Skip to content


  • Methodology
  • Open Access
  • Open Peer Review

Does regional compared to local anaesthesia influence outcome after arteriovenous fistula creation?

  • 1Email author,
  • 1,
  • 2,
  • 3 and
  • 2

  • Received: 6 November 2012
  • Accepted: 1 August 2013
  • Published:
Open Peer Review reports



An arteriovenous fistula is the optimal form of vascular access in patients with end-stage renal failure requiring haemodialysis. Unfortunately, approximately one-third of fistulae fail at an early stage. Different anaesthetic techniques can influence factors associated with fistula success, such as intraoperative blood flow and venous diameter. A regional anaesthetic brachial plexus block results in vasodilatation and improved short- and long-term fistula flow compared to the infiltration of local anaesthetic alone. This, however, has not yet been shown in a large trial to influence long-term fistula patency, the ultimate clinical measure of success.

The aim of this study is to compare whether a regional anaesthetic block, compared to local anaesthetic infiltration, can improve long-term fistula patency.


This study is an observer-blinded, randomised controlled trial. Patients scheduled to undergo creation of either brachial or radial arteriovenous fistulae will receive a study information sheet, and consent will be obtained in keeping with the Declaration of Helsinki. Patients will be randomised to receive either: (i) an ultrasound guided brachial plexus block using lignocaine with adrenaline and levobupivicaine, or (ii) local anaesthetic infiltration with lignocaine and levobupivicaine.

A total of 126 patients will be recruited. The primary outcome is fistula primary patency at three months. Secondary outcomes include primary patency at 1 and 12 months, secondary patency and fistula flow at 1, 3 and 12 months, flow on first haemodialysis, procedural pain, patient satisfaction, change in cephalic vein diameter pre- and post-anaesthetic, change in radial or brachial artery flow pre- and post-anaesthetic, alteration of the surgical plan after anaesthesia as guided by vascular mapping with ultrasound, and fistula infection requiring antibiotics.


No large randomised controlled trial has examined the influence of brachial plexus block compared with local anaesthetic infiltration on the long-term patency of arteriovenous fistulae. If the performance of brachial plexus block increases fistulae patency, this will have significant clinical and financial benefits as the number of patients able to commence haemodialysis when planned should increase, and the number of “redo” or revision procedures should be reduced.

Trial registration

This study has been approved by the West of Scotland Research Ethics Committee 5 (reference no. 12/WS/0199) and is registered with the database (reference no. NCT01706354).


  • Fistula
  • Patency
  • Flow
  • Anaesthetic
  • Local
  • Nerve block
  • Renal failure


When chronic kidney disease (CKD) progresses to irreversible end stage renal failure, renal replacement therapy (RRT) is necessary for survival [1]. Haemodialysis (HD) is the commonest form of RRT. Good quality, stable vascular access is a major factor in determining survival in this group of CKD patients, and surgical creation of an arteriovenous fistula (AVF) is recommended as the optimal technique [2, 3]. Unfortunately, approximately one-third of arteriovenous fistulae fail at an early stage [4]. This failure rate is influenced by both the pre-operative arterial and venous diameters and post-operative flow through the AVF, as well as a number of other patient and surgical factors [5, 6]. Some anaesthetic techniques can directly influence venous diameter as well as intra- and post-operative blood flow [5], but there is no conclusive evidence as yet that any particular anaesthetic technique can significantly influence long term surgical outcome.

