Trial design
This trial is a randomized, double-blind, placebo-controlled trial in 80 CHHF patients. The trial will be implemented at Kyung Hee University Hospital at Gangdong in Seoul, Korea. The participants will take either KRG or placebo for eight weeks, after which they will be followed-up for four weeks. During the administration period, six capsules of 500 mg KRG or placebo will be provided twice a day (one hour after breakfast and dinner). A flow chart of the entire trial is shown in Figure 1.
Participants
Inclusion criteria
The patients who meet all threeof the following inclusion criteria items will be included:
-
(1)
Females aged 16 to 60 years
-
(2)
Females complaining of CHHF
-
(3)
A thermal difference greater than 0.3°C between the palm and the upper arm
Exclusion criteria
Patients who report the following conditions will be excluded:
-
(1)
Skin ailments, radiculopathy, thrombophlebitis and injuries affecting infrared imaging
-
(2)
Alcohol abuse or alcoholism
-
(3)
A history of cancer within the past five years
-
(4)
Severe depression or mental illness
-
(5)
Taking hypertensive or diabetic medications or thrombolytic agents
-
(6)
Pregnant or breastfeeding
-
(7)
Severe heart, pulmonary, hepatic and renal diseases (assessed by self-reporting and a blood test at the screening visit)
-
(8)
Allergies to KRG or ginseng
-
(9)
Ingestion of herbal medicine or nutritional supplements within a week before participation
-
(10)
Participation in another clinical trial within the past three months
Interventions
The KRG (Korean Red Ginseng powder capsule®) was manufactured by Korea Ginseng Corporation (Seoul, Korea) from the root of six-year-old Panax ginseng C.A. Meyer (family Araliaceae) harvested in Korea. The raw ginseng was cultivated and managed by Good Agricultural Practices established by the Rural Development Administration. The manufacture of KRG was processed according to Korean Good Manufacturing Practices and permitted and regulated by the Korean Food and Drug Administration. KRG was made by steaming fresh ginseng at 90 to 100°C for three hours, followed by drying at 50 to 80°C. KRG capsules containing KRG powder were prepared from ground red ginseng (KRG capsule, 500 mg/capsule). A total of 3 g of KRG powder contained 2 g of carbohydrates and 1 g of protein. The capsule was made of hydroxypropyl methylcellulose, pectin, purified water, sucrose fatty acid ester, glycerin, calcium gluconate and glacial acetic acid. KRG was analyzed by high-performance liquid chromatography. KRG contained the following active compounds: -Rb1, 5.61 mg/g; -Rb2, 2.03 mg/g; -Rc, 2.20 mg/g; -Rd, 0.39 mg/g; -Re, 1.88 mg/g; -Rf, 0.89 mg/g; -Rg1, 3.06 mg/g; -Rg2(s), 0.15 mg/g; -Rg3(r), 0.08 mg/g; -Rg3(s), 0.17 mg/g; -Rh1, 0.30 mg/g, and other minor ginsenosides. The standard chemical components in KRG were the total amount of Rb1 and Rg1 (6 mg/g). The examination of the remaining agricultural chemical was also conducted. The tolerance limit for pesticide residue of KRG was 0.5 mg/kg according to the regulation of Korean Food and Drug Administration. The voucher specimens were kept at the laboratory of Korea Ginseng Corporation (Seoul, Korea). The lot number of KRG that will be used in our trial is 30032005.
The participants assigned to the KRG group will be required to take six capsules of 500 mg KRG twice a day (one hour after breakfast and dinner), accounting for a total of 6 g in a day. The dosage of KRG was determined based on the total amount of Rb1 and Rg1, according to Korean Food Standards Codex. The participants assigned to the placebo group will take placebo capsules similar to the color, flavor and scent of KRG. Placebo was made of cornstarch, natural coloring (Brown CG-11771, JEY’s F.I. Inc., Sungnam Korea), brown caramel coloring (Bolak Co., Hwasong Korea) and red ginseng flavor (C80509, French Korean Aromatics Co., Yongin Korea). The lot number of placebo that will be used in our trial is 30032006. Samples of the placebo were also kept at the Korea Ginseng Corporation (Seoul, Korea). After several attempts, a placebo that could not be distinguished from the real KRG by 20 healthy persons was successfully produced. Besides, at the end of the study, all participants will be asked whether the experimental agents that they had taken were real or placebo in order to evaluate the success of blinding. In addition, the patients will be given a diary, which they will be asked to fill in twice a day, after taking KRG or placebo. The diary will be used to check their compliance to the administration. The patients’ data will be excluded from the per-protocol analysis unless their compliance rate is more than 70%.
