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Abstract

Background and aim: Some parallel-group cluster-randomized trials use covariate-constrained rather than simple
randomization. This is done to increase the chance of balancing the groups on cluster- and patient-level baseline
characteristics. This study assessed how well two covariate-constrained randomization methods balanced baseline
characteristics compared with simple randomization.

Methods: We conducted a mock 3-year cluster-randomized trial, with no active intervention, that started April 1,
2014, and ended March 31, 2017. We included a total of 11,832 patients from 72 hemodialysis centers (clusters) in
Ontario, Canada. We randomly allocated the 72 clusters into two groups in a 1:1 ratio on a single date using
individual- and cluster-level data available until April 1, 2013. Initially, we generated 1000 allocation schemes using
simple randomization. Then, as an alternative, we performed covariate-constrained randomization based on
historical data from these centers. In one analysis, we restricted on a set of 11 individual-level prognostic variables;
in the other, we restricted on principal components generated using 29 baseline historical variables.

We created 300,000 different allocations for the covariate-constrained randomizations, and we restricted our analysis
to the 30,000 best allocations based on the smallest sum of the penalized standardized differences. We then
randomly sampled 1000 schemes from the 30,000 best allocations. We summarized our results with each
randomization approach as the median (25th and 75th percentile) number of balanced baseline characteristics.
There were 156 baseline characteristics, and a variable was balanced when the between-group standardized
difference was < 10%.
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was modest.

randomization

Results: The three randomization techniques had at least 125 of 156 balanced baseline characteristics in 90% of
sampled allocations. The median number of balanced baseline characteristics using simple randomization was 147
(142, 150). The corresponding value for covariate-constrained randomization using 11 prognostic characteristics was
149 (146, 151), while for principal components, the value was 150 (147, 151).

Conclusion: In this setting with 72 clusters, constraining the randomization using historical information achieved
better balance on baseline characteristics compared with simple randomization; however, the magnitude of benefit

Keywords: Cluster randomized trial, Covariate-constrained, Randomization, Balanced allocation, Restricted

Introduction

The cluster-randomized trial (CRT) study design is use-
ful when the interventions are naturally implemented on
groups of individuals [1, 2]. In contrast to individually
randomized trials, CRTs randomly allocate groups rather
than independent individuals. Simple randomization is
the most basic and straightforward type of random allo-
cation. Each “randomized unit” is assigned purely by
chance. However, suppose the total number of random-
ized units is small (e.g., fewer than 20 units). In that
case, simple randomization may result in a moderate to
a high probability of imbalance between the trial arms
[3]. In two-group, parallel-arm, individual-level trials,
some have suggested that including at least 1000 partici-
pants per group is required to provide sufficient protec-
tion against the imbalance of baseline characteristics [4].
In the CRT setting, it is often impossible to have such a
large number of randomized units. In a systematic re-
view of 300 CRTs, 50% of trials randomly allocated
fewer than 21 clusters, and 75% allocated fewer than 52
clusters [5].

Observing between-group differences in a trial’s base-
line characteristics complicates the interpretation of ob-
served treatment effects and threatens the trial’s internal
validity [6—8]. Other randomization techniques may help
minimize the risk of imbalance on baseline measured
characteristics when using parallel arm CRT designs [8].
These techniques are described as “restricted” or “con-
strained” and include  stratification,  matching,
minimization, and covariate-constrained randomization.
All restricted methods require a priori knowledge about
participating clusters and the baseline measures used for
the restriction process.

Covariate-constrained randomization can provide a
better baseline balance than other allocation methods
(e.g., simple random allocation, stratification, and
minimization), especially when the number of random-
ized units is small (e.g., less than 20 clusters) [3, 8—10].
This manuscript focuses on covariate-constrained
randomization, where we constrained the randomization
process using two sets of baseline characteristics (either

constraining on a set of prognostic variables or principal
components). Principal components are a small set of
artificial variables that explain most of the variance
about a larger group of variables.

