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Abstract

By end December of 2021, COVID-19 has infected around 276 million individuals and caused over 5 million deaths
worldwide. Infection results in dysregulated systemic inflammation, multi-organ dysfunction, and critical illness. Cells
of the central nervous system are also affected, triggering an uncontrolled neuroinflammatory response. Low doses
of glucocorticoids, administered orally or intravenously, reduce mortality among moderate and severe COVID-19
patients. However, low doses administered by these routes do not reach therapeutic levels in the CNS. In contrast,
intranasally administered dexamethasone can result in therapeutic doses in the CNS even at low doses.
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Methods: This is an approved open-label, multicenter, randomized controlled trial to compare the effectiveness of
intranasal versus intravenous dexamethasone administered in low doses to moderate and severe COVID-19 adult
patients. The protocol is conducted in five health institutions in Mexico City. A total of 120 patients will be
randomized into two groups (intravenous vs. intranasal) at a 1:1 ratio. Both groups will be treated with the
corresponding dexamethasone scheme for 10 days. The primary outcome of the study will be clinical improvement,
defined as a statistically significant reduction in the NEWS-2 score of patients with intranasal versus intravenous
dexamethasone administration. The secondary outcome will be the reduction in mortality during hospitalization.

Conclusions: This protocol is currently in progress to improve the efficacy of the standard therapeutic
dexamethasone regimen for moderate and severe COVID-19 patients.

Trial registration: ClinicalTrials.gov NCT04513184. Registered November 12, 2020. Approved by La Comisión
Federal para la Protección contra Riesgos Sanitarios (COFEPRIS) with identification number DI/20/407/04/36. People
are currently being recruited.
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Graphical abstract

Highlights

� REVIVAL is a multicenter, open-label, randomized, controlled study to compare the standard low doses of
intravenous dexamethasone with weight-adjusted low doses of intranasal dexamethasone.

� Intranasal dexamethasone can reach the respiratory tract more effectively than intravenous administration.
� Intranasal dexamethasone can reach the central nervous system in therapeutic concentrations, even at low

doses.
� REVIVAL aims to reduce central failures and sequelae by controlling not only systemic inflammation but also

neuroinflammation.
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Background
So far, the outbreak of COVID-19 has infected around
276 million individuals and caused over 5 million deaths
worldwide (https://coronavirus.jhu.edu/map.html), with
a current global case-fatality ratio of 2%. The most af-
fected geographic region is the Americas, with a case-
fatality ratio of 2.4%.
Several factors predict a poor outcome for COVID-19 pa-

tients. These include comorbidities (diabetes, hypertension,

obesity) and aging, which are normally accompanied by a
dysregulated inflammatory response [1]. Other relevant fac-
tors include SARS-CoV-2 neurotropism/neuroinvasive [2–9]
as viral RNA was found in the brain of patients who de-
ceased from severe acute respiratory syndrome due to
COVID-19 infection [10–12]. Likewise, evidence of astrocytic
activation and neuronal damage was reported in severe
COVID-19 patients with elevated plasmatic levels of glial fi-
brillary acidic protein and neurofilament light polypeptide
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[13]. Other authors have shown extensive infection of astro-
cytes [14] and neurons in 2D and 3D cultures [15, 16]. The
infection of cells of the central nervous system (CNS) results
in the expression of pathogen-associated molecular patterns
(PAMPs) and danger-associated molecular patterns
(DAMPs) that trigger a neuroinflammatory response. The
exacerbated systemic inflammation, combined with the con-
sequent breakdown of the blood-brain barrier, induces the
migration of cells and peripheral inflammatory mediators
into the brain. Together, these factors intensify and sustain
neuroinflammation, which, added to peripheral damage, may
contribute to multi-organ dysfunction and death [10, 12].

