Open Access
Open Peer Review

This article has Open Peer Review reports available.

How does Open Peer Review work?

Stress ulcer prophylaxis with a proton pump inhibitor versus placebo in critically ill patients (SUP-ICU trial): study protocol for a randomised controlled trial

  • Mette Krag1Email author,
  • Anders Perner2,
  • Jørn Wetterslev3,
  • Matt P. Wise4,
  • Mark Borthwick5,
  • Stepani Bendel6,
  • Paolo Pelosi7,
  • Frederik Keus8,
  • Anne Berit Guttormsen9,
  • Joerg C. Schefold10,
  • Morten Hylander Møller1 and
  • the SUP-ICU investigators
Trials201617:205

https://doi.org/10.1186/s13063-016-1331-3

Received: 19 January 2016

Accepted: 6 April 2016

Published: 19 April 2016

Abstract

Background

Critically ill patients in the intensive care unit (ICU) are at risk of clinically important gastrointestinal bleeding, and acid suppressants are frequently used prophylactically. However, stress ulcer prophylaxis may increase the risk of serious adverse events and, additionally, the quantity and quality of evidence supporting the use of stress ulcer prophylaxis is low. The aim of the SUP-ICU trial is to assess the benefits and harms of stress ulcer prophylaxis with a proton pump inhibitor in adult patients in the ICU. We hypothesise that stress ulcer prophylaxis reduces the rate of gastrointestinal bleeding, but increases rates of nosocomial infections and myocardial ischaemia. The overall effect on mortality is unpredictable.

Methods/design

The SUP-ICU trial is an investigator-initiated, pragmatic, international, multicentre, randomised, blinded, parallel-group trial of stress ulcer prophylaxis with a proton pump inhibitor versus placebo (saline) in 3350 acutely ill ICU patients at risk of gastrointestinal bleeding. The primary outcome measure is 90-day mortality. Secondary outcomes include the proportion of patients with clinically important gastrointestinal bleeding, pneumonia, Clostridium difficile infection or myocardial ischaemia, days alive without life support in the 90-day period, serious adverse reactions, 1-year mortality, and health economic analyses.

The sample size will enable us to detect a 20 % relative risk difference (5 % absolute risk difference) in 90-day mortality assuming a 25 % event rate with a risk of type I error of 5 % and power of 90 %. The trial will be externally monitored according to Good Clinical Practice standards. Interim analyses will be performed after 1650 and 2500 patients.

Conclusion

The SUP-ICU trial will provide high-quality data on the benefits and harms of stress ulcer prophylaxis with a proton pump inhibitor in critically ill adult patients admitted in the ICU.

Trial registration

ClinicalTrials.gov Identifier: NCT02467621.

Keywords

Stress ulcer prophylaxis Gastrointestinal bleeding Intensive care unit Critically ill Randomised clinical trial Placebo Adverse event

Background

Critically ill patients are at risk of stress-related gastrointestinal (GI) mucosal damage, ulceration and bleeding [1]. Endoscopic studies have shown that gastric erosions are present in up to 90 % of patients by the third day in the intensive care unit (ICU) [2, 3]. These lesions are, in the vast majority of patients, superficial and asymptomatic, but some can progress and result in overt and clinically important GI bleeding [4]. Clinically important GI bleeding in the ICU is a serious condition, with an estimated one- to four-fold increased risk of death and excess length of ICU stay of 4–8 days [1, 5]. It has been suggested that prophylaxis with acid suppressants reduces the risk of GI bleeding and hence the risk of death [6]. In this context, stress ulcer prophylaxis (SUP) was introduced and is recommended in international guidelines [710] and regarded as standard of care in the ICU [5, 11]. However, clinical research has not been able to confirm that SUP improves outcome [12]. A recent meta-analysis comprising 20 randomised clinical trials (RCTs) comparing proton pump inhibitors (PPIs) and/or histamine-2-receptor antagonists (H2RAs) versus placebo or no prophylaxis did not find any differences in patient important outcome measures between the SUP and the placebo/no prophylaxis groups [12]. Furthermore, concern has been expressed about potentially increased risks of side effects in patients receiving prophylactic treatment with acid suppressants [1316]. The higher gastric pH in these patients may compromise host immunity and increase the risk of pneumonia and Clostridium difficile infection (CDI) [15, 17]. However, no meta-analyses of randomised trials have shown a significantly increased risk of nosocomial pneumonia when using SUP compared to placebo/no prophylaxis [12, 18]. Additionally, no trials have assessed the incidence of CDI in an ICU setting, but a recently published large cohort study found a 2–4 fold increased risk of CDI in adult mechanically ventilated patients receiving PPIs compared to H2RAs [19]. Studies conducted outside the ICU have demonstrated similar findings [20, 21]. Also, an association between the use of PPIs and an increased risk of cardiovascular events has been suggested [18, 22, 23].

Taken together, the balance between benefits and harms of SUP is unclear in critically ill patients in the ICU. The aim of the SUP-ICU trial is to assess the benefits versus harms of PPI (pantoprazole) in acutely ill adults in the ICU. We hypothesise that a PPI reduces the rates of GI bleeding, but increases the rates of nosocomial infections and myocardial ischaemia. The effect on overall mortality is, therefore, unpredictable.