Covariate-constrained randomization limits the poten-
tial schemes available for selection among all possible al-
locations (called the randomization space). This method
simultaneously balances several measured cluster- or
individual-level characteristics to ensure that the two
treatment arms are similar at baseline [8, 9]. Briefly, the
covariate-constrained randomization process includes (i)
a priori identifying and specifying a limited number of
key prognostic cluster- or individual-level variables asso-
ciated with the outcome that will be used to constrain
the randomization process (or a function of baseline
characteristics, for example, principal components); (ii)
when there are 20 or more clusters [7], either enumerat-
ing all or generating at least 100,000 allocation schemes;
(iii) for each allocation scheme, estimating balance on
the selected baseline characteristics according to some
predefined balance metric (e.g., absolute differences,
standardized differences, or another measure [11]); (iv)
choosing a constrained randomization space containing
a subset of allocations that are balanced on the con-
strained baseline characteristics (e.g., 10% of the best al-
locations [11-13]); and (v) randomly selecting one
allocation scheme from the constrained randomization
space that will be used for the trial.

There is a trade-off between the potential for a better
balance achieved on the constrained baseline character-
istics and the potential concerns with highly restricted
randomization [9, 12]. These trade-offs can include (i)
jeopardizing the appearance of impartiality, for example,
if pairs of clusters always (or never) appear in the same
arm [9, 12]; (ii) a departure from the nominal type I
error when clusters with correlated outcomes have a
very high or very low probability of being included in
the same trial arm [9, 12]; and (iii) a loss in statistical
power when variables used in the constrained
randomization do not associate with the trial outcome
[9, 12]. Also, covariate-constrained randomization uses
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historical data on recruited clusters to capture baseline
information on demographics, patients’ medical histor-
ies, and historical rates of the outcomes [14—16]. How-
ever, historical data may represent a “population for
randomization” that is different from the “trial popula-
tion”; the data may be several months to years old at the
time of randomization. In an “open cohort” setting, in-
formation available at the randomization date cannot ac-
count for new participants entering the cohort during
the trial period. Thus, the balance achieved at
randomization with historical information does not
guarantee a balance of the baseline characteristics during
the trial period. It is important to note that the
randomization design (i.e., constrained variables) needs
to be considered at the analysis stage [17-19].

We conducted this study to understand the best prac-
tices for randomizing hemodialysis centers into two par-
allel groups in Ontario, Canada. The lessons learned
from this study will help our group make informed deci-
sions about randomization processes for several CRTs
that we plan to advance.

Motivating example

The CRT is an attractive design in the hemodialysis set-
ting, especially when implementing interventions at the
dialysis center level [15, 20, 21]. In addition, the CRT de-
sign offers logistical and administrative advantages such
as simplifying the trial organization when evaluating pol-
icy- or cluster-level intervention [1, 22].

Suppose that we wish to undertake a CRT with
hemodialysis centers in Ontario, Canada. In this ex-
ample, we used historical data from administrative data
sources to conduct covariate-constrained randomization.
The trial period was three years, from April 1, 2014, to
March 31, 2017, with no active treatment. The primary
outcome was a composite of time-to-first event for
cardiovascular-related death or non-fatal major
cardiovascular-related hospitalization (hospital admis-
sion for myocardial infarction, stroke, or congestive
heart failure).

Objectives

This paper compared randomization methods for a two-
arm, parallel-group CRT with the intent that all individ-
uals within a given randomized center receive the same
treatment. We randomized a moderate number of clus-
ters (ie, hemodialysis centers) using either simple
randomization or covariate-constrained randomization
with pre-trial historical records (the population for
randomization). We performed the randomization on a
single date and allowed patients to enter the cohort
throughout the study period. We compared simple
randomization to covariate-constrained randomization
on balance achieved on a set of baseline characteristics
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during a 3-year trial period (the trial population). We
constrained either on prognostic variables or principal
components.

