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Abstract
Background: Clustered or correlated outcome data is common in medical research studies, such as the analysis of
national or international disease registries, or cluster-randomized trials, where groups of trial participants, instead of
each trial participant, are randomized to interventions. Within-group correlation in studies with clustered data requires
the use of specific statistical methods, such as generalized estimating equations and mixed-effects models, to account
for this correlation and support unbiased statistical inference.
Methods: We compare different approaches to estimating generalized estimating equations and mixed effects
models for a continuous outcome in R through a simulation study and a data example. The methods are
implemented through four popular functions of the statistical software R, “geese”, “gls”, “lme”, and “lmer”. In the
simulation study, we compare the mean squared error of estimating all the model parameters and compare the
coverage proportion of the 95% confidence intervals. In the data analysis, we compare estimation of the intervention
effect and the intra-class correlation.
Results: In the simulation study, the function “lme” takes the least computation time. There is no difference in the
mean squared error of the four functions. The “lmer” function provides better coverage of the fixed effects when the
number of clusters is small as 10. The function “gls” produces close to nominal scale confidence intervals of the
intra-class correlation. In the data analysis and the “gls” function yields a positive estimate of the intra-class correlation
while the “geese” function gives a negative estimate. Neither of the confidence intervals contains the value zero.

Conclusions: The “gls” function efficiently produces an estimate of the intra-class correlation with a confidence
interval. When the within-group correlation is as high as 0.5, the confidence interval is not always obtainable.
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Introduction
Clustered data
Clustered data arise when the study population can
be classified into different groups (referred to as clus-
ters), and the measurements of subjects, in particular
the response, within the same cluster are more alike
than those in other clusters. For instance, in cluster-
randomized trials, entire groups of participants such as
classrooms, clinics, communities, or hospitals, rather than
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individuals, are randomly assigned to intervention arms
[1, 2].
The key feature of clustered data is that the similarity

(or homogeneity) of measurements within the same clus-
ter induces a correlation. That is, measurements within
a cluster are likely to be correlated, whereas those from
separate clusters are regarded as independent. The intra-
class correlation coefficient (ICC) measures this similarity
of the responses within a cluster and can be defined as a
function of the variance components in the model: varia-
tion between clusters and within clusters [3, 4]. Since the
responses within a cluster do not contribute completely
independent information, the “effective” sample size is less
than the total number of subjects from all clusters [5–7].
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Statistical methods
Classical statistical methods such as ordinary least squares
regression assume that each individuals’ data is indepen-
dent. The clustered data have a hierarchical structure
where individuals are not likely independent within the
same cluster (i.e., ICC> 0). Thus, methods taking the
correlation into account, such as generalized estimating
equation (GEE) and mixed-effects models, are well suited
for the analysis of clustered data [8–10].
GEE models can be viewed as an extension of gener-

alized linear models for correlated data where a within-
cluster correlation structure is specified [11]. Parameter
estimates are then obtained as solutions of the estimat-
ing equations [12]. In mixed-effects models, the cluster
effect is a random variable representing a random devi-
ation for a given cluster from the overall fixed effects
[13–15]. Maximum likelihood estimation is often used
to obtain estimates of parameters via iterative algorithms
such as the expectation-maximization (EM) algorithm
and the Newton-Raphson algorithm [16–21]. As shown
in [22], for normal outcomes, GEE reduces to the score
equation of the maximum likelihood estimation only
when there are no missing observations and the corre-
lation is unstructured. A further comparison shows that
GEE and mixed-effects models produce the same gener-
alized least squares estimator of the fixed effects [23]. We
will review the derivation of the fixed effects estimator in
the next section.
Simulation studies have been conducted to compare the

two methods for analyzing continuous outcomes with an
emphasis on the fixed effects components. In the compar-
ison of the estimation and the coverage probability of the
confidence intervals, Park [22] found that the GEE esti-
mation was more sensitive to missing observations. In the
study [24], the authors compared the estimation and the
nominal level of hypothesis testing and made several rec-
ommendations. For instance, if knowledge is available to
specify the covariance structure correctly, the maximum
likelihood estimation is slightly more efficient for bal-
anced or near balanced data.When there is concern about
the misspecification of the covariance structure, GEE is

preferred when the number of clusters is larger than 20.
For hypothesis testing, Kahan et al. [25] and Leyrat et al.
[26] found that without an appropriate correction, both
methods can lead to inflated type I error rates (finding a
statistically significant treatment effect when it does not
exist) when the number of clusters is smaller than 40. R,
SAS, and Stata commands to correct the type I error rate
are provided in [26].