Methods

Trial design

The SUP-ICU trial is an investigator-initiated, pragmatic, international, multicentre, randomised, blinded, parallel-group trial of SUP with a PPI versus placebo.

Approvals

The trial is approved by the Danish Health and Medicine Agency (2015030166), the Committees on Health Research Ethics in the Capital Region of Denmark (H-15003141) and the Danish Data Protection Agency (RH-2015-3203695) and registered at ClinicalTrials.gov (Identifier: NCT02467621).

Setting

European ICUs admitting adult patients.

Population

Inclusion criteria

All adult (18 years or older) patients who are acutely admitted to the ICU with one or more risk factors for GI bleeding [5]:
  • Shock (continuous infusion with vasopressors or inotropes, systolic blood pressure below 90 mmHg, mean arterial blood pressure below 70 mmHg or plasma lactate level 4 mmol/l or above)

  • Acute or chronic intermittent or continuous renal replacement therapy (RRT)

  • Invasive mechanical ventilation which is expected to last more than 24 hours

  • Coagulopathy (platelets below 50 × 109/l, or international normalised ratio (INR) above 1.5, or prothrombin time (PT) above 20 s) documented within the last 24 hours

  • Ongoing treatment with anticoagulant drugs (prophylactic doses excluded)

  • History of coagulopathy (platelets below 50 × 109/l or INR above 1.5 or PT above 20 s within the 6 months prior to hospital admission)

  • History of chronic liver disease (portal hypertension, cirrhosis proven by biopsy, computed tomography (CT) scan or ultrasound or history of variceal bleeding or hepatic encephalopathy)

Exclusion criteria

  • Contraindications to PPIs (including intolerance of PPIs and treatment with atazanavir (anti-human immunodeficiency virus (HIV) medication))

  • Current daily treatment with a PPI and/or a H2RA

  • GI bleeding of any origin during current hospital admission

  • Diagnosed with peptic ulcer during current hospital admission

  • Organ transplant during current hospital admission

  • Withdrawal from active therapy or brain death

  • Fertile woman with positive test for urinary or plasma human chorionic gonadotropin (hCG)

  • Consent according to national regulations not obtainable

Trial medication

Enrolled patients will be randomised to receive either pantoprazole 40 mg (pantoprazole, Actavis, Gentofte, Denmark) or placebo, given once daily intravenously, from randomisation until ICU discharge or death for a maximum of 90 days. Identical vials with and without pantoprazole powder will be masked with a full covering label. The nurse caring for the patient will have access to an electronic medication distribution system, which allows the allocation of the appropriate vial to the patient. The nurse will add 10 ml of sodium chloride to the vial, shake it, and administer the contents intravenously to the patient. As the powder immediately dissolves to a colourless fluid it will not be possible to distinguish dissolved pantoprazole in sodium chloride from sodium chloride alone.

Outcome measures

Primary outcome measure

All-cause mortality 90 days after randomisation

Secondary outcome measures

  • Proportion of patients with one or more of the following adverse events during ICU stay: clinically important GI bleeding, pneumonia, CDI, or acute myocardial ischaemia

  • Proportion of patients with clinically important GI bleeding during ICU stay

  • Proportion of patients with one or more infectious adverse events (pneumonia or CDI) during ICU stay

  • Days alive without use of mechanical ventilation, RRT or circulatory support in the 90-day trial period

  • Number of serious adverse reactions (SARs) during ICU stay

  • Mortality 1 year after randomisation

  • A health economic analysis will be performed. The analytic details will be based on the results of the trial and specified at that time (cost-benefit versus cost-minimisation analyses)

The specific elements of the composite outcomes will be reported in the primary publication.

Definitions

See Appendix 1.

Screening

All patients referred to a participating clinical trial site will be considered for participation (screened). Patients will be eligible if they fulfil all of the inclusion criteria and none of the exclusion criteria listed. Inclusion and exclusion of patients (including reasons for exclusion) will be reported according to the Consolidated Standards of Reporting Trials (CONSORT) statement [24].

Randomisation

Staff at trial sites will have 24-hour access to web-based central randomisation allowing immediate and concealed allocation of trial medication. Randomisation will be performed in blocks with varying block sizes according to the generation of the allocation sequence by the Copenhagen Trial Unit (CTU) [25]. A unique patient identification number will be entered into the system to ensure that the patient is not randomised twice. In addition, each patient will be allocated a unique patient number (screening number).

Blinding

The allocated trial medication will be blinded to the patient, the clinical staff caring for the patient, the investigators, the outcome assessors, the data manager, the statistician conducting the analyses, and the writing committee when drafting the abstract for the primary publication.

An independent company (Nomeco Clinical Trial Supply Management (CTSM) [26]) will handle masking, coding and distribution of the vials containing the investigational medicinal product (IMP)/placebo. A computer programme will generate the coding list (CTU) with numbers for the vials. Each trial site will have a sufficient number of vials to be allocated to participating patients. This will ensure that the patient only receives the trial intervention they are randomised to receive.