General anaesthesia, regional anaesthesia and local anaesthetic (LA) infiltration are all acceptable anaesthetic techniques for AVF creation. Regional anaesthesia, such as a brachial plexus block (BPB), involves injection of LA around nerves to specifically ‘block’ the motor and sensory nerves that supply the operative site, avoiding the need for general anaesthesia. Whilst general anaesthesia increases intra-operative vasodilatation, CKD patients are known to be at increased risk of peri- and post-operative complications [7, 8]. Many of these complications can be avoided if regional or local anaesthesia are employed. Only regional anaesthesia, however, produces an associated sympathetic nerve block which results in an increased intraoperative venous diameter and vessel flow, both intra-operatively and, for several hours, post-operatively [9, 10]. Maintenance of adequate blood flow through the fistula post-operatively can help prevent thrombosis and fistula failure and is important in fistula maturation [10]. Furthermore, arterial and venous spasm reduces flow and is more common with local infiltration than regional (or general) anaesthesia [11]. Several non-randomised trials have already demonstrated that, compared to local infiltration, a BPB results in lower immediate AVF failure rates [6, 12] and also an improved surgical ability to identify the optimal graft site [13]. The effects, however, of these short-term benefits of regional anaesthesia on long-term AVF survival (patency) remain uncertain. To date there has been no large-scale randomised clinical trial examining this question. Recently it has been demonstrated that a BPB compared to LA alone significantly increased flow through the fistula up until eight weeks after surgery, but this did not translate into any difference in fistula patency [14]. Increased flow is important, but ultimately it is the patency of the AVF that is the major determinant of success. This trial was underpowered and the authors’ final conclusion was that larger scale clinical trials were required.

Anaesthetic technique, therefore, has the potential to modify a number of factors which may influence fistula success. We wish to investigate whether anaesthetic technique can influence fistula patency. Given the higher risks of general anaesthesia in these patients, we wish to compare BPB and LA techniques in an adequately powered trial. We hypothesise that the regional anaesthetic technique of an ultrasound guided BPB will, as a result of improved vasodilation and blood flow at the time of and shortly after surgery, increase the AVF patency rate at three months compared to those undergoing the procedure with LA infiltration. If this is the case, the number of patients able to commence HD when planned should be increased and the number of “redo” procedures should be reduced. This has clear financial implications as well as reducing inconvenience for patients.



This is a single centre, observer-blinded, randomised controlled trial. This study has been approved by the West of Scotland Research Ethics Committee 5 (reference no. 12/WS/0199) and is registered with the database (reference no. NCT01706354). This study will be performed in keeping with the requirements of the Declaration of Helsinki.


The creation of arteriovenous fistulae under ultrasound guided brachial plexus block anaesthesia will result in an increased primary patency rate at three months compared to the use of local anaesthetic infiltration.

Objectives and outcome measures

This study aims to compare local anaesthetic infiltration to a BPB anaesthetic technique for the surgical creation of an AVF, assessing in particular whether an increase in flow at the time of surgery with a BPB alters long-term outcome. The primary outcome measure is AVF primary patency at three months. Primary patency is defined as the unequivocal clinical presence of a thrill or audible bruit indicating flow through the fistula, in a fistula which has not required intervention to maintain or re-establish flow for whatever reason. Secondary outcomes include immediate post-operative patency (within one hour of termination of the procedure), primary patency at one month and one year, primary functional patency at three months and one year (that is, primary patency as described previously but which is also able to deliver flow greater than 350 ml/minutes without recirculation for the duration of haemodialysis), secondary patency at one year (that is, patency maintained by other therapeutic interventions, for example, interventional radiology), flow rates through AVF at one month, three months and one year, flow rates of the radial/brachial artery at one month, three months and one year measured by ultrasound, flow obtained at first HD, flow on HD after one year, change in cephalic vein diameter pre-/post-anaesthetic, change in radial or brachial artery flow pre-/post-anaesthetic, alteration of the surgical plan after anaesthetic and then venous/arterial mapping with ultrasound, AVF infection requiring antibiotics, pain during the procedure, pain one hour post-operatively, patient satisfaction, BPB success, complications including the requirement for conversion to general anaesthesia, the requirement for additional sedation or analgesics peri-operatively, post-operative paraesthesia or weakness suggestive of nerve damage, pneumothorax and time to perform the procedure.

Study centre

Our centre is a tertiary referral facility for vascular access formation performing around 400 AVF creations per year. The necessary volume of clinical cases, presence of clinical expertise and equipment required for this study is well established in this unit. There is a wealth of experience on the use of ultrasound guidance for regional anaesthetic techniques within the department [1518].