R functions
In this study, we compared the performance of the GEE
method and the linear mixed-effects model to analyze
clustered data through the implementation of both popu-
lar and newer packages of the statistical software R [27].
Specifically, the “geese” function of the geepack package
(1.3.2) fits a GEE model [28, 29]. The “gls” function of the
nlme package (3.1.149) [30, 31] fits a linear model using
generalized least squares where the errors are allowed to
be correlated. Two frequently used functions for conduct-
ing linear mixed-effects model analysis are “lme” of the
nlme package [30, 31] and “lmer” of the lme4 package
[32] (1.1.25). Detailed implementation of these functions
is provided in the “Implementation” subsection of the next
section and also summarized in Table 1.

Methods
We compared the performance of the four functions via
a simulation study and through a real data example. In
the simulation study, we compared the computation time;
the mean squared error (MSE) of estimating all the model
parameters, including the ICC; and the coverage propor-
tion of the 95% confidence intervals. Parameter estimates
in the linear mixed-effects models are found by maximiz-
ing the likelihood of the data. In the following, we review
the model setup followed by the simulation study and the
example dataset.

Model review
Let ni be the number of subjects in the i-th cluster and let
1i be a ni × 1 vector of one’s. Ii is a square identity matrix
of dimension ni and let Ji be a square matrix of one’s of

Table 1 Summary of how to obtain the CI’s of the fixed effects and the variance-covariance parameters

95% confidence intervals of parameters

β {σ 2, ρ} {σu, σε}
geese Estimate ± 1.96 standard deviation –

gls confint intervals(,which=“var-cov”)* –

intervals(,which=“coef”)

lme intervals(,which=“fixed”) – intervals(,which=“var-cov”)

lmer confint(,method=“Wald”) – confint(,method=“profile”)

confint(,method=“profile”)

*Applying the “intervals” function to a “gls” fitted object returns the CI of σ instead of σ 2
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dimension ni. Let ui be the random effect associated with
the i-th cluster. The linear mixed-effects modeling of the
i-th cluster’s response yi is

yi = Xiβ + 1iui + εi, ui ∼ N
(
0, σ 2

u
)
, εi ∼ N

(
0, σ 2

ε Ii
)
.

ThematrixXi is the designmatrix and β is the unknown
fixed effects. The random vector εi represents the error
and is independent of ui. Independence is also assumed
between ui and uj, and between εi and εj whenever i �= j. It
follows that yi ∼ N(Xiβ ,�i), where �i = σ 2

u Ji + σ 2
ε Ii. Let

elements of yi be yij, j = 1, . . . , ni. We obtain Var(yij) =
σ 2
u + σ 2

ε and Cov(yij, yik) = σ 2
u where j �= k. The intra-

class correlation coefficient ρ is naturally defined by the
variance components σ 2

u and σ 2
ε as

ρ ≡ Corr(yij, yik) = σ 2
u

σ 2 , where σ 2 = σ 2
u + σ 2

ε . (1)

By definition, 0 < ρ < 1 since both σ 2
u and σ 2

ε are
positive.
The above modeling uses the random effect ui explic-

itly to explain within cluster correlation. From a marginal
model perspective, one can instead start with the model-
ing yi ∼ N(Xiβ ,�i) directly with a special structure for
�i. Let ρ = Corr(yij, yik) and σ 2 = Var(yij), and sequently
we get �i = σ 2[ Ii + ρ(Ji − Ii)]. Using this marginal
parametrization {σ 2, ρ}, the matrix �i is positive definite
if − 1/(ni − 1) < ρ < 1 [30, 33–35]. That is, ρ does not
have to be positive as it was defined from a variance com-
ponents perspective. At the same time, we also observe
that when ni is large, the boundary− 1/(ni−1) can be very
close to 0. Starting with this parameterization, we derive
the corresponding relationship of (1) as