Safety

Patients can be withdrawn from the trial if:
  • A clinical indication for treatment with a PPI/H2RA arises (GI bleeding and/or ulcer/gastritis/varices verified endoscopically). Patients will receive treatment for GI bleeding according to local standards

  • Another clinical indication for withdrawal than the above mentioned (judged by responsible clinician or local investigator)

  • A SAR/suspected unexpected serious adverse reaction (SUSAR) occurs (see below)

  • The patient or next of kin withdraws consent

The independent Data Monitoring and Safety Committee (DMSC) can recommend pausing or stopping the trial. Details are provided in Appendix 2.

Serious adverse reactions

Adverse reactions are specified in the product characteristics of pantoprazole. The following conditions related to the intervention will be considered SARs:
  • Anaphylactic reactions

  • Agranulocytosis

  • Pancytopenia

  • Acute hepatic failure

  • Stevens-Johnson syndrome and toxic epidermal necrolysis

  • Interstitial nephritis

  • Angioedema (Quincke’s oedema)

The occurrence of SARs will be recorded daily in the electronic case report form (eCRF) during ICU stay and the distribution of SARs in the two groups will be compared by the DMSC at the interim analyses. During the trial the sponsor will send a yearly report to the ethics committees and medicine agencies.

SUSARs are defined as serious adverse events (SAEs) not described in the product characteristics for pantoprazole. SUSARs will be reported by the trial site investigators to the sponsor within 24 hours. The sponsor will report any SUSAR to the medicine agency within 7 days.

SAEs will not be recorded as an entity because the majority of ICU patients will experience a number of SAEs during their critical illness. SAEs will be captured in the secondary outcome measures.

Patient withdrawal

Patients who are withdrawn from the trial intervention will be followed-up and included in the intention-to-treat analysis. Patients may be withdrawn from the trial according to national consent regulations. In order to limit the amount of missing data, as much data as possible from each patient will be collected. All randomised patients will be reported, and all data available with consent will be used [27].

Patients who are transferred to another ICU will be regarded as discharged from the ICU unless the new ICU is an active SUP-ICU trial site. If so, the allocated trial intervention will be continued. All patients transferred to another ICU will be followed-up for the primary outcome measure.

Statistics

A predefined analysis plan will be prepared and published before data analysis.

The primary analysis will include the intention-to-treat population comparing mortality 90 days after randomisation in the two groups by binary logistic regression analysis with adjustment for stratification variables: site and active haematological cancer. A secondary analysis will be performed adjusting for stratification variables together with other known major prognostic co-variates: age, baseline Sequential Organ Failure Assessment (SOFA) score, and type of admission (medical, elective surgery or emergency surgery). A sensitivity analysis will be conducted including the per-protocol population, excluding patients with a major protocol violation (patients who did not receive the allocated trial intervention at all, patients who did not receive the trial intervention for at least 2 days in a row, treatment with a PPI or a H2RA without clinical indication and withdrawal from trial intervention). The prevalence and pattern of missing values will be collected and analysed according to the predefined statistical analysis plan. If missingness exceeds 5 % and data is not missing completely at random (Little’s test <0.05) multiple imputation with at least 10 imputations will be performed, and the primary result of the analysis will be from the aggregated intervention effects from the imputed datasets. All statistical tests will be two-tailed and P < 0.05 will be considered statistically significant.

Sample size estimation

Assuming a baseline 90-day mortality of 25 % [5] (see Appendix 3), α = 0.05 (two-sided), and β = 0.1, 3350 patients (2 × 1675) will be needed to show a 20 % relative risk reduction (RRR) or increase (RRI) corresponding to a 5 % absolute risk reduction or risk increase in the primary outcome measure.

Interim analyses

Interim analyses will be performed after 1650 and 2500 patients. The DMSC may recommend pausing or stopping the trial if the group difference in the primary outcome measure, SARs or SUSARs is found at the interim analyses with statistical significance levels adjusted according to the LanDeMets group sequential monitoring boundaries based on the O’Brien-Fleming alpha-spending function, or otherwise finds that the continued conduct of the trial clearly compromises patient safety.

Data registration

Data will be entered into a web-based eCRF (CTU) by trial or clinical personnel. From the eCRF the trial database will be established. Paper case report forms (CRFs) will be used in case of technical difficulties with the eCRF. Details on data collection are shown in Appendix 1.

Data handling and retention

Data will be handled according to the national data protection agencies. All original records (including consent forms, CRFs, SUSAR reports and relevant correspondences) will be retained at trial sites or the CTU for 15 years to allow inspection by the Good Clinical Practice (GCP) Unit or local authorities. The trial database will be maintained for 15 years and anonymised if requested by the authorities.

Monitoring

The trial will be externally monitored according to a monitoring plan developed in collaboration with the GCP Unit in Copenhagen, which will coordinate the monitoring done by local GCP Units and/or monitors in all countries. Trial site investigators will give access to source data. A centralised day-to-day monitoring of the eCRF will be done by the coordinating investigator or her delegates.