Patients and enrolment

Patients scheduled to undergo primary AVF creation will be invited to participate in the study during their pre-assessment clinic visit staffed by the surgeon and the pre-assessment anaesthetic nurse. Inclusion criteria are English-speaking adults aged 18 to 85 who are competent to give consent scheduled for primary AVF formation at either the radial or brachial artery. Exclusion criteria are allergy to local anaesthetic, coagulopathy, infection at the anaesthetic or surgical site, patient preference for general or alternative anaesthesia, significant peripheral neuropathy or neurologic disorder affecting the upper extremity, pregnancy, previous AVF creation on the ipsilateral arm, known cephalic vein occlusion, central vein stenosis, brachial or radial artery stenosis and vein or artery less than 1.8 mm, as measured by ultrasound.



The purpose of this trial is to investigate the hypothesis that long-term AVF patency is improved by a BPB compared to local anaesthetic infiltration as this has not yet been demonstrated in a large randomised controlled trial. Reducing the AVF failure rate is of significant benefit by increasing the number of patients able to commence HD when planned and reducing the number of “redo” procedures. This has clear financial benefits and also reduces the inconvenience to patients and the risks of further AVF surgery. If, however, our null hypothesis is correct, this finding would still provide useful information. LA infiltration is simpler, less time consuming and avoids the rare risks of brachial plexus blocks. LA infiltration also bypasses the financial and practical implications of requiring an anaesthetist to undertake the block, and monitor the patient. Therefore, either a positive or negative result will help inform future anaesthetic practice regarding the surgical creation of arteriovenous fistulae.



Arteriovenous fisutla


Brachial plexus block


Chronic kidney disease


Null hypothesis




Local anaesthetic


Renal replacement therapy


Serious adverse event.



Grant applications have been made to Regional Anaesthesia UK and The Royal College of Anaesthetists (Ernest Leach Research Fund and Nuffield Funds) in order to fund statistical support, disposals and archiving costs. Such grant applications undergo a stringent peer review process prior to any award being made. These funders have no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The decision regarding any funding awards remains outstanding. NHS employed researchers will be covered for negligent harm through the NHS CNORIS indemnity scheme.

Authors’ Affiliations

Department of Anaesthesia, Glasgow Royal Infirmary, 91 Wishart Street, Glasgow, G31 2HT, Scotland, UK
Renal Surgery/Transplant Unit, Western Infirmary, Dumbarton Road, Glasgow, G11 6NT, Scotland, UK
Academic Unit of Anaesthesia Unit, Pain & Critical Care Medicine 4th Floor, Walton Building, Glasgow Royal Infirmary, 91 Wishart Street, Glasgow, G31 2HT, Scotland, UK