Natural history of SARS-CoV-2 infection
A clinical staging system for SARS-CoV-2 infection has
been proposed. It involves four stages: early infection
(Stage I, mild), pulmonary involvement without hypoxia
(Stage IIa, moderate), or with hypoxia (Stage IIb), and
systemic hyperinflammation (Stage III) [17] (Fig. 1).
After exposure to SARS-CoV-2, the virus enters the

host through the nasal cavity and respiratory airway.
Early infection (Stage I) courses with mild and non-
specific symptoms (fever, malaise, and asthenia); upon

this prodromic phase, the virus binds to its target recep-
tors ACE2, TMPRSS2 [18, 19], and NRP-1, the most re-
cently discovered target [20, 21]. These receptors are
highly present in several tissues, including the olfactory
neuroepithelium, although to a lesser extent in the sen-
sory olfactory neurons, and the lung [19–22]. Thus, the
infection can be established in the lungs (Stage II), lead-
ing to viral pneumonia, cough, and fever with or without
hypoxia. In the lung, SARS-CoV-2 PAMPs will be recog-
nized by endosomal TLR3, TLR7, and TLR8, and cyto-
solic RIG-I-like receptors [23]. The virus can also reach
the CNS through the olfactory and trigeminal nerve ter-
minals. Once in the CNS, it can infect and damage the
endothelium, pericytes, and neural cells that express
ACE2 and NRP-1 receptors [20, 21], promoting neuroin-
flammation (Fig. 1). CNS viral involvement is related to
headache, dizziness, and ataxia, but infection also may
progress to the whole brain, including the brainstem [5,
6]. In a minority of infected patients, the disease pro-
gresses to Stage III, coursing with a hyperinflammatory
syndrome. This syndrome is characterized by the sus-
tained production of pro-inflammatory cytokines (in-
cluding IL-1β and TNFα) and reactive oxygen species

Fig. 1 Inflammatory phenomena associated with SARS-CoV-2 infection and its neurological and respiratory manifestations. The SARS-CoV-2 virus
mainly enters the respiratory tract and reaches the lungs through direct ventilation and the CNS through the olfactory and trigeminal nerves. The
entry of the virus is facilitated by NRP-1, ACE2 receptors, and protein S activation by TMPRSS2. In the CNS, the virus infects neurons, glial cells,
and endothelial cells, increasing the permeability of the BBB. This may cause cerebral edema, intracranial hypertension, and neuroinflammation. If
the viral infection continues, the damage spreads throughout the body, causing heart and systemic failure. This damage is associated with
increased neuroinflammation directed by microglia and oligodendrocytes, causing damage to the brain stem and dysfunction of the heart and
lungs. The exacerbated inflammation and intravascular coagulation induce respiratory arrest, possibly leading to the patient’s death. The
inflammation is triggered by viral components (PAMPS) that activate TLR3, 7, and 8 receptors on the cell surface. Consequently, there is an
increased production of pro-inflammatory cytokines (TNFα and IL 1β) and ROS, which can modify the P2X7 receptor in the brain and activate the
inflammasome by the decrease of K+. The activation of the inflammasome increases the production of IL-6 and pyroptosis. This diagram is based
on the knowledge at the time of writing the manuscript
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(ROS), mitochondrial and lysosomal damage, and the
hyperactivation of P2X7 receptors. These processes
induce the activation of the inflammasome, which in-
creases IL-6 and leads to pyroptosis. Consequently,
the dissemination of viral antigens and RNA into the
circulation establishes a persistent inflammatory cycle.
Immune complexes can also be generated and depos-
ited in target organs [23–25]. During this phase, sus-
tained neuroinflammation may exacerbate the
neuronal injury, spreading damage and contributing
to central respiratory failure, ultimately resulting in
multi-organ dysfunction [17].
A crucial strategy to treat COVID-19 patients is control-

ling neural and systemic inflammation. For this purpose, it
is essential to consider how viruses invade the human or-
ganism. The intranasal route is the most frequent; it al-
lows direct access to both respiratory and central nervous
systems through neural pathways [5, 15–18]. Corona-
viruses, including SARS-CoV-2, can infect brainstem neu-
rons associated with cardio-respiratory control; thus,
pulmonary function is also altered at the central level [5,
26–29]. COVID-19 neurological clinical symptoms, par-
ticularly nausea, vomiting, and dysgeusia, seem to involve
the dorsal vagal complex (DVC) and the nucleus tractus
solitarius (NTS), linked to the control of several auto-
nomic functions [26]. The NTS is also a well-known target
of neuro-immune activation [30]. Its ascending projec-
tions reach the hypothalamic paraventricular nucleus, in-
volved in the activation of the HPA axis, and the rostral
ventrolateral medulla (RVM), which controls respiratory
and cardiovascular functions [31].
The viral infection in the respiratory and central ner-