Our secondary aim was to assess whether, in the ab-
sence of any intervention, the allocation schemes se-
lected through the constrained randomization process
preserved (i) a null treatment effect on the primary out-
come and (ii) a 5% nominal type I error rate.

Methods

Design and setting

We used a CRT design of outpatient hemodialysis cen-
ters in Ontario, Canada, that cared for a minimum of 15
patients. In 2013, Ontario had approximately 13.5 mil-
lion residents with universal healthcare and physician
services [23]. In the same period, Ontario had 26 re-
gional dialysis programs that oversaw over 100
hemodialysis centers caring for about 8000 in-center pa-
tients in the outpatient setting [24].

Data sources

We ascertained center- and patient-level characteristics
using records from linked healthcare databases in On-
tario, Canada (Additional file 1: Appendix 1) [25-38].
These datasets were linked using unique encoded identi-
fiers and analyzed at ICES [39].

Patients

We included two populations of patients, the population
for randomization and the trial population. The popula-
tion for randomization included patients who were ac-
tively receiving in-center hemodialysis on April 1, 2013.
The trial population included an open cohort of patients
who received in-center hemodialysis on April 1, 2014, or
began receiving in-center hemodialysis during the trial
period.

Baseline characteristics

We identified two cluster- and 86 individual-level (total
88) baseline characteristics to describe each cohort
(Additional file 1: Appendix 2); the cluster-level charac-
teristics included the center size and historical rate for
the primary outcome. There were 23 continuous, 58 bin-
ary, and 14 categorical baseline characteristics. Nine
continuous baseline characteristics were also featured as
categorical variables. We created a new binary (or
“dummy”) variable to indicate each level of a category’s
presence or absence. In total, we evaluated 156 continu-
ous or binary candidate baseline characteristics.

Randomization process

Sequence generation

We randomly allocated the 72 hemodialysis centers into
two groups in a 1:1 ratio on a single date. Initially, we
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generated 1000 random allocation schemes using
simple (unconstrained) randomization that required
no information on baseline characteristics. This num-
ber of random allocations produced an estimate
within 0.5% accuracy of the true hazard ratio of 1.00
with a 5% significance level and a standard deviation
of 0.08; note, the true hazard ratio is 1.00 because
there is no active intervention [40]. Then, as an al-
ternative, we performed the covariate-constrained
randomization using pre-trial historical records,
which ended April 1, 2013 (see details below). Using
PROC PLAN in SAS version 9.4 (SAS Institute Inc.,
NC, Cary), we generated 300,000 unique allocation
schemes of the 72 centers (Additional file 1: Appen-
dix 3). Greene (2017) suggested performing at least
100,000 allocations when there are at least 20 clus-
ters; with our computational capacity, we enumerated
300,000 allocations.

Covariate-constrained randomization

We performed the covariate-constrained randomization
in the following series of steps using baseline character-
istics of the population for randomization [6, 8, 9, 41].

Step 1: Randomly selected 300,000 allocation schemes
from the 4.43 x 10* possible allocation schemes.

Step 2: For each of the 300,000 allocation schemes, we
restricted the randomization space using one of two
constraining criteria [8].

i. We constrained the allocation on a set of 11
baseline characteristics deemed prognostic for the
outcome, based on prior literature or clinical
experience (Additional file 1: Appendix 4a).

iil. We constrained the allocation on principal
components. A principal component analysis is a
dimensionality reduction technique whereby a
dataset with many variables is transformed into a
smaller set of artificial variables (called principal
components). These principal components ideally
retain some or most of the meaningful properties of
the original set of variables. We used the principal
components to account for some of the variation in
the observed data and as criterion variables in our
constrained randomization process (Additional file
1: Appendix 4b).