Ethical justification

The trial will adhere to the latest version of the Helsinki Declaration [28] and the national laws in the participating countries. Inclusion will start after approval by the ethical committees, medicines agencies and data protection agencies.

Stress ulceration is a condition often seen in critically ill patients in the ICU [1]. The majority of patients will be temporarily incompetent because of severe illness or as a consequence of the treatment, including sedation. We cannot perform the trial in competent patients because less sick (and thus competent) patients do not suffer from stress ulcers. Patients requiring acute treatment in the ICU, e.g. mechanical ventilation, are in an acute life-threatening condition and it would expose the patient to great risk not to initiate the necessary treatment in order to obtain informed consent. To conduct clinical trials with the goal of improving the outcome for ICU patients at risk of stress-related GI bleeding, it is necessary to randomise and enrol patients before obtaining their informed consent. Informed consent will be obtained from all participants or representatives according to the national regulations. The process leading to the achievement of consent may differ in the participating countries, but will be described and be in compliance with all applicable local regulations.

No biological material will be collected for the trial; thus, no bio-bank will be formed.

Enrolment

Patients from Denmark, Finland, Italy, The Netherlands, Norway, Switzerland and the United Kingdom are expected to participate in the trial. The trial will be initiated in Denmark in January 2016 followed by the other countries when national approvals are obtained. The trial is expected to recruit patients during a 2-year period.

Trial management and organisation

The trial is part of the SUP-ICU research programme [29] and is supported by the Centre for Research in Intensive Care (CRIC) and the CTU.

A Steering Committee has been formed consisting of all national principal investigators and a Management Committee (see Appendix 4). The Steering Committee will manage and coordinate the trial centrally.

A local research team consisting of a principal investigator and a trial coordinator will manage and coordinate the trial locally. The principal investigator has the responsibility for data collection and maintenance of trial documentation.

Co-enrolment of participants in other interventional trials has to be approved by the SUP-ICU Steering Committee, but is generally allowed.

Publication

Upon trial completion the main manuscript with trial results, whether positive, negative or neutral, will be submitted for peer-review to one of the major clinical journals. Furthermore, the results will be published at the SUP-ICU web page [29].

The Steering Committee will grant authorship depending on personal input according to the Vancouver Principles. The DMSC and investigators not qualifying for authorship will be acknowledged with their names under the ‘SUP-ICU trial investigators’ in an appendix to the final manuscript.

Data sharing

According to the recommendations from the Institute of Medicine and the Scandinavian Trial Alliance a clean file dataset used for final analysis of the main results of the trial, the statistical analysis plan, a variable explanation, and the protocol will be made publicly accessible in an anonymised form 2 years after the last follow-up of the last patients [30].

Timeline

2014–2015: applications for funding, ethical committees and medicine agencies, development of an eCRF, development of monitoring plan and education of clinical staff

2016–2017: inclusion of patients

2018: data analyses, writing and submission of the main manuscript for publication

2021: data sharing according to the CRIC contract between partners [31]

Collaborators

The trial has been developed and conducted in collaboration with the Scandinavian Critical Care Trial Group (SCCTG). The trial is administered by the CRIC [31]. The CTU has developed the eCRF in close collaboration with the Steering Committee. The web-based randomisation system and the system for allocation of trial medication have been developed and administered by the CTU. Pharma-Skan ApS produces the placebo vials and Nomeco CTSM masks and distributes trial medication to all sites.

Finances

The trial is funded by the Innovation Fund Denmark and supported by the Aase and Ejnar Danielsens Foundation, the Ehrenreichs Foundation, the Scandinavian Society of Anaesthesia and Intensive Care Medicine (SSAI), the Danish Society of Anaesthesiology and Intensive Care Medicine (DASAIM), the Danish Medical Association, and the European Society of Intensive Care Medicine. Patient insurances will be sought financed from public and private funds. The funding sources will have no influence on trial design, trial conduct, data handling, data analysis or publication.

Discussion

Trial rationale

Clinical trials have suggested that there is a reduction in the incidence of GI bleeding among ICU patients receiving SUP compared with ICU patients receiving placebo or no prophylaxis [3, 3238]. Based on this research conducted 15–20 years ago, and because of potentially increased mortality and morbidity in patients with clinically important bleeding, SUP is recommended as a standard of care in critically ill patients [7]. Around 75 % of critically ill patients in the ICU receive an acid suppressant during their ICU stay and PPIs are the most frequently used agents [5]. However, the quantity and quality of evidence supporting a reduction in clinically important GI bleeding and mortality with these agents is low [12]. Importantly, it has been suggested that PPIs may increase the risk of pneumonia, CDI, and acute myocardial ischaemia, and SUP may, in the worst case scenarios, increase mortality [1316]. Taken together, SUP with a PPI is standard of care in ICUs worldwide but has never been tested in large high-quality clinically placebo-controlled trials. As a consequence, PPIs have been used as SUP for several years without convincing evidence of improved outcome.

Population

The population in this trial constitutes adult patients acutely admitted to the ICU with one or more risk factors for GI bleeding [5].