vous systems promotes the expression of PAMPs and
DAMPs. These signals trigger the inflammasome and
oxidative stress [23, 32]. Later during infection, the in-
flammatory response may become dysregulated, extend-
ing the initial damage caused by the infection.

Adrenal insufficiency in SARS-CoV-2 infection
Critically ill patients affected by different pathologies fre-
quently show adrenal insufficiency, which may increase
morbidity and mortality [33, 34]. COVID-19 might affect
the hypothalamic-pituitary-adrenal (HPA) axis as well.
Hypothalamic and hypophyseal tissues express ACE2
and can therefore be viral targets [35]. The virus may
directly damage the hypothalamus and the pituitary,
leading to hypothalamic-pituitary dysfunctions.
Since the SARS outbreak of 2003, autopsy studies have

demonstrated that coronaviruses affect the HPA axis
and promote vasculitis in several organs, including ad-
renal glands; in particular, adrenal cortical cells undergo
degeneration and necrosis [36]. Although the full long-
term spectrum of COVID-19 endocrine manifestations
is still unclear, several endocrine alterations have been

reported in SARS survivors. These include hypocortiso-
lism, hypothyroidism, and low levels of dehydroepian-
drosterone, suggesting a transient hypothalamic-
pituitary dysfunction [37]. Recently, an Arabian study in-
cluding 28 patients reported the adrenal response to an
acute COVID-19 infection; the median level of morning
cortisol was 196 (31–587) nmol/L, and the median level
of ACTH was 18.5 (4–38 ng/L). Interestingly, patients
with severe disease had lower cortisol and ACTH [38].
In addition, other autopsy studies have found edema,
neuronal degeneration, and evidence of viral genome in
the hypothalamus [39]. Thus, in the presence of sub-
acute thyroiditis or adrenal insufficiency, corticosteroid
therapy should help by reducing high amounts of thy-
roid hormones and replace adrenal function, improving
the evolution of these patients regardless of the route of
administration.

Rationale
Dexamethasone sodium phosphate (ALIN, injectable so-
lution. Chinoin Laboratory) is a highly soluble gluco-
corticoid with a pH = 7–8.5 that does not harm the
nasal mucosa. This synthetic steroid is an anti-
inflammatory and immunomodulatory drug that inhibits
platelet activation, prostaglandin and leukotriene synthe-
sis, and coagulation by regulating transcriptional factors
like NF-κB and AP-1 [40–42]. Furthermore, DXM exerts
important neuroprotective effects such as rescuing neu-
rovascular integrity during neuroinflammation [43].

Dexamethasone: a potent anti-inflammatory drug
Considering that the complications of COVID-19 result
from exacerbated peripheral and neural inflammation
derived from the so-called cytokine storms, at least three
key points have been addressed in the use of DXM for
the treatment of Coronavirus patients: timing, dose, and
route of administration. First, the drug should not be ap-
plied from the beginning of the infection when inflam-
mation favors the control of viral replication and the
establishment of an adaptive immune response that
serves to control the infection. A low dose of DXM (6
mg per patient for 10 days) has quickly and effectively
controlled pulmonary inflammation with minimal nega-
tive side effects [44]. In addition, the intranasal route
would allow direct access of DXM to the CNS through
the olfactory and trigeminus nerves, thereby controlling
the sustained neuroinflammation provoked by damage
to infected astrocytes, neurons, and microglia. Therefore,
cardiac and central respiratory failure could be dimin-
ished in COVID-19 patients, avoiding fatalities.
In experimental models, it is well known that drugs

