trends Hear. 2014;18:2331216514564253.
Google Scholar
Tan CM, Lecluyse W, McFerran D, Meddis R. Tinnitus and patterns of hearing loss. J Assoc Res Otolaryngol. 2013;14(2):275–82.
Article
PubMed
PubMed Central
Google Scholar
Kiani F, Yoganantha U, Tan CM, Meddis R, Schaette R. Off-frequency listening in subjects with chronic tinnitus. Hear Res. 2013;306:1–10.
Article
PubMed
Google Scholar
Lecluyse W, Tan CM, McFerran D, Meddis R. Acquisition of auditory profiles for good and impaired hearing. Int J Audiol. 2013;52(9):596–605.
Article
PubMed
Google Scholar
Kegel A, Giroud N, Meyer M, Dillier N. Differences in Supra-Threshold Auditory Function in young and elderly normal hearing Adults. 20. Aalen: Jahrestagung der Deutschen Gesellschaft für Audiologie; 2017.
Henry JA. “Measurement” of tinnitus. Otol Neurotol. 2016;37(8).
Henry JA, Roberts LE, Ellingson RM, Thielman EJ. Computer-automated tinnitus assessment: noise-band matching, maskability, and residual inhibition. J Am Acad Audiol. 2013;24(6):486–504.
Article
PubMed
Google Scholar
Neff P, Zielonka L, Meyer M, Langguth B, Schecklmann M, Schlee W. Comparison of amplitude modulated sounds and pure tones at the tinnitus frequency: residual tinnitus suppression and stimulus evaluation. Trends Hear. 2019;23:2331216519833841.
PubMed
PubMed Central
Google Scholar
Neff P, Langguth B, Schecklmann M, Hannemann R, Schlee W. Comparing three established methods for tinnitus pitch matching with respect to reliability, matching duration, and subjective satisfaction. Trends Hear. 2019;23:2331216519887247.
PubMed
PubMed Central
Google Scholar
Neff PKA, Schoisswohl S, Simoes J, Staudinger S, Langguth B, Schecklmann M, et al. Prolonged tinnitus suppression after short-term acoustic stimulation. Prog Brain Res. 2021;262:159–74.
Güntensperger D, Thüring C, Kleinjung T, Neff P, Meyer M. Investigating the efficacy of an individualized alpha/delta neurofeedback protocol in the treatment of chronic tinnitus. Neural Plasticity. 2019;2019:3540898.
Article
PubMed
PubMed Central
Google Scholar
Güntensperger D, Kleinjung T, Neff P, Thüring C, Meyer M. Combining neurofeedback with source estimation: evaluation of an sLORETA neurofeedback protocol for chronic tinnitus treatment. Restor Neurol Neurosci. 2020;38(4):283–99.
PubMed
PubMed Central
Google Scholar
Langguth B, Goodey R, Azevedo A, Bjorne A, Cacace A, Crocetti A, et al. Consensus for tinnitus patient assessment and treatment outcome measurement: Tinnitus Research Initiative meeting, Regensburg, July 2006. Prog Brain Res. 2007;166:525–36.
Article
CAS
PubMed
PubMed Central
Google Scholar
Margraf J, Ehlers A. BAI Beck-Angst-Inventar, deutsche Übersetzung. Harcourt Test Services (today Pearson). 2007.
Hautzinger M, Bailer M, Worall H, Keller F. Beck-Depressions-Inventar (BDI). Hans Huber, Bern. 1995.
Angermeyer MC, Kilian R, Matschinger H. WHOQOL-100 und WHOQOL-BREF: Handbuch für die deutschsprachige Version der WHO-Instrumente zur Erfassung von Lebensqualität. Hogrefe, Göttingen. 2000.
Danner D, Rammstedt B, Bluemke M, Treiber L, Berres S, Soto C, John O. Die deutsche Version des Big Five Inventory 2 (BFI-2). Zusammenstellung sozialwissenschaftlicher Items und Skalen (ZIS). 2016.
Beck AT, Epstein N, Brown G, Steer RA. An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol. 1988;56:893–7.
Peter N, Kleinjung T, Lippuner R, Boecking B, Brueggemann P, Mazurek B. [German-language versions of the Tinnitus Functional Index : Comparison of the two validated German-language versions of the Tinnitus Functional Index for Switzerland and Germany]. HNO. 2022;70,187-192.