We compared baseline differences between the two
arms using standardized differences [42, 43], which de-
scribes the differences between group means or propor-
tions relative to the pooled standard deviation.
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Step 3: For each allocation scheme from the
population for randomization, we counted the number
of constrained variables with a standardized difference
greater than 10% and calculated the sum of the
constrained variables’ standardized differences [42, 44].
We added a penalty of ten units to the sum of
standardized differences for each imbalanced
constrained variable. We imposed this penalty to favor
allocation schemes that had the least number of
imbalanced constrained baseline characteristics. For
example, if the sum of standardized differences was two
and three constrained variables were imbalanced, the
penalized sum of standardized differences would be 32.

From the 300,000 randomization schemes, we con-
strained the randomization space to the 30,000 best allo-
cation schemes, based on the smallest sum of the
penalized standardized differences [11-13]. From the
30,000 best allocations, we randomly sampled 1000 allo-
cations to reduce the computational time for analysis
[11, 12].

Statistical analysis
For the 1000 sampled schemes, we (i) estimated the per-
centage of times each center was allocated to each arm,
(ii) estimated the percentage of times each combination
of center pairs appeared in the same group [41], and (iii)
calculated the standardized difference of all 156 baseline
characteristics for the trial population. We then esti-
mated the percentage of time each of the 156 baseline
characteristics was balanced among the 1000 sampled
randomization schemes, (iv) calculated the median (25th
and 75th percentiles) number of baseline characteristics
balanced for the trial population, and finally (v) esti-
mated the unadjusted and adjusted hazard ratio between
the randomized arms, for the time-to-first event of the
composite outcome of cardiovascular-related death or a
non-fatal cardiovascular-related hospitalization (see def-
inition of outcome in Additional file 1: Appendix 5; this
is a primary outcome for future trials that is highly rele-
vant to patients and their providers). Using a
generalized-estimating-equation extension for the Cox
proportional hazard model, we estimated the hazard ra-
tio with an exchangeable covariance matrix to account
for within-center clustering [22, 45]. For each of the
1000 sampled randomization schemes, the models were
fitted to patient-level data from the trial population. We
conducted unadjusted and another analysis adjusting for
the randomization design (i.e., adjusted analyses using
the constrained baseline characteristics by adding these
variables into the model).

We stopped following patients on March 31, 2017, or
earlier if they died. We summarized the hazard ratios as
the mean with the 2.5th and 97.5th percentiles,
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corresponding to the hazard ratio estimate with a 95%
confidence interval [46]. We expected to observe no
between-group differences in the event rate of our pri-
mary outcome approximately 95% of the time (i.e., a
nominal type I error of 5%). The use of 1000 randomiza-
tions allowed us to detect a type I error between 3.6%
and 6.4% as not statistically different than 5%; we used a
standard test based on the normal approximation to the
binomial distribution as described by Rosner (1995) [47].

Results

Characteristics of cohorts

The population for randomization (#=5812) included all
patients receiving in-center hemodialysis on April 1,
2013. The trial population (#=11,832) included patients
receiving hemodialysis on April 1, 2014 (#=5410) and
patients who started in-center hemodialysis during the
3-year trial period (n=6412). The trial population in-
cluded 4415 patients (37%) in the population for
randomization. The median (25th and 75th percentiles)
number of patients in each center for the population for
randomization was 61 (28, 105) and for the trial popula-
tion was 131 (55, 227).

The population for randomization and the trial popu-
lation differed on several baseline characteristics (Table
1 and Additional file 1). However, the differences were
mainly attributed to the inherent differences between
prevalent and new patients starting hemodialysis (e.g.,
length of time on dialysis, number of dialysis sessions in
the prior year, healthcare service utilization, and general
practitioner visits the preceding year.)
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Results from the principal component analysis

We subjected 29 of the 156 baseline characteristics to
principal component analysis (Additional file 1: Appen-
dix 4b). We retained ten principal components that
accounted for 61% of the 29 baseline characteristics vari-
ance. Additional files 1: Appendix 6 and 7 show results
from the principal component analysis.