administered intranasally usually grant higher bioavail-
ability in the CNS compared with similar doses adminis-
tered intravenously, since intranasal drugs bypass the
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BBB and hepatic degradation [45–48]. In addition, intra-
nasal DXM might control inflammation by arriving dir-
ectly to the respiratory system more effectively and
quickly than the intravenous route [46–49]. DXM pre-
vents the binding of ACE2 to the spike protein of SARS-
CoV-2 and can also bind to LYS353, an active residue of
the receptor-binding domain (RBD) [50]. Moreover,
DMX reduces ACE2 expression in several cell types by
suppressing type I interferon expression [51]; it can also
downregulate neutrophil extracellular traps (NETs), pos-
sibly through regulating Toll-like receptors [52]. Hyper-
inflammation is related to high levels of NETs and
neutrophilia, which, in turn, predicts thrombosis and
poorer outcomes in acute respiratory distress syndrome
(ARDS) [53, 54].

Methods
Trial design
The “REVIVAL” trial is an interventional, phase 2, mul-
ticenter, open-label, randomized controlled study in
adult patients with confirmed COVID-19 diagnosis, de-
signed to evaluate the efficacy (superiority) of low doses
of intranasal DXM compared to intravenous administra-
tion (allocation ratio 1:1) in patients of five COVID-19
referral centers in Mexico City.

Settings and trial sponsor
This clinical trial is being conducted at the five Health In-
stitutions in Mexico City: “Hospital General de México
Dr. Eduardo Liceaga,” “Instituto Nacional de Neurología y
Neurocirugía Manuel Velasco Suárez,” “Instituto Nacional
de Cardiología Ignacio Chavez,” “COVID-19 unit at Citi-
banamex,” and “Hospital Central Militar.”
The Hospital General de México Dr. Eduardo Liceaga

(HGMEL) is the trial sponsor investigator which is in
charge of initiating, administering, and monitoring the
current clinical trial. The hospital address is Dr. Balmis
148, Doctores, Cuauhtemoc, CP06720, Mexico City and
the telephone is (+ 52)5527892000. The current protocol
is already approved by HGMEL (#DI/20/407/043).
When recruitment of all participants be completed,

the trial sponsor investigator will also participate in the
interpretation of data, writing the paper, and the deci-
sion to submit the report for publication.

Eligibility criteria
Inclusion criteria comprise patients of both sexes (non-
pregnant female), aged from 18 to 90 years old, with pre-
sumptive SARS-CoV-2 infection and more than 5 days
of clinical evolution, with moderate to severe symptoms
requiring oxygen support or high flux mechanical venti-
lation (NEWS-2 ≥ 5), and abnormal CT-chest scan CO-
RADS > 3. Patients should be diagnosed with atypical
pneumonia, confirmed by chest images and oxygen

saturation (SpO2) lower than 93% in ambient air or a ra-
tio of the partial pressure of oxygen and the fraction of
inspired oxygen (PaO2: FiO2) equal to or lower than 300
mmHg, and a positive RT- PCR SARS-CoV-2 test. These
patients will be allocated into the experimental group or
the control group in a 1:1 ratio (two arms) (Fig. 2) ac-
cording to the randomization.
Exclusion criteria include patients with an RT-PCR

SARS-CoV-2 negative test; previously receiving GCs at
high doses by oral or intravenous administration; se-
verely immunosuppressed as in AIDS, pregnancy, and
autoimmune diseases; those who have received out-
patient treatment with steroids for more than 72 h be-
fore hospital admission; those older than 90 years; with
DXM allergy; risk for glaucoma; or recurrent respiratory
diseases. Patients receiving other monoclonal antibody-
based treatments such as tocilizumab are also excluded.
No other concomitant treatments are prohibited for pa-
tient eligibility.
Elimination criteria include voluntary withdrawing,

lack of informed consent letter, or imminent risk of
death within 48 h.