Intervention

In recent years a PPI has been considered the drug of choice in the management of most acid-related GI disorders [39]. The superior efficacy of PPIs over H2RAs has been demonstrated in various GI disorders, including peptic ulcer disease [39], and randomised trials and meta-analyses have assessed PPIs compared to H2RAs as SUP in the ICU. A recently published meta-analysis by Alhazzani et al. (14 trials, 1720 patients) compared a PPI and a H2RA [40], and found that a PPI was more efficient in reducing clinical important and overt GI bleeding, but no differences were shown regarding mortality, length of stay or incidence of pneumonia [40].

In most countries PPIs are more frequently used as SUP than H2RAs [5]. Since PPIs are considered equally effective, and pantoprazole is the most frequently used PPI [5], we chose this as the intervention.

Comparator

As described in the previous section, it has been suggested that a PPI is superior to a H2RA in the prevention of clinically important and overt GI bleeding. However, before comparing different SUP agents we need firm evidence of SUP being superior to placebo. This information is currently not available [12].

Outcome

Assessing mortality as the primary outcome has a number of advantages. First, mortality has not been the primary outcome of previous trials and we are sceptical that previous trials have collected high-quality data on mortality other than short-term mortality (ICU/hospital) [12]. Second, nearly all previous trials assessing PPIs or H2RAs as SUP have high risks of bias [12]. We know that trials with high risks of bias tend to overestimate benefit and underestimate harm [41]. Accordingly, previous trial results might be biased and even though they seem to find a neutral effect on mortality this may be a biased estimate actually concealing excess mortality in the SUP group. Third, meta-analysis of previous trials did not reach a realistic information size so even neutral mortality estimates may be misleading [12]. Fourth, as a consequence of the 6S trial [42], where we found that bleeding was associated with death and that death was partly mediated by bleeding (and renal insufficiency), it appears less likely that there should be a clinically significant reduction in GI bleeding (if PPIs do prevent GI bleeding) without any effect on mortality [43]. Consequently, assessing mortality as the primary outcome measure gives the opportunity to weigh up potential benefits and harms.

Sample size

It is difficult to produce reliable sample size estimations according to anticipated effects on GI bleeding because we have no reliable control group data due to the widespread use of PPIs [5]. As a consequence, it has been necessary to calculate sample size estimations given that something may change if we stop/avoid using PPIs until GI bleeding actually happens (see Appendix 3). The chosen intervention effect of 20 % RRR or RRI of the primary outcome may seem high, but in a population with septic shock or in, e.g. patients after cardiac arrest, a 20 % hazard ratio reduction corresponds to 1 month of extra median survival in patients with a median survival time of approximately 5 months. Furthermore, 3350 patients included in a low-risk-of-bias trial would make a huge contribution to existing evidence, more than doubling the number of randomised patients and providing trial results with low risk of bias on mortality and SAEs. Additionally, trial sequential analysis (TSA) [44, 45] of existing trials (n = 16) has shown that 34 % (1584 patients) of the required information size to detect or reject a 20 % RRR has been accrued; corresponding to a required information size of 4575 patients [12] (see Appendix 5). Consequently, there is an information gap of around 3000 patients assuming a 20 % RRR in mortality. With the inclusion of an additional 3350 patients it is expected that the pooled effect will cross the boundary for benefit/harm or the boundary for futility.

However, no single trial, whether large or well-conducted, gives the final answer and the SUP-ICU trial will not be an exception. Thus, existing meta-analyses of SUP should be updated with the SUP-IUC trial results.

Strengths

The SUP-ICU trial is a large multicentre clinical trial designed to provide high-quality data with low risk of bias. The trial is monitored according to GCP standards, and before data analyses a statistical analysis plan will be available. Furthermore, the strengths include concealed group assignment, blinding of the patient, the clinical staff caring for the patient, the investigators, the outcome assessors, the data manager, and the trial statistician. The trial design is pragmatic with routine practice maintained except from prescription of SUP; with resulting high generalisability.

Prior to designing the trial we have thoroughly described the available evidence in systematic reviews and a meta-analysis with TSA [12, 46]. Determining the incidence of GI bleeding in critically ill patients in the ICU is complicated by varying definitions of the outcome, difficulties in measuring the outcome, and differences in case mix. To make sure the available data on GI bleeding and risk factors were valid and up-to-date we conducted a large international observational study assessing the incidence of GI bleeding, risk factors for GI bleeding, and the use of SUP in more than 1000 adult critically ill patients in the ICU [5].

Limitations

As already described in previous sections the sample size estimation is based on estimates, as we do not have valid data describing mortality among patients with risk factors for GI bleeding not treated with a PPI due to the widespread use of acid suppressants. The power for even major effects on each of the possible side effects (pneumonia, CDI and acute myocardial ischaemia) may be reduced, but it will still make a large contribution to our knowledge on these outcomes that may seriously question, overthrow or confirm what we know so far. Furthermore, assessing the potential side effects as a composite outcome measure will increase the power. Additionally, there is a risk of excluding high-risk patients as patients already receiving daily treatment with a PPI or a H2RA cannot be enrolled in the trial due to the risk of discontinuing a therapy for another indication, e.g. history of peptic ulcer. The definition of overt GI bleeding includes haematochezia which might occur from a lower GI bleeding source not affected by PPI, e.g. colonic bleeding. Finally, we do not assess the use of a H2RA or other SUP agents and will not be able to draw conclusions about these drugs.