Objectives
The objectives of the current study are (1) to evaluate the efficacy of KRG on CHHF and (2) to establish basic evidence via the evaluation of CHHF by using objective assessment tools.
Outcomes
Primary outcome
The primary outcome is a change of skin temperature in the hands between baseline (visit 2) and after treatment (visit 4). The skin temperature will be obtained by infrared thermography. For the infrared thermography examination, the patient will be asked to avoid hot showers, hot packs, smoking, exercise, acupuncture and stimulants such as caffeine for two hours before the examination. The patient will be acclimatized to room temperature (25 ± 1°C) for 15 minutes and seated comfortably on a chair without physiological or psychological stress. Subsequently, the patient will stand in an anatomical posture. Thermal images of the palm and the upper arm will be obtained to assess cold hypersensitivity in the hands. The difference between the palm and the upper arm, which is related to the severity of cold hypersensitivity in the hands, will then be calculated.
Secondary outcome
The secondary outcomes include the VAS scores of cold hypersensitivity in the hands, change of skin temperature and the VAS scores of cold hypersensitivity in the feet, RR of the skin temperature by the CST of the hands, the DDD of the hands, power variables of HRV, and the SF-36 between the baseline (visit 2) and after the treatment (visit 4). A 100-mm VAS measurement will be used to assess the severity of CHHF. The VAS scores will be rounded to the nearest integer in millimeters.
The CST is used to examine the function of recovery after cold stress. The patient will be seated and the baseline thermal images of the dorsum of both hands will be acquired with infrared thermography. Subsequently, both hands will be submerged up to the wrist in cold water (20°C) for a period of one minute. The hands will then be taken out of the cold water and will be carefully wiped and dried with a dry towel. Thermal images of the dorsum of both hands will be obtained immediately after immersion and six minutes later. The RR of the skin temperature at six minutes will be calculated as follows:
Tbase: baseline skin temperature
T0: skin temperature immediately after cold stress
T6: skin temperature six minutes after cold stress
Recently, the thermographic DDD has been used as a parameter to evaluate the severity of vasoconstriction [17, 18]. The DDD was calculated by subtracting the temperature of the finger from that of the dorsum [19]. Therefore, the DDD is considered positive if the finger is colder than the dorsum, and a high DDD indicates severe CHHF.
HRV is used to study the activity of the autonomic nervous system indirectly. Low-frequency (LF) power is thought to be strongly related to sympathetic nerve system activity and correlates with the regulation of blood pressure and peripheral vascular tone. High-frequency (HF) power reflects sinus arrhythmia and breathing activity and is strongly based on parasympathetic nerve system activity [20]. The ratio of LF to HF power is commonly interpreted as an indicator of the relative balance between sympathetic and parasympathetic activity, with higher ratios corresponding to higher relative sympathetic activity [21]. The total power is not a specific indicator of a particular type of autonomic nervous system expression, but is rather an indicator of the total amount of variability, which includes all of the different possible influences on heart rate variation [20].
CHHF may lower quality of life by interfering with daily life and restricting activities in the cold environment. Therefore, improving quality of life is another important goal in the treatment of CHHF. The SF-36 is a generic instrument to measure health-related quality of life and is widely used to survey physical and emotional health. The validated Korean version of SF-36 that will be used in this study was provided by the Health Assessment Laboratory (Boston, MA, USA). It consists of 36 questions grouped into eight dimensions: physical function (10 items), role limitations owing to physical health problems (4 items), bodily pain (2 items), general health perception (6 items), energy and vitality (4 items), social function (2 items), role limitations owing to emotional problems (3 items) and mental health (5 items). The number of questions for each health concept ranges from 2 to 10, and the number of response options per question is either two (yes or no) or six (none, very mild, mild, moderate, severe or very severe). Each of the dimension scores are expressed as a value between 0 and 100, with higher scores representing better health status [22].