Randomization of hemodialysis centers

Each of the 72 participating centers had an approxi-
mately 50% chance of being randomized to either trial
arm (see Additional file 1: Appendix 8 for the process
and hardware specification). However, we observed that
some pairs of centers were allocated to different trial
arms at a different probability than we might have ex-
pected if we had used simple randomization (Fig. 1A—
C). In addition, these pairs of centers tended to be large
and generally had over 225 patients.

Balance of baseline characteristics

Table 2 shows the balance for a select set of baseline
characteristics by the method of constraining. In the trial
population, both sets of constrained variables were gen-
erally well balanced between the two arms, regardless of
the randomization method. However, the constrained
randomizations generally provided a slightly better bal-
ance. Additional file 1: Appendix 9 shows the percentage
of times each of the baseline characteristics (from the
trial population) were balanced across the 1000
randomization schemes for the three allocation methods.
Table 3 shows a summary of the number of baseline

Table.1 Select baseline characteristics. The population for randomization included patients on hemodialysis as of April 1, 2013. The
trial population included an open cohort of patients receiving in-center hemodialysis on April 1, 2014, or began receiving in-center
hemodialysis during the trial period between April 1, 2014, and March 31, 2017

Baseline characteristic Value Population for Trial
randomization population
Centers Number of centers (n, patients) 72 (n=5812) 72 (n=
11,832)
Center Size ° Mean + standard deviation 81 (69) 164 (137)
15 to 73 patients 42 (58%) N/A
7410 131 19 (26%)
132 to 363 11 (15%)
The composite outcome of CV-related death or major CV- Historic rate per 100 person-years (cluster 10 3.7) 11 (3.3)
related hospitalization ° standard deviation)
0.00 to 6.60 11 (15%) 7 (10%)
6.70 to 9.90 14 (19%) 21 (29%)
100 to 132 26 (36%) 25 (35%)
13.3 to 23.1 21 (29%) 19 (26%)

#Population for randomization included patients that were on hemodialysis as of April 1, 2013, index date. The trial population included patients on hemodialysis
as of April 1, 2014, and any patient who started in-center hemodialysis at one of the 72 participating centers during the 3-year trial period. Follow-up ended on
March 31, 2017. The index date was the first date patients entered the respective cohort. N/A = not applicable because the center’s trial population had an open

cohort, so the size was larger by design

PThe composite outcome of cardiovascular-related death or hospitalization for myocardial infarction, ischemic stroke, and congestive heart failure
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characteristics balanced across randomization schemes.
The trial population had at least 125 of 156 (80%) bal-
anced baseline characteristics in 90% of simple
randomization schemes. By comparison, the constrained
methods always had slightly more balanced baseline
characteristics (at least 85% of the 156 baseline charac-
teristics were balanced in 90% of sampled allocations).
Table 3 also shows the median (25th and 75th percen-
tiles) number of balanced baseline characteristics across
the 1000 sampled randomization schemes by allocation
method.

Cardiovascular-related death or major cardiovascular-
related hospitalization

We followed patients for an average of 1.7 years, and
there were 2260 events over the 3-year follow-up. The
event rate of the primary outcome was 11 per 100
person-years. Table 4 shows the results from the un-
adjusted and adjusted analyses for simple and covariate-

constrained randomization methods. Across the 1000
simple randomization schemes for the trial population,
the mean unadjusted hazard ratio (2.5th and 97.5th per-
centile) was 1.01 (0.87, 1.16), and 5.9% of allocation
schemes produced a confidence interval for the hazard
ratio that did not contain the null value of 1.00. Com-
pared to simple randomizations, constrained randomiza-
tions had similar unadjusted hazard ratios, with slightly
narrower 95% confidence intervals. The type I error
tended to be somewhat lower than the nominal level for
some constrained methods than the unconstrained
approach.