Perspective

The SUP-ICU trial will provide important high-quality data and the results will inform clinicians, guideline committee members and policy-makers on the use of SUP in ICU patients. Together with existing data the trial will establish a more solid evidence base for the use of a prophylactic PPI in critically ill patients in the ICU.

Trial status

Recruiting. First patient planned for inclusion in January 2016.

Abbreviations

CDI: 

Clostridium difficile infection

CRF: 

case report form

CRIC: 

Centre for Research in Intensive Care

CT: 

computed tomography

CTSM: 

Clinical Trial Supply Management

CTU: 

Copenhagen Trial Unit

DASAIM: 

Danish Society of Anaesthesiology and Intensive Care Medicine

DMSC: 

Data Monitoring and Safety Committee

eCRF: 

electronic case report form

GCP: 

Good Clinical Practice

GI: 

gastrointestinal

H2RA: 

histamine-2-receptor antagonist

HIV: 

human immunodeficiency virus

hCG: 

human chorionic gonadotropin

ICU: 

intensive care unit

INR: 

international normalised ratio

PPI: 

proton pump inhibitor

PT: 

prothrombin time

RCT: 

randomised clinical trial

RRI: 

relative risk increase

RRR: 

relative risk reduction

RRT: 

renal replacement therapy

SAE: 

serious adverse event

SAR: 

serious adverse reaction

SCCTG: 

Scandinavian Critical Care Trial Group

SSAI: 

Scandinavian Society of Anaesthesia and Intensive Care Medicine

SUP: 

stress ulcer prophylaxis

SUSAR: 

severe unexpected serious adverse reaction

TSA: 

trial sequential analysis

Declarations

Acknowledgements

We wish to thank the following: clinical staff at all trial sites, the members of the Data Monitoring and Safety Committee (Anders Ånemann (Australia), Tim Walsh (UK) and Aksel Jensen (University of Copenhagen, Department of Biostatistics)), and the Centre for Research in Intensive Care (CRIC).

The trial is funded by the Innovation Fund Denmark and supported by the Aase and Ejnar Danielsens Foundation, the Ehrenreichs Foundation, the Scandinavian Society of Anaesthesia and Intensive Care Medicine (SSAI), the Danish Society of Anaesthesiology and Intensive Care Medicine (DASAIM), the Danish Medical Association, and the European Society of Intensive Care Medicine (ESICM). The funding sources will have no influence on trial design, trial conduct, data handling, data analysis or publication.

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Authors’ Affiliations

(1)
Department of Intensive Care 4131, Copenhagen University Hospital, Rigshospitalet
(2)
Department of Intensive Care 4131 and Centre for Research in Intensive Care (CRIC), Copenhagen University Hospital, Rigshospitalet
(3)
Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen University Hospital, Rigshospitalet
(4)
Department of Adult Critical Care, University Hospital of Wales
(5)
Pharmacy Department, Oxford University Hospitals NHS Trust
(6)
Department of Intensive Care Medicine, Kuopio University Hospital
(7)
Department of Surgical Sciences and Integrated Diagnostics, IRCCS AOU San Martino IST, University of Genoa
(8)
University of Groningen, Department of Critical Care, University Medical Center Groningen
(9)
Department of Anaesthesia and Intensive Care, Haukeland University Hospital and Clinical Institute 1 UiB
(10)
Department of Intensive Care Medicine, University Hospital Inselspital