Safety assessment
All participants will be asked to record any adverse events in a diary during the administration and the follow-up period. All adverse events will be described in the case report form (CRF). The complete blood count (CBC), erythrocyte sedimentation rate (ESR), liver function test and renal function test will be assessed to determine the safety of the treatments at the completion of KRG or placebo administration. These analyses will be performed at an accredited laboratory. All values detected in the laboratory will be recorded by the investigator in the CRF.
Sample size
This trial has a pilot characteristic to evaluate the efficacy of KRG on CHHF by using infrared thermography. Although there was no previous study that is the same in design, we calculated the sample size on the basis of a study that used similar variables. The previous study measured the tolerance time to cold stress to assess the efficacy of KRG on CHHF using a two-sided test, yielding a 5% significance level [16]. The formula for estimating the sample size is as follows:
In the previous study, the tolerance time to cold stress prolonged 0.35 minute in the KRG group compared with the control group (μt-μc), and a mean standard deviation (σ) was 0.84. In our study, the ratio (λ) of KRG to placebo is 1:1. With an 80% power (1-β) and a 5% significance level (α), assuming μt-μc = 0.35 and σ = 0.84, a sample size of n
t
= n
c
= 32 patients per group is needed (n
t
, number of patients in KRG group; n
c
, number of patients in placebo group). Anticipating a drop-out rate of approximately 20%, the total sample size should be more than 80 women.
Randomization
Randomization will be performed by an independent statistician by generating allocation numbers using a randomization allocation program. The participants will not be stratified. They will randomly be assigned into KRG and placebo groups at a 1:1 ratio. The investigator will be subsequently notified of the number assigned to each participant and the participants will be given a random number at their second visit. The allocation table of participants will be kept by an independent statistician until the end of the study.
Blinding
The patients will be blinded to the treatment that they are provided. The investigator and clinical pharmacist will be also blinded to the randomization. Only the independent statistician will be aware of the randomization.
Ethical approval
The protocol of this trial has been approved by the institutional review board (IRB) and the ethics committee of Kyung Hee University Hospital at Gangdong, Seoul, Korea. The permission number of this study is KHNMC-OH-IRB 2012–004 and the protocol identification number on ClinicalTrials.gov is NCT01664156. Written informed consent will be obtained from all participants prior to enrollment, and patients will be given adequate time to declare if they wish to participate before signing the consent form.
Recruitment
Information will be sent by short message service (SMS) to patients with CHHF who were previously identified at the Kyung Hee University Hospital at Gangdong. Public advertisements will be placed in the newspaper and homepage of the hospital to recruit participants. Posters, brochures and banners will be placed inside the hospital.
Concomitant therapy
During the clinical trial, patients will be prohibited from taking any kind of drugs or therapies that might affect symptoms related to CHHF. These include herbal medicines, acupuncture, moxibustion, cupping and infrared treatment. Furthermore, the patients will be prohibited from taking hypertensive or diabetic medications and thrombolytic agents that affect vascular or endothelial functions. However, the patients will be permitted to take medications that would not affect CHHF. For example, medications for a common cold, stomachache, diarrhea and menstrual pain will be allowed.
Statistical analysis
An independent statistician will perform the statistical analyses of all data in a blinded manner. An efficacy analysis will be performed for both ITT (intention-to-treat) and PP (per-protocol) data set. Baseline characteristics such as age and body mass index (BMI) between the two groups will be compared using independent t-test or chi square test. The target variables for analysis in this study include the following: (1) change of skin temperature and VAS scores of cold hypersensitivity in the hands; (2) change of skin temperature and VAS scores of cold hypersensitivity in the feet; (3) RR of the skin temperature by the CST of the hands; (4) the DDD of the hands; (5) power variables of HRV; and (6) the SF-36. All values will be presented as mean ± SD. The paired t-test will be used to compare data between the baseline (visit 2) and after the treatment (visit 4) in each group. Comparison between the two groups will be performed using independent t-test at each time. If there are significant differences between the two groups at the baseline, we will compare the variables using ANCOVA. All statistical analyses of data will be performed by using SPSS version 17.0 (SPSS Inc., Chicago, IL), with P- values <0.05 representing statistical significance.