Adjusted analyses for the constrained methods pro-
duced narrower confidence intervals than the unadjusted
analyses. However, the type I error was within the ac-
ceptable range only when models adjusted for the ten
principal components; the type I error was outside the
expected range for all other adjusted analyses. We also
explored the results when adjusting for aggregate-level
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Table.2 The percentage of times each of the baseline characteristics was balanced across each of the 1000 randomizations schemes

in the trial population

Baseline characteristic Value Constrained randomization method
Unrestricted/ Prognostic baseline Principal
simple characteristics components

Center size Mean =+ standard deviation 32.9% 41.8% 38.7%

Composite outcome of CV-related death and major ~ Rate (per 100 person-year) 32.5% 36.2% 335%

CV-related hospitalization

Age (years) Mean * standard deviation 95.3% 99.8% 99.2%

<65 97.83% 99.7% 99.9%
65 to 74 100.0% 100.0% 100.0%
75 to 84 100.0% 100.0% 100.0%
85 to 105 99.5% 100.0% 99.9%

Sex Male 100.0% 100.0% 100.0%

Living in a rural area Yes 63.0% 84.2% 65.8%

Etiology for end-stage kidney disease Diabetes 93.0% 94.5% 95.0%

Glomerulonephritis/autoimmune  96.3% 100.0% 99.5%
diseases
Drug-induced nephropathy 100.0% 99.9% 100.0%
Polycystic kidney disease 100.0% 100.0% 100.0%
Renal vascular disease 97.5% 97.6% 96.7%
Other 88.3% 91.9% 91.6%
Race Asian 75.0% 81.3% 88.1%
Black 734% 95.9% 91.9%
White 45.6% 64.0% 90.2%
Other 56.6% 65.7% 77.5%
Unknown 93.2% 93.7% 93.6%
First dialysis modality Home hemodialysis 100.0% 99.8% 99.9%
In-center hemodialysis 97.8% 98.6% 99.9%
Peritoneal dialysis 97.4% 98.7% 99.8%
First vascular access used at dialysis start AV graft 99.9% 100.0% 100.0%
Fistula 98.9% 99.1% 99.4%
Catheter 93.5% 96.2% 99.4%
PD catheter 98.8% 99.0% 100.0%
Unknown 92.4% 93.8% 94.3%
Most recent vascular access before the index date AV graft 98.7% 99.8% 98.9%
Fistula 91.9% 94.8% 97.7%
Catheter 89.9% 94.0% 97.4%

Patients 65+ years in ODB in the 6 months prior to  Yes 97.5% 99.3% 99.4%

index date

Unique hypertensive drugs 6 months before the Mean =+ standard deviation 97.1% 99.9% 99.5%

index date

Prescribed hypertensive drugs Angiotensin-converting enzyme  99.4% 99.3% 99.5%

(ACE) inhibitors

Angiotensin Il receptor blocker  90.7% 96.1% 96.9%
Beta-blockers 99.7% 100.0% 99.9%
Calcium channel blocker 98.1% 100.0% 99.6%
Diuretics 91.9% 97.0% 95.6%
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Table.2 The percentage of times each of the baseline characteristics was balanced across each of the 1000 randomizations schemes

in the trial population (Continued)

Baseline characteristic Value Constrained randomization method
Unrestricted/ Prognostic baseline Principal
simple characteristics components

CABG/PCI Yes 99.4% 99.5% 100.0%

Heart failure Yes 96.8% 100.0% 99.8%

Diabetes mellitus Yes 99.0% 100.0% 100.0%

Ischemic stroke Yes 100.0% 100.0% 100.0%

Lower extremity amputation Yes 99.9% 100.0% 100.0%

Lung disease (COPD) Yes 99.0% 99.6% 100.0%

Myocardial infarction Yes 99.2% 100.0% 100.0%

Major cancer Yes 100.0% 100.0% 100.0%

Peripheral vascular disease Yes 90.7% 97.2% 91.4%

Modified Charlson comorbidity Score Mean = standard deviation 96.8% 99.9% 100.0%

2 97.7% 100.0% 100.0%
3 100.0% 100.0% 100.0%
4 100.0% 100.0% 100.0%
5+ 98.9% 100.0% 100.0%