References

  1. Cook DJ, Griffith LE, Walter SD, Guyatt GH, Meade MO, Heyland DK, et al. The attributable mortality and length of intensive care unit stay of clinically important gastrointestinal bleeding in critically ill patients. Crit Care. 2001;5:368–75.View ArticlePubMedPubMed CentralGoogle Scholar
  2. Eddleston JM, Pearson RC, Holland J, Tooth JA, Vohra A, Doran BH. Prospective endoscopic study of stress erosions and ulcers in critically ill adult patients treated with either sucralfate or placebo. Crit Care Med. 1994;22:1949–54.View ArticlePubMedGoogle Scholar
  3. Martin LF. Stress ulcers are common after aortic surgery. Endoscopic evaluation of prophylactic therapy. Am Surg. 1994;60:169–74.PubMedGoogle Scholar
  4. Fennerty MB. Pathophysiology of the upper gastrointestinal tract in the critically ill patient: rationale for the therapeutic benefits of acid suppression. Crit Care Med. 2002;30:351–5.View ArticleGoogle Scholar
  5. Krag M, Perner A, Wetterslev J, Wise MP, Borthwick M, Bendel S, et al. Prevalence and outcome of gastrointestinal bleeding and use of acid suppressants in acutely ill adult intensive care patients. Intensive Care Med. 2015;41:833–45.View ArticlePubMedGoogle Scholar
  6. Alhazzani W, Alshahrani M, Moayyedi P, Jaeschke R. Stress ulcer prophylaxis in critically ill patients: review of the evidence. Pol Arch Med Wewnętrznej. 2012;122:107–14.Google Scholar
  7. Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med. 2013;39:165–228.View ArticlePubMedGoogle Scholar
  8. Institute for Healthcare Improvement: IHI ventilator bundle: peptic ulcer disease prophylaxis. http://www.ihi.org/Pages/default.aspx. Accessed 14 Apr 2016.
  9. ASHP Therapeutic Guidelines on Stress Ulcer Prophylaxis. ASHP Commission on Therapeutics and approved by the ASHP Board of Directors on 14 November 1998. Am J Health Syst Pharm. 1999;56:347–79.Google Scholar
  10. The Joint Commission. http://www.jointcommission.org/. Accessed 10 Aug 2014.
  11. Krag M, Perner A, Wetterslev J, Wise MP, Borthwick M, Bendel S, et al. Stress ulcer prophylaxis in the intensive care unit: an international survey of 97 units in 11 countries. Acta Anaesthesiol Scand. 2015;59:576–85.View ArticlePubMedGoogle Scholar
  12. Krag M, Perner A, Wetterslev J, Wise MP, Hylander MM. Stress ulcer prophylaxis versus placebo or no prophylaxis in critically ill patients. A systematic review of randomised clinical trials with meta-analysis and trial sequential analysis. Intensive Care Med. 2014;40:11–22.View ArticlePubMedGoogle Scholar
  13. Wilhelm SM, Rjater RG, Kale-Pradhan PB. Perils and pitfalls of long-term effects of proton pump inhibitors. Expert Rev Clin Pharmacol. 2013;6:443–51.View ArticlePubMedGoogle Scholar
  14. Apte NM, Karnad DR, Medhekar TP, Tilve GH, Morye S, Bhave GG. Gastric colonization and pneumonia in intubated critically ill patients receiving stress ulcer prophylaxis: a randomized, controlled trial. Crit Care Med. 1992;20:590–3.View ArticlePubMedGoogle Scholar
  15. Howell M, Novack V, Grgurich P, Souillard D, Lena N, Pencina M, et al. Iatrogenic gastric acid suppression and the risk of nosocomial clostridium difficile infection. Arch Intern Med. 2010;170:784–90.View ArticlePubMedGoogle Scholar
  16. Wolfe M. Overview and comparison of the proton pump inhibitors for the treatment of acid-related disorders. UpToDate. 2015.Google Scholar
  17. Bavishi C, Dupont HL. Systematic review: the use of proton pump inhibitors and increased susceptibility to enteric infection. Aliment Pharmacol Ther. 2011;34:1269–81.View ArticlePubMedGoogle Scholar
  18. Marik PE, Vasu T, Hirani A, Pachinburavan M. Stress ulcer prophylaxis in the new millennium: a systematic review and meta-analysis. Crit Care Med. 2010;38:2222–8.View ArticlePubMedGoogle Scholar
  19. Maclaren R, Reynolds PM, Allen RR. Histamine-2 receptor antagonists vs proton pump inhibitors on gastrointestinal tract hemorrhage and infectious complications in the intensive care unit. JAMA Intern Med. 2014;174:564–74.View ArticlePubMedGoogle Scholar
  20. Leonard J, Marshall JK, Moayyedi P. Systematic review of the risk of enteric infection in patients taking acid suppression. Am J Gastroenterol. 2007;102:2047–56.View ArticlePubMedGoogle Scholar
  21. Kwok CS, Arthur AK, Anibueze CI, Singh S, Cavallazzi R, Loke YK. Risk of Clostridium difficile infection with acid suppressing drugs and antibiotics: meta-analysis. Am J Gastroenterol. 2012;107:1011–9.View ArticlePubMedGoogle Scholar
  22. van Boxel OS, van Oijen MG, Hagenaars MP, Smout AJ, Siersema PD. Cardiovascular and gastrointestinal outcomes in clopidogrel users on proton pump inhibitors: results of a large Dutch cohort study. Am J Gastroenterol. 2010;105:2430–6. quiz 2437.View ArticlePubMedGoogle Scholar
  23. Charlot M, Ahlehoff O, Norgaard ML, Jørgensen CH, Sørensen R, Abildstrøm SZ, et al. Proton-pump inhibitors are associated with increased cardiovascular risk independent of clopidogrel use: a nationwide cohort study. Ann Intern Med. 2010;153:378–86.View ArticlePubMedGoogle Scholar