Interventions
Groups and comparators
The study will be carried out in two groups; group A
(experimental) will receive intranasal DXM, and group B
(Control) will receive intravenous DXM (Fig. 2). This ex-
perimental design is based on previously reported data
indicating that intranasal administration can reach the
brain and bloodstream quickly and efficiently [46–49].
Group A will receive intranasal DXM daily, at the dose
of 0.12 mg/kg for the first 3 days, followed by 0.06 mg/kg
for 7 days. Group B will receive 6 mg of intravenous
DXM daily. In each hospital, the Pharmacovigilance staff
will collect the adverse event information, for any (unto-
ward o abnormal) medical manifestation, symptom, or
disease, whether or not related with the drug treatment
in each patient throughout the study.

Procedures
After randomization, a Case Report Format (CRF)
(printed or electronic) for each patient will be filled daily
by the medical staff and completed at the end of treat-
ment or fatal outcome, whatever occurs first. Blood and
saliva samples will be collected every third day during
the whole treatment to perform ancillary tests such as
SARS-CoV-2 viral load, functional immunological as-
sessment (lymphocyte cytometry, cytokine/chemokine
profile), and cortisol levels, among other analyses.
All biological samples will be each 48 h at every hos-

pital center participant, transported by a specialized ser-
vice and concentrated at Instituto de Investigaciones
Biomédicas (UNAM) to be managed and stored at −
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70 °C until use. As mentioned in the Informed Consent,
all samples will be used for the next 3 years. Additional
biological samples may be taken at each hospital center
when necessary, according to the treating physicians and
will not be part of this protocol.
All personal data and medical information of the pa-

tients will be treated in a strictly confidential way. Only
the lead investigator and the hospital coordinator inves-
tigators will have access to this information.

Participants
The sample includes 120 adult patients of both sexes be-
tween 18 and 90 years of age, with moderate and severe
forms of COVID-19. Participants are recruited from the
five participant hospitals. Medical teams at each partici-
pating Hospital Center will be led by a responsible clin-
ician who will obtain the informed consent letter. All
eligible patients or a responsible family member (in the
case that the patient cannot sign) receives an informed
consent letter from the lead clinician, where the charac-
teristics of the procedure are detailed. A medical team at
each hospital will oversee the enrollment of participants
according to a randomization scheme. A clinical monitor
will supervise the data generation, protocol implementa-
tion, and appropriate patient enrollment.

Sample size and randomization
The analysts of the statistic team calculated the size with
EPIDAT version 3.1.2 software, using the option “Sam-
ple size and surveillance curves” with an estimated 50%
increase in the proportion of patients free of mechanical
ventilation [intranasal DXM 70% vs. intravenous DXM
45%]. This value was estimated using the data of the
COVID-19 patients registered in Mexican hospitals with
a confidence of 95%, power of 80%, and proportion of
losses of 10%. A sample size of 60 patients per group

was obtained with these parameters. The randomization
will be made with Sealed Envelope software. This soft-
ware is freely available from https://www.sealedenvelope.
com/simple-randomiser/v1/lists [Accessed May 5, 2020].
This study is a multicenter randomized controlled trial
(Fig. 2).

Confidentiality
Each patient who agrees to participate in the protocol
will be assigned an identification number that will be
used throughout the procedure. This code distinguishes
the hospital of origin and the patient’s identification
number. All the information collected during the pro-
cedure will be confidential (following the data privacy
statement found in the informed consent letter) and
used only for research purposes and follow-up of adverse
effects.

Outcomes
The expected primary outcome is clinical improvement,
defined as a two-point improvement in the ordinal scale
regarding the initial NEWS-2 score. This is an adapted
score recommended by the World Health Organization
(WHO) and the National Institute for Health and Care
Excellence (NICE) to facilitate the early recognition and
escalation of deteriorating patients [55, 56]. Although
this score is commonly adopted for triage, it can also be
used for continuous assessment, particularly in predict-
ing intrahospital mortality. In this context and based on
previous experimental data regarding the sustained effect
of intranasal dexamethasone, we decided to evaluate the
improvement in the initial NEWS-2 score as the first
outcome.
The secondary expected outcome includes a reduction

in mortality that will be examined during treatment
(after randomization), a reduction of the time required

Fig. 2 Outline of the REVIVAL trial clinical protocol. Initially, patients will be informed about the clinical trial; if they accept and sign the consent,
they will be randomized using the Sealed envelope® software. Group A will receive intranasal DXM; Group B will receive intravenous DXM. Both
groups will be sampled on days 0, 3, 6, and 10 post-treatment to collect sera and nasopharyngeal swabs. Patients will be monitored throughout
the study. The results will be tested for statistical differences between groups
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for mechanical ventilation, the length of patient’s stay in
the hospital, 30-day post-discharge mortality, and intra-
hospital complications. Viral load, the immune-
inflammatory profile, and other physiological parameters
will also be evaluated before and after treatment (see
above).