Having a kidney transplant before the index date Yes 100.0% 100.0% 100.0%

Number of hospital admissions in the year before the Mean + standard deviation 93.9% 98.4% 98.4%

ndex date 0 78.49% 76.4% 81.1%

1to3 99.5% 99.6% 99.9%
4106 99.4% 99.6% 99.5%
7t09 100.0% 99.9% 100.0%
10+ 92.1% 92.0% 94.6%

Long term care facility utilization in the year before  Yes 81.3% 86.6% 86.1%

the index date

Time since the first date on dialysis (days) Mean + standard deviation 88.1% 94.0% 94.4%

baseline characteristics as used in the randomization,
which aligned with the results when we adjusted for
individual-level variables (results not shown).

Discussion

This empirical study presented an example of using his-
torical data to conduct covariate-constrained
randomization that balances baseline characteristics for
a parallel, two-group, cluster-randomized trial. We
showed that constraining the random allocation using a
historical cohort (i.e., a population for randomization)
provides a better balance on baseline characteristics than
simple randomization. However, we randomized a mod-
erate number of clusters, and the magnitude of benefit
was modest. Our results also suggested that model-
based adjustment for the constrained variables produced
treatment effects with the nominal type I error that is
narrower than  those produced with  simple
randomization. However, researchers should constrain
prognostic variables and adjust for the constrained

variables at the analysis stage; otherwise, the type I error
might deviate from the nominal level described in previ-
ous reports [1, 9, 11, 12, 17, 18].

In a review of 300 CRTs published between 2000 and
2008, Wright et al. found significant discrepancies be-
tween the restricted randomization used at the design
stage and covariate adjustments at the analysis stage
[48]. Wright et al. identified 174 CRTs that used design-
based restricted randomization [48]. However, only 30
(17.2%) of these studies reported an adjusted analysis for
all the constrained variables.

From an analysis perspective, the analysis should ac-
count for the design that uses covariate-constrained
randomization [1, 9, 11, 12]. Otherwise, the type I error
may deviate from the nominal level because clusters
with highly correlated outcomes get separated into dif-
ferent treatment arms (as observed in Fig. 1B, C) [9].
Splitting correlated clusters into different treatment
arms tends to (i) lower the type I error below the nom-
inal level (in the unadjusted analyses), and (ii) decrease
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Table.3 Summary of the balanced baseline characteristics for the trial population

Criteria

Constrained randomization method

Unconstrained/ Prognostic baseline
simple characteristics

Principal
components

11 prognostic characteristics ©

Number of constrained baseline characteristics that were balanced in all 1000 (100%)

sampled allocations

Number of constrained baseline characteristics that were balanced in at least 950 (95%)

sampled allocations

Number of constrained baseline characteristics that were balanced in at least 900 (90%)

sampled allocations

Median (25th and 75th percentile) number of baseline characteristics that were balanced

across the 1000 selected randomization schemes

29 baseline characteristics used in the principal component analysisd

Number of constrained baseline characteristics that were balanced in all 1000 (100%)

sampled allocations

Number of constrained baseline characteristics that were balanced in at least 950 (95%)

sampled allocations

Number of constrained baseline characteristics that were balanced in at least 900 (90%)

sampled allocations

Median (25th and 75th percentile) number of baseline characteristics that were balanced

across the 1000 selected randomization schemes

All 156 available baseline characteristics

Number of constrained baseline characteristics that were balanced in all 1000 (100%)

sampled allocations

Number of constrained baseline characteristics that were balanced in at least 950 (95%)

sampled allocations

Number of constrained baseline characteristics that were balanced in at least 900 (90%)

sampled allocations

Median (25th and 75th percentile) number of baseline characteristics that were balanced

across the 1000 selected randomization schemes

0 of 11 (0%) ® 2 of 11 (18%) 2 of 11 (18%)

6 of 11 (55%) 10 of 11 (91%) 7 of 11 (64%)

8 of 11 (73%) 10 of 11 (91%) 9 of 11 (82%)