  24. Altman DG, Schulz KF, Moher D, Egger M, Davidoff F, Elbourne D, et al. The revised CONSORT statement for reporting randomized trials: explanation and elaboration. Ann Intern Med. 2001;134:663–94.View ArticlePubMedGoogle Scholar
  25. Copenhagen Trial unit (CTU). www.ctu.dk.
  26. Nomeco CTSM. www.nomeco.dk.
  27. Schafer JL, Graham JW. Missing data: our view of the state of the art. Psychol Methods. 2002;7:147–77.View ArticlePubMedGoogle Scholar
  28. WMA Declaration of Helsinki − Ethical Principles for Medical Research Involving Human Subjects. 2013. http://www.wma.net/en/30publications/10policies/b3/. Accessed 18 Dec 2015.
  29. SUP-ICU. www.sup-icu.com.
  30. Final report on transparency and registration in clinical research in the Nordic countries published 9 April 2015 − Nordic Trial Alliance (NTA). http://nta.nordforsk.org/news/final-report-on-transparency-and-registration-in-clinical-research-in-the-nordic-countries-published. Accessed 15 Jan 2016.
  31. Centre for Research in Intensive Care (CRIC). www.cric.nu.
  32. Basso N, Bagarani M, Materia A, Fiorani S, Lunardi P, Speranza V. Cimetidine and antacid prophylaxis of acute upper gastrointestinal bleeding in high risk patients. Controlled, randomized trial. Am J Surg. 1981;141:339–41.View ArticlePubMedGoogle Scholar
  33. Burgess P, Larson GM, Davidson P, Brown J, Metz CA. Effect of ranitidine on intragastric pH and stress-related upper gastrointestinal bleeding in patients with severe head injury. Dig Dis Sci. 1995;40:645–50.View ArticlePubMedGoogle Scholar
  34. Friedman CJ, Oblinger MJ, Suratt PM, Bowers J, Goldberg SK, Sperling MH, et al. Prophylaxis of upper gastrointestinal hemorrhage in patients requiring mechanical ventilation. Crit Care Med. 1982;10:316–9.PubMedGoogle Scholar
  35. Halloran LG, Zfass AM, Gayle WE, Wheeler CB, Miller JD. Prevention of acute gastrointestinal complications after severe head injury: a controlled trial of cimetidine prophylaxis. Am J Surg. 1980;139:44–8.View ArticlePubMedGoogle Scholar
  36. Karlstadt RG, Iberti TJ, Silverstein J, Lindenberg L, Rright-Asare P, Rockhold F, et al. Comparison of cimetidine and placebo for the prophylaxis of upper gastrointestinal bleeding due to stress-related gastric mucosal damage in the intensive care unit. J Intensive Care Med. 1990;5:26–32.View ArticleGoogle Scholar
  37. MacDougall BR, Bailey RJ, Williams R. H2-receptor antagonists and antacids in the prevention of acute gastrointestinal haemorrhage in fulminant hepatic failure. Two controlled trials. Lancet. 1977;1:617–9.View ArticlePubMedGoogle Scholar
  38. Zinner MJ, Zuidema GD, Smith P, Mignosa M. The prevention of upper gastrointestinal tract bleeding in patients in an intensive care unit. Surg Gynecol Obs. 1981;153:214–20.Google Scholar
  39. Brett S. Science review: the use of proton pump inhibitors for gastric acid suppression in critical illness. Crit Care. 2005;9:45–50.View ArticlePubMedGoogle Scholar
  40. Alhazzani W, Alenezi F, Jaeschke RZ, Moayyedi P, Cook DJ. Proton pump inhibitors versus histamine 2 receptor antagonists for stress ulcer prophylaxis in critically ill patients: a systematic review and meta-analysis. Crit Care Med. 2013;41:693–705.View ArticlePubMedGoogle Scholar
  41. Savović J, Jones H, Altman D, Harris R, Jűni P, Pildal J, et al. Influence of reported study design characteristics on intervention effect estimates from randomised controlled trials: combined analysis of meta-epidemiological studies. Health Technol Assess. 2012;16:1–82.PubMedGoogle Scholar
  42. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367:124–34.View ArticlePubMedGoogle Scholar
  43. Haase N, Wetterslev J, Winkel P, Perner A. Bleeding and risk of death with hydroxyethyl starch in severe sepsis: post hoc analyses of a randomized clinical trial. Intensive Care Med. 2013;39:2126–34.View ArticlePubMedGoogle Scholar
  44. TSA. Trial sequential analysis (TSA). The Copenhagen Trial Unit, Center for Clinical Intervention Research, Rigshospitalet, Copenhagen, Denmark (2011) Software and manual. Available at www.ctu.dk/tsa. Accessed 15 Jan 2016.
  45. Wetterslev J, Thorlund K, Brok J, Gluud C. Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J Clin Epidemiol. 2008;61:64–75.View ArticlePubMedGoogle Scholar
  46. Krag M, Perner A, Wetterslev J, Moller MH. Stress ulcer prophylaxis in the intensive care unit: is it indicated? A topical systematic review. Acta Anaesthesiol Scand. 2013;57:835–47.View ArticlePubMedGoogle Scholar
  47. Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36:309–32.Google Scholar
  48. Lan K, Demets D. Discrete sequential boundaries for clinical trials. Biometrika. 1983;70:659–63.View ArticleGoogle Scholar
  49. International Conference on Harmonisation; guidance on statistical principles for clinical trials; availability – FDA. Notice. Fed Regist. 1998; 63:49583–98.Google Scholar

Copyright

© Krag et al. 2016

Advertisement