σ 2
u = σ 2ρ, σ 2

ε = σ 2(1 − ρ). (2)

It is clear that �−1
i = {Ii − ρJi/[ 1+ (ni − 1)ρ] }/σ 2(1−

ρ). Let Ti(ni, ρ) ≡ Ti(ρ) = Ii − ρJi/[ 1 + (ni −
1)ρ]= σ 2(1 − ρ)�−1

i . The estimate of β follows as β̂ =
{∑nc

i=1 X′
i�

−1
i Xi

}−1 {∑nc
i=1 X′

i�
−1
i yi

}
which reduces to

β̂ =
{ nc∑

i=1
X′
iTi(ρ)Xi

}−1 { nc∑

i=1
X′
iTi(ρ)yi

}

.

The variance-covariance matrix of the estimate has the
form

Cov(β̂)=
{ nc∑

i=1
X′
i�

−1
i Xi

}−1

=σ 2(1−ρ)

{ nc∑

i=1
X′
iTi(ρ)Xi

}−1

.

We notice that if there is no within cluster correlation,
i.e. ρ = 0, then Ti(0) = Ii and β̂ is simply the ordi-
nary least squares model. In the extreme case of perfect
correlation, i.e., ρ = 1, then Ti(1) = Ii − Ji/ni and we get

β̂|ρ=1 =
[ nc∑

i=1
X′
iTi(1)Xi

]−1 [ nc∑

i=1
X′
i (yi − 1iȳi)

]

.

In this scenario, yij = yik and yi = ȳi, so β̂ = 0.

Simulation
Our simulation setups are similar to those in the litera-
ture. In the simulation, Feng et al. [24] tried the number of
clusters nc = 10, 20, and 50 with cluster sizes 10, 30, and
100, and ρ = 0.1, 0.5. The simulation study [25] consid-
ered two scenarios of 5 patients per cluster with ρ = 0.15,
and of 100 patients per cluster with ρ = 0.01. The number
of clusters nc varied from 6, 10, 20, . . ., 90, and 100. The
simulation scenarios in [26] include ρ = 0.001, 0.01, and
0.05, and nc = 4, 6, 8, 10, 20, 30, 40, and 200. The average
cluster size ranges from 7 to 300. A review of published
cluster-randomized trials by Kahan et al. [25] shows that
the median number of clusters was 25 with interquartile
range 15 to 44, 14% of the trials had fewer than 10 clus-
ters, and 9% of the trials had more than 100 clusters. The
cluster size had a median of 31 and an interquartile range
14 to 94.
In our study, we tried nc = 10, 30, 50, and 100. In each

cluster, the number of subjects was simulated from a nor-
mal distribution after rounding with mean m = 50 and
100, and standard deviation 5. The sample size calcula-
tion in [36] preassumed an ICC of 0.05. Some studies also
found large ICC values such as 0.47 with 95% confidence
interval [ 0.29, 0.65] [6, Table I] and 0.60 [37, Table 4.4.2].
In our setup, we considered ρ = 0.05, 0.1, and 0.5. We
simulated two covariates independently from a Bernoulli
distribution with a probability of success of 0.5, and from
a standard Normal distribution. The associated regres-
sion coefficients are respectively β1 = −2, and β2 = 1.5,
and the intercept in the regression model is β0 = 1. We
simulated the outcome from a marginal model with the
variance parameter σ 2 = 0.6. In each of the settings, we
examined 2000 simulations.

Example dataset
We reanalyzed data from the cluster-randomized con-
trolled trial in [36]. In this study, participants with hyper-
tension from 15 clusters in rural India were recruited and
randomized to the intervention or usual care in a 1:2 ratio.
The study hypothesis was that a CHW (community health
worker)-led group-based education and monitoring inter-
vention would result in improved blood pressure control.
Outcomes were assessed approximately two months after
completion of the intervention.
One of the main outcomes in this trial was the change

in diastolic blood pressure (DBP), defined as follows: the
DBP at baseline minus the DBP at follow-up. Fixed effects
in the analysis include the following variables: age, sex,
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diastolic blood pressure at baseline (mm Hg), education,
use of antihypertensive medications, change in BMI (body
mass index) defined as BMI at follow-upminus the BMI at
baseline, number of serves of fruit per week at follow-up,
and self-reported drinking alcohol at least once in the 30
days prior to follow-up. The education variable has four
categories: no formal schooling, class 1 to 6, class 7 to 11,
and class 12 or more.
We analyzed the data from the 1428 participants with