Beck AT, Steer RA. Beck Depression Inventory Manual. San Antonio: Psychological Cooperation; 1993.
WHO. The World Health Organization quality of life assessment (WHOQOL): development and general psychometric properties. Group, T.W. (Ed.). Soc Sci Med. 1998;1569–85.
John OP. The “Big Five” factor taxonomy: Dimensions of personality in the natural language and questionnaires. In L. A. Pervin (Ed.), Handbook of personality: Theory and research, NY: Guilford Press. 1990;66–100.
Zeman F, Koller M, Schecklmann M, Langguth B, Landgrebe M. Tinnitus assessment by means of standardized self-report questionnaires: psychometric properties of the Tinnitus Questionnaire (TQ), the Tinnitus Handicap Inventory (THI), and their short versions in an international and multi-lingual sample. Health Qual Life Outcomes. 2012;10:128.
Article
PubMed
PubMed Central
Google Scholar
Meikle MB, Henry JA, Griest SE, Stewart BJ, Abrams HB, McArdle R, et al. The tinnitus functional index: development of a new clinical measure for chronic, intrusive tinnitus. Ear Hear. 2012;33(2):153–76.
Newman CW, Sandridge SA, Jacobson GP. Psychometric adequacy of the Tinnitus Handicap Inventory (THI) for evaluating treatment outcome. J Am Acad Audiol. 1998;9(2):153–60.
CAS
PubMed
Google Scholar
Kleinjung T, Fischer B, Langguth B, Sand P, Hajak G, Dvořáková J, et al. Validierung einer deutschsprachigen Version des „Tinnitus Handicap Inventory”. Psychiatrische Praxis. 2007;34:140-2.
Nelting M, Finlayson NK. Geräuschüberempfindlichkeits-Fragebogen. Hogrefe, Göttingen. 2004.
McCombe A, Baguley D, Coles R, McKenna L, McKinney C, Windle-Taylor P. Guidelines for the grading of tinnitus severity: the results of a working group commissioned by the British Association of Otolaryngologists, Head and Neck Surgeons, 1999. Clin Otolaryngol Allied Sci. 2001;26(5):388–93.
Article
CAS
PubMed
Google Scholar
Oostenveld R, Fries P, Maris E, Schoffelen J-M. FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data. Comput Intelligence Neurosci. 2010;2011:1–9.
Article
Google Scholar
Conlon B, Langguth B, Hamilton C, et al. Bimodal neuromodulation combining sound and tongue stimulation reduces tinnitus symptoms in a large randomized clinical study. Sci Transl Med. 2020;12(564):eabb2830.
Article
PubMed
Google Scholar
Zaehle T, Beretta M, Jäncke L, Herrmann CS, Sandmann P. Excitability changes induced in the human auditory cortex by transcranial direct current stimulation: direct electrophysiological evidence. Exp Brain Res. 2011;215(2):135–40.
Article
PubMed
Google Scholar
Zeng F-G, Djalilian H, Lin H. Tinnitus treatment with precise and optimal electric stimulation: opportunities and challenges. Curr Opin Otolaryngol Head Neck Surg. 2015;23(5):382–7.
Article
PubMed
PubMed Central
Google Scholar
Shekhawat GS, Vanneste S. Optimization of transcranial direct current stimulation of dorsolateral prefrontal cortex for tinnitus: a non-linear dose-response effect. Sci Rep. 2018;8(1):8311.
Article
PubMed
PubMed Central
CAS
Google Scholar
Fuller T, Cima R, Langguth B, Mazurek B, Vlaeyen JW, Hoare DJ. Cognitive behavioural therapy for tinnitus. Cochrane Database Syst Rev. 2020;1:CD012614.
PubMed
Google Scholar
Simoes J, Neff P, Schoisswohl S, et al. Toward personalized tinnitus treatment: an exploratory study based on internet crowdsensing. Front Public Health. 2019;7:157.
Article
PubMed
PubMed Central
Google Scholar
Tzounopoulos T, Balaban C, Zitelli L, Palmer C. Towards a mechanistic-driven precision medicine approach for tinnitus. J Assoc Res Otolaryngol. 2019;20(2):115–31.
Article
PubMed
PubMed Central
Google Scholar