  1. National Institute of Health and Clinical Excellence: Clinical Guideline 73. Chronic Kidney Disease: Early Identification and Management of Chronic Kidney Disease in Adults in Primary and Secondary Care. 2008,,Google Scholar
  2. The Renal Association: Vasular Access for Haemodialysis.,
  3. Hoggard J, Saad T, Schon D, Vesely TM, Royer T, American Society of Diagnostic and Interventional Nephrology: Guidelines for venous access in patients with chronic kidney disease. A Position Statement from the American Society of Diagnostic and Interventional Nephrology, Clinical Practice Committee and the Association for Vascular Access. Semin Dial. 2008, 21: 186-191. 10.1111/j.1525-139X.2008.00421.x.View ArticlePubMedGoogle Scholar
  4. Rodriguez JA, Armadans L, Ferrer E, Olmos A, Codina S, Bartolome J, Borrellas J, Piera L: The function of permanent vascular access. Nephrol Dial Transplant. 2000, 15: 402-408. 10.1093/ndt/15.3.402.View ArticlePubMedGoogle Scholar
  5. Wong V, Ward R, Taylor J, Selvakumar S, How TV, Bakran A: Factors associated with early failure of arteriovenous fistulae for haemodialysis access. Eur J Vasc Endovasc Surg. 1996, 12: 207-213. 10.1016/S1078-5884(96)80108-0.View ArticlePubMedGoogle Scholar
  6. Malinzak EB, Gan TJ: Regional anesthesia for vascular access surgery. Anesth Analg. 2009, 109: 976-980. 10.1213/ane.0b013e3181adc208.View ArticlePubMedGoogle Scholar
  7. Howell SJ, Sear YM, Yeates D, Goldacre M, Sear JW, Foëx P: Risk factors for cardiovascular death after elective surgery under general anaesthesia. Br J Anaesth. 1998, 80: 14-19. 10.1093/bja/80.1.14.View ArticlePubMedGoogle Scholar
  8. Lee TH, Marcantonio ER, Mangione CM, Thomas EJ, Polanczyk CA, Cook EF, Sugarbaker DJ, Donaldson MC, Poss R, Ho KK, Ludwig LE, Pedan A, Goldman L: Derivation and prospective validation of a simple index for prediction of cardiac risk of major noncardiac surgery. Circulation. 1999, 100: 1043-1049. 10.1161/01.CIR.100.10.1043.View ArticlePubMedGoogle Scholar
  9. Shemesh D, Olsha O, Orkin D, Raveh D, Goldin I, Reichenstein Y, Zigelman C: Sympathectomy-like effects of brachial plexus block in arteriovenous access surgery. Ultrasound Med Biol. 2006, 32: 817-822. 10.1016/j.ultrasmedbio.2006.02.1420.View ArticlePubMedGoogle Scholar
  10. Mouquet C, Bitker MO, Bailliart O, Rottembourg J, Clergue F, Montejo LS, MArtineaud JP, Viars P: Anesthesia for creation of a forearm fistula in patients with endstage renal failure. Anesthesiology. 1989, 70: 909-914. 10.1097/00000542-198906000-00005.View ArticlePubMedGoogle Scholar
  11. Konner K, Nonnast-Daniel B, Ritz E: The arteriovenous fistula. J Am Soc Nephrol. 2003, 14: 1669-1680. 10.1097/01.ASN.0000069219.88168.39.View ArticlePubMedGoogle Scholar
  12. Shemesh D, Zigelman C, Olsha O, Alberton J, Shapira J, Abramowitz H: Primary forearm arteriovenous fistula for hemodialysis access–an integrated approach to improve outcomes. Cardiovasc Surg. 2003, 11: 35-41. 10.1016/S0967-2109(02)00148-5.View ArticlePubMedGoogle Scholar
  13. Laskowski IA, Muhs B, Rockman CR, Adelman MA, Ranson M, Cayne NS, Leivent JA, Maldonado TS: Regional nerve block allows for optimization of planning in the creation of arteriovenous access for hemodialysis by improving superficial venous dilatation. Ann Vasc Surg. 2007, 21: 730-733. 10.1016/j.avsg.2007.07.001.View ArticlePubMedGoogle Scholar
  14. Sahin L, Gul R, Mizrak A, Deniz H, Sahin M, Koruk S, Cesur M, Goksu S: Ultrasound-guided infraclavicular brachial plexus block enhances postoperative blood flow in arteriovenous fistulas. J Vasc Surg. 2011, 54: 749-753. 10.1016/j.jvs.2010.12.045.View ArticlePubMedGoogle Scholar
  15. Dolan J, Williams A, Murney E, Smith M, Kenny GN: Ultrasound guided fascia iliaca block: a comparison with the loss of resistance technique. Reg Anesth Pain Med. 2008, 33: 526-531.PubMedGoogle Scholar