Data collection and management
After acceptance and signature of the informed consent
letter, patients will be randomized, saliva and nasopha-
ryngeal samples will be taken to measure the viral load,
and treatment will begin as indicated in Fig. 2. The pa-
tient’s clinical history will be based on the initial results
and physical inspection. Blood and saliva samples will be
collected before the start of DXM treatment and at days
3, 6, and 10 within the treatment period. All statistical
analyses will be performed by our team of specialists.
The samples will be sent for specialized analysis follow-

ing standardized operating procedures (SOP’s). All patient
data, including clinical history and laboratory data, will be
collected daily and managed using REDCap (Research
Electronic Data Capture System) tools hosted at Instituto
de Investigaciones Biomédicas, UNAM [57, 58].

Plans to promote participant retention and complete
follow-up
All participants will receive specialized medical care, in-
cluding clinical, neurological, and neuropsychological
studies. These evaluations will be carried out 1, 3, 6, and
12months after COVID-19 to monitor the evolution of
the disease. The participants that present any functional
post-COVID decline will receive medical treatment and
neurorehabilitation.
Likewise, patients who present an adverse effect or

health problem during their participation in this study
or derivate to it upon hospitalization will receive all ne-
cessary treatment and care until their resolution in the
“Hospital General Hospital de Mexico Dr. Eduardo
Liceaga.” In addition, patients will be monitored every 3
months for 1 year after the study. During the study,
other immunomodulatory drugs such as colchicine,
GM-CSF inhibitors, IVIG, interferons, interleukins in-
hibitors, and kinase inhibitors can be used under the re-
sponsibility of the physician.

Data monitoring committee
A multidisciplinary group of independent experts will be
on charge to assess the progress, safety data, and if
needed, critical efficacy endpoints of this study.

Data management
The information collected during the procedure will be
documented physically and digitally in an exact and pre-
cise manner. Researchers will use complete patient

reports along with the molecular and immunological
tests to analyze the outcomes. The information collected
will be treated as confidential, and only the global results
will be published without showing the patients’ names.
In case data are required, the information can be re-
quested from the researchers with valid reasons.

Statistical analysis
Descriptive statistics using mean (standard deviation) or
frequency (percentage) will be used following the dimen-
sion scale of the variable. An initial comparison between
the hospital will define relevant differences among them.
Since healthcare conditions are variable in each hospital
included in this study, we will analyze the results with a
multilevel mixed longitudinal model. The outcome ana-
lysis for NEWS-2 components (i.e., respiration rate, oxy-
gen saturation, systolic blood pressure, pulse rate) will
be done using the last observation carried forward
(LOCF) in those subjects with at least two observations,
this analysis will avoid over-optimistic estimates of effi-
cacy. Other efficacy variables like biochemistry or cell
counts will be analyzed without ITT due to the suscepti-
bility to type II error.
Biochemical variables and cell counts will be aggre-

gated using principal component analysis and use the
scores if the Kaiser-Meyer-Olkin (KMO) is greater than
0.6 and sphericity p < 0.0001. The scores using varimax
rotation will be used as dependent variables if the
method is suitable for our data. The longitudinal mixed
model can be described as:

yij ¼ Xijβþ ui þ v j ið Þ þ ϵij

where j = 1,..,Ti are nested in 10 time points, within i
= 1,..,5 hospitals. The Xs correspond to fixed variables
like the treatments, age, sex, and weight, among other
confounders.
A database in vertical format was reshaped to nest the

biochemical, inflammatory markers, cell count adjusted
by sex, age, and BMI. We will perform restricted max-
imum likelihood (REML) estimation in case we obtain
balanced samples. However, if we obtain an unbalanced
sample, we will use maximum likelihood instead [59].
Because we expect a small sample size from some hospi-
tals, we will make inferences using the Kendward-Roger
degrees of freedom method. We will make simultaneous
inferences about l linear combinations of fixed factors.
Despite the complicated situation where l > 1 we will
consider:

F ¼ 1
l

β̂−β
� �T

L LT φ̂AL
� �−1

LT β̂−β
� �

The internal random structure [LT φ̂AL] can change in
different settings, but still will be a good approximation.
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Simulations studies showed adequate performance of
modifications with different REML [60]. Finally, the
structure of residual error will be analyzed within the
lowest-level group. Once recognized, the covariance
structure we will use unstructured, Toeplitz, or expo-
nential corrections. This approach will give unbiased ap-
proximation even in presence of unbalanced samples.
The residuals for our mixed models will be considered

by the source of present variability: The marginal resid-
uals will predict the marginal errors, the conditional re-
siduals, and the best linear unbiased predictor (BLUP)
residuals. The conditional residuals will be standardized
with:

ε̂�k ¼ ε̂k
σ

ffiffiffiffiffi
pkk

p , where pkk represents the kth element of

the covariance structure. These residuals are functions
of the joint leverage of fixed and random effects.
Subgroup analysis will be based on interaction as sec-

ondary analysis. This information will help to identify
multiplicative effects from basal conditions like the pres-
ence of type 2 diabetes, obesity, hypertension, clinical
history IECA medication, or other conditions.
All analysis will describe the number of patients with

the outcome of interests, the treatment effect (mainly
using eta squared), additive and multiplicative interactions
with 95% confidence intervals, and the direction of the
interaction (positive or negative) by specific subgroups.
The analysis will be performed with Stata version 17.0
[StataCorp LLC College Station TX]. A statistical differ-
ence with P < 0.05 will be considered significant.

Interim analysis
This analysis will be performed by an independent ex-
pert team to examine some relevant data as baseline,
safety outcome, and efficacy outcome data to consider
ending the study if no trend is observed

Conclusions
Intranasal DXM at low doses could be a more effective
therapeutic option to control peripheral and central in-
flammation during ARDS in severe and critical forms of
SARS-CoV-2 infection. In addition, it could stabilize the
activity of the HPA axis upon this severe stress condi-
tion. Although low-dose systemically administered DXM
is beneficial for COVID-19 patients, it cannot reach ef-
fective therapeutic concentrations in the CNS to control
neuroinflammation. In contrast, intranasal administra-
tion of DXM is highly effective in controlling neuroin-
flammation, as demonstrated in experimental
inflammation models [41–44]. Therefore, in the RE-
VIVAL trial clinical protocol, we propose boosting the
effect of low-dose DXM treatment through an intranasal
route of administration. This route will allow reaching
the CNS at therapeutic doses that may effectively reduce

the morbidity and mortality in severe or critical COVID-
19 patients, further than that reported in the RECOV-
ERY trial.
Low doses of intranasal DXM are currently being

tested (clinicaltrials.gov id: NCT04513184) in a random-
ized study in hospitalized COVID-19 patients (moderate
and severe forms). The clinical evolution and respiratory
parameters of the patients receiving intranasal DXM (ex-
perimental treatment) are compared with those of pa-
tients receiving 6mg of intravenous DXM, the currently
recommended t rea tment (h t tps : / /www.cov id1
9treatmentguidelines.nih.gov/). Considering the preva-
lence of metabolic syndrome and obesity in Mexico, the
therapeutic scheme has been weight-adjusted. A DXM
dose of 0.12 mg/kg is administered for 3 days, followed
by a dose of 0.06 mg/kg for 7 days. If the current ap-
proach yields fewer adverse effects and does reach the
CNS to control neuroinflammation as we hypothesized,
there will be direct interest to extend this protocol to
several COVID hospitals of the National Health System
in Mexico. In addition, increasing the initial sample size
(preliminary results) will be required to publish the
study and share it with the International scientific
community.
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