no missing values. The histogram of the outcome shows
a bell shaped pattern (Fig. 1). The intervention group has
a larger proportion of a positive difference than the usual
care group suggesting more DBP decline at the follow-up.
The normal quantile-quantile plot in Fig. 2 shows the nor-
mal distribution assumption of the outcome is plausible
which provides a justification of the application of linear
mixed-effects models.

Implementation
All the four R functions compute β̂ and the corresponding
confidence interval (CI), but they adopt different parame-
terizations for the variance-covariance matrix. The func-
tion “geese” uses {σ 2, ρ} though a specification of an

“exchangeable” correlation structure. The function “gls”
uses a compound symmetry structure of the parame-
ters {σ , ρ}. Both “lme” and “lmer” find estimates and CI’s
of {σu, σε}. It is straightforward to obtain estimates of
σ 2, or σ 2

u and σ 2
ε from their corresponding square root

estimates. We can then find estimates of another param-
eterization using Eqs. (1) or (2). As the “geese” method
does not fit in the framework of hierarchical modeling
with random effects, it is not appropriate to find its esti-
mates of {σ 2

u , σ 2
ε } using Eq. (2) due to a possible negative

ρ̂. Thus, we do not include it for the comparison of esti-
mating {σu, σε}. Methods obtaining the CI’s of ρ have been
discussed in [38, 39]. In the model-based setup, the CI of
ρ is readily available from the output of the “geese” or “gls”
fitted object. Below we explain how to get the CI’s of the
model parameters with the summary presented in Table 1.
From the “geese” output, we apply the estimate ± 1.96

standard deviation rule to obtain the CI’s. We apply two
generic functions “confint” and “intervals” to “gls”, “lme”, or
“lmer” fitted objects. The “confint” function assumes nor-
mality and has two options. The option method=“Wald”
returns approximate CI’s of the fixed effects based on
the estimated local curvature of the likelihood surface.

Fig. 1 Histogram of DBP difference by groups
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Fig. 2 Normal Q-Q plot of DBP difference by groups

The other option method=“profile” computes a likelihood
profile and find the appropriate cutoffs based on the
likelihood ratio test [32]. The “intervals” function calcu-
lates approximate confidence intervals for the parameters
in the linear model using a normal approximation to
the distribution of the maximum likelihood estimators.
The estimators are assumed to have a normal distri-
bution centered at the true parameter values and with
covariance matrix equal to the negative inverse Hessian
matrix of the log-likelihood evaluated at the estimated
parameters [30, 31].

Results
Simulation
With detailed comparison results presented in the sup-
plementary material, we summarize our findings in the
following text. The “lme” approach took the least compu-
tation time, 1.4 h, followed by the “gls” approach, 2.41 h
(Table S1). Sometimes the “gls” approach failed to con-
struct the confidence intervals for the variance-covariance
parameters when ρ=0.5 (Table S2). The number of fail-
ure increases with the number of clusters nc and also the

cluster size m. When nc = 100 and m = 100, there
were 528 failures out of 2000 simulations. Occasionally,
the “lme” and “lmer” approaches also failed to construct
the confidence intervals. The performance of the four
approaches of estimating the model parameters is very
similar with almost identical standard deviation and MSE
(Tables S3-S6).
Next we summarize the performance of the different

functions on the coverage proportion of themodel param-
eters. First, in general, the coverage proportions of the
fixed effects are very similar among “gls”, “lme”, and “lmer”
approaches (Tables S7-S9). They are very close to the
nominal 95% level except for β0 when nc = 10 (Table S7).
In that case, confidence intervals obtained by specify-
ing the “profile” option of the “confint” function to a
“lmer” fitted object outperforms the others. Their cover-
age proportions are generally closer to the nominal 95%
level than the “geese” approach when nc is less than 100.
Second, though the coverage proportions of {σ 2, ρ} of
“geese” or {σ , ρ} of “gls” are usually below the 95% nominal
level, the “gls” method generally provided better coverage
(Table S10). Third, both the “lme” and “lmer” produced
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Table 2 CI’s of the fixed effects and the variance-covariance parameters