  16. Kearns RJ, Macfarlane AJ, Anderson KJ, Kinsella J: Intrathecal opioid versus ultrasound guided fascia iliaca plane block for analgesia after primary hip arthroplasty: study protocol for a randomised, blinded, noninferiority controlled trial. Trials. 2011, 12: 51-10.1186/1745-6215-12-51.View ArticlePubMedPubMed CentralGoogle Scholar
  17. Macfarlane AJ, Prasad GA, Chan VW, Brull R: Does regional anaesthesia improve outcome after total hip arthroplasty? A systematic review. Br J Anaesth. 2009, 103: 335-345. 10.1093/bja/aep208.View ArticlePubMedGoogle Scholar
  18. Macfarlane AJ, Brull R: Eight ball, corner pocket ultrasound guided supraclavicular block: avoiding a scratch. Reg Anesth Pain Med. 2008, 33: 502-503.PubMedGoogle Scholar
  19. Wiese P, Nonnast-Daniel B: Colour Doppler ultrasound in dialysis access. Nephrol Dial Transplant. 2004, 19: 1956-1963. 10.1093/ndt/gfh244.View ArticlePubMedGoogle Scholar
  20. Soares LG, Brull R, Lai J, Chan VW: Eight ball, corner pocket: the optimal needle position for ultrasound-guided supraclavicular block. Reg Anesth Pain Med. 2007, 32: 94-95.PubMedGoogle Scholar
  21. Rodriguez J, Taboada-Muniz M, Barcena M, Alvarez J:Median versus musculocutaneous nerve response with single-injection infraclavicular coracoid block. Reg Anesth Pain Med. 2004, 29: 534-538.View ArticlePubMedGoogle Scholar
  22. Deane C: Ultrasound of haemodialysis access. Vascular Ultrasound, How, Why and When. Edited by: Thrush A, Hartshorne T. 2010, London: Churchill Livingstone, 275-292. 3Google Scholar
  23. Zaliunaite R, Kearns R, Clancy M, Macfarlane AJ: Does regional compared to local anaesthesia influence outcome after arteriovenous fistula creation? E-poster at ESRA Annual Congress Dresden. 2011,,Google Scholar
  24. Brull R, McCartney CJ, Chan VW, El Beheiry H: Neurological complications after regional anesthesia: contemporary estimates of risk. Anesth Analg. 2007, 104: 965-974. 10.1213/ ArticlePubMedGoogle Scholar
  25. Barrington MJ, Watts SA, Gledhill SR, Thomas RD, Said SA, Snyder GL, Tay VS, Jamrozik K: Preliminary results of the Australasian Regional Anesthesia Collaboration. Reg Anesth Pain Med. 2009, 34: 534-541. 10.1097/AAP.0b013e3181ae72e8.View ArticlePubMedGoogle Scholar
  26. Macfarlane AJ, Brull R: Needle to nerve proximity: what do the animal studies tell us?. Reg Anesth Pain Med. 2011, 36: 290-302. 10.1097/AAP.0b013e318217a9ed.View ArticlePubMedGoogle Scholar
  27. Liu SS, Ngeow JE, Yadeau JT: Ultrasound guided regional anesthesia and analgesia: a qualitative systematic review. Reg Anesth Pain Med. 2009, 34: 47-59. 10.1097/AAP.0b013e3181933ec3.View ArticlePubMedGoogle Scholar
  28. Abrahams MS, Aziz MF, Fu RF, Horn JL: Ultrasound guidance compared with electrical neurostimulation for peripheral nerve block: a systematic review and meta-analysis of randomized controlled trials. Br J Anaesth. 2009, 102: 408-417. 10.1093/bja/aen384.View ArticlePubMedGoogle Scholar
  29. Neal JM, Wedel DJ: Ultrasound guidance and peripheral nerve injury: is our vision as sharp as we think?. Reg Anesth Pain Med. 2010, 35: 335-337. 10.1097/AAP.0b013e3181e8a3bb.View ArticlePubMedGoogle Scholar
  30. Lee LA, Posner KL, Cheney FW, Caplan RA, Domino KB: Complications associated with eye blocks and peripheral nerve blocks: an American Society of Anesthesiologists closed claims analysis. Reg Anesth Pain Med. 2008, 33: 416-422.PubMedGoogle Scholar


© Macfarlane et al.; licensee BioMed Central Ltd. 2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate. Please note that comments may be removed without notice if they are flagged by another user or do not comply with our community guidelines.