Skip to content

Advertisement

  • Poster presentation
  • Open Access

A framework to assess the added value of subgroup analyses when the overall treatment effect (TE) was significant

  • 1 and
  • 1
Trials201314 (Suppl 1) :P32

https://doi.org/10.1186/1745-6215-14-S1-P32

  • Published:

Keywords

  • Treatment Effect
  • Subgroup Analysis
  • Decision Rule
  • Binary Outcome
  • Risk Difference

Although statisticians have already awared and discussed the problem, it is still not clear whether we should perform and how to perform such subgroup analyses when the overall TE is significant in both single clinical trials and systematic reviews. So a framework is needed to assess and compute the long term effect of different strategies to perform subgroup analysis.

We propose two performance measures to evaluate the average post-study TE for patients in all studies (E) and fraction of patients with a negative TE in the positive studies (P). Nine existing decision rules are applied to different assumptions of subgroup specific and individual TE. Optimistic, moderate and pessimistic scenarios are assumed for true TE.

A hierarchical structured simulation study is set up with the fixed power of 90% and an assumed constant TE for each study in particular case of binary outcomes with TE presented as risk difference, a constant sample size 280 is required. Patients were allocated in 1:1 ratio to two hypothetical treatment subgroups. 10000 simulation runs applied to each scenario.

We demonstrate that there are decision rules for subgroup analysis which decrease P and increase E simultaneously comparing to the situation of no subgroup analysis. These rules are much more liberal than the usual significance testing, since there is a high risk to decrease E using the latter.

Authors’ Affiliations

(1)
Institute of Medical Biometry and Medical Informatics, Freiburg, Germany

Copyright

© Sun and Vach; licensee BioMed Central Ltd. 2013

This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate. Please note that comments may be removed without notice if they are flagged by another user or do not comply with our community guidelines.

Advertisement