Intervention effect ρ σ 2 or σ σu σε

geese 2.161 (1.060, 3.263) -0.076 (-0.125, -0.027) 101.768 (93.518, 110.019)

gls 2.252 (0.597, 3.907) 0.012 (3.7 × 10−4, 0.405) 10.093 (9.727, 10.473) 1.107 10.032

2.252 (0.595, 3.908)

lme 2.252 (0.602, 3.901) 0.012 10.093 1.107 (0.589, 2.081) 10.032 (9.669, 10.409)

lmer 2.252 (0.604, 3.900) 0.012 10.093 1.107 (0.234, 2.111) 10.032 (9.673, 10.414)

2.252 (0.525, 4.086)

The “geese” method finds the point estimate and CI of the parameter σ 2 instead of σ as the other methods. The order of the CI’s of the intervention follows the order of the
CI’s of β in Table 1

coverage proportions about 95% for σε , and for σu when
nc �= 10. When nc = 10, we observed unstable perfor-
mance of over coverage or under coverage (Table S11).

Example dataset
All the four methods produced similar results that sug-
gested more DBP reduction in the intervention group,
2.161 mm Hg by “geese” and 2.252 by the other three
methods (Table 2). The 95% confidence interval bounds of
the intervention effect are slightly different. However, our
conclusion is consistent with the finding in [36] where the
analysis was conducted in Stata (Stata IC/11.2, StataCorp,
College Station, TX, USA). DBP declined 2.1mmHgmore
in the intervention group with a 95% confidence interval
of (0.6, 3.6), and the estimation of ICC was 0.02. The “gls”
method gives a positive ρ̂ and a confidence interval does
not contain 0. The “geese” method produces a negative ρ̂

with negative confidence interval bounds.

Discussion and conclusion
Throughout our study, we compare the performance of
the four R functions, “geese”, “gls”, “lme”, and “lmer”, of
analyzing single level clustered data. The “exchangeable”
correlation structure of the “geese” function and the com-
pound symmetry structure of the function “gls” both pro-
vide a single-level cluster model. We note that the “lme”
and the “lmer” function can model multi-level data, and
the “lmer” function is capable of modeling crossed ran-
dom effects. The lme4 package also includes generalized
linear mixed model capability via the “glmer” function. It
does not currently implement nlme’s features for model-
ing heteroscedasticity of residuals or offer the same flex-
ibility for composing complex variance-covariance struc-
tures.
Our simulation study found that all four methods per-

form equally well for model parameters estimation. This
result is consistent with the study in [24]. It was found
that the MSEs are very similar except when the num-
ber of clusters is 10 where the linear mixed-effects model
method has slightly smaller MSE than the GEE method
using SAS PROC MIXED. We observe similar coverage
proportions of the fixed effects among “gls”, “lme,” and

“lmer” approaches. They are generally closer to the nomi-
nal 95% level than the “geese” approach when the number
of clusters is less than 100.
The estimated ICC from the “geese” method can be neg-

ative, and the confidence interval of the ICC from the
“gls” method provides better coverage. However, when
the ICC is large as ρ = 0.5, confidence intervals is not
always obtainable from the “gls” method. In our compari-
son of the coverage of the variance-covariance parameters
in the model, the “lme” and the “lmer” methods have sim-
ilar performance while the former is considerably faster.
The latter provides better coverage of the intercept in the
model when the number of clusters is 10.
In the simulation settings, we examined that the “gls”

function is preferable to analyze single-level clustered
data. The limitations of our simulation study include the
lack of the scenario of the very large number of clusters
(e.g., 200 as in [26]) or the scenario of small ICC values
(e.g., 0.01 as in [25, 26]). It may also be of interest to fur-
ther compare the performance of the four functions for
complex trials such as stepped-wedge cluster-randomized
trials. In a stepped-wedge cluster-randomized trial, all
clusters begin in the control phase and then are ran-
domized to interventions at different time points [40–
43]. Simulations have been conducted to investigate the
effect of varying degrees of imbalance in cluster size on
the power [44].
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