1009, 11)° 11.(10, 11) 10 (10, 11)

8 of 29 (28%) 12 of 29 (41%) 12 of 29 (41%)

19 of 29 (66%) 23 of 29 (79%) 25 of 29 (86%)

24 of 29 (83%) 25 of 29 (86%) 26 of 29 (90%)

27 (26, 28) 28 (27, 28) 28 (28, 29)

41 of 156 (26%) 46 of 156 (28%) 55 of 156
(35%)

104 of 156 115 of 156 (74%) 118 of 156

(67%) (76%)

125 of 156 132 of 156 (85%) 134 of 156

(80%) (86%)

147 (142, 150) 149 (146, 151) 150 (147, 151)

The trial population included patients on hemodialysis as of April 1, 2014, and new patients who started in-center hemodialysis during the 3-year follow-up. We

conducted simple randomization without any restrictions

®For example, for simple randomization, 2 of the 11 chosen prognostic baseline characteristics were always balanced across 1000 randomly sampled

allocation schemes

BFor example, for simple randomization, 500 of 1000 allocation schemes had at least ten balanced baseline characteristics out of the 11 prognostic baseline
characteristics. As such, there is a 50% probability that a randomly selected allocation will have at least 10 of the 11 prognostic baseline characteristics balanced
and a 75% probability that at least 9 of the 11 prognostic baseline characteristics will be balanced

“Prognostic baseline characteristics: Constraining on a set of baseline characteristics that thought to be important a priori and included the following patient-level
information: age at index date, living in a rural area, Black race, Modified Charlson comorbidity index, number of hospital visits in the previous 12 months, number
of unique drugs the patient was prescribed in the 6 months before the index date, as well as history in the last 5 years of diagnosis for peripheral vascular
disease, congestive heart failure, coronary artery disease, myocardial infarction, and number of nephrology consults in the previous 12 months before the

index date

9Results are shown for the 29 baseline characteristics included in the principal component analysis. We did not include any cluster-level baseline characteristics in

the constraining process

power slightly, although we might still expect substantial
gains in power due to the assurance of balance on prog-
nostic baseline characteristics [9, 49]. Several analytical
techniques can test for treatment effects and take into
account the study design. These methods include
mixed-effects models, bias-corrected generalized esti-
mating equations, and randomization-based permutation
tests.

In our motivating example, we used an analysis for the
time-to-first event. In contrast, previous studies have fo-
cused their investigations primarily on continuous or
binary outcomes [1, 9, 11, 12]. Our results add to this

literature showing a generalized estimating equation-
based approach can yield results that maintain the nom-
inal type I error after adjusting for the covariate-
constrained design.

This study has some limitations. First, the trial popula-
tion included a large percentage of patients (37%) in-
cluded in the population for randomization. Thus, our
results may not apply to other designs, for example,
CRTs where the population for randomization and the
trial population are the same or settings where cluster-
and patient-level profiles change rapidly over time. Sec-
ond, some historical data may lag by more than 1 year;
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Table.4 Mean hazard ratio (2.5th and 97.5th percentiles) for the composite outcome during a 3-year follow-up of patients on in-

center hemodialysis

Baseline characteristics adjusted in the analysis Mean HR Width Type
(2.5th and 97.5th ofCl® 1
percentile) error

Unadjusted analyses

Simple (ie,, unconstrained) randomization 1.01 (0.87, 1.16) 0280  5.9%°

Constrained on a minimal set of baseline characteristics® 1.00 (0.89, 1.12) 0233  32%

Constrained on a minimal set of baseline characteristics® and historical rate of the primary outcome 1.00 (0.88, 1.13) 0250  44%°

Constrained on a minimal set of baseline characteristics® and cluster size at time of randomization 1.00 (0.88, 1.14) 0260  52%°

Constrained on a minimal set of baseline characteristics®, historical rate of the primary outcome, and 1.00 (0.88, 1.13) 0247  4.5%°

cluster size at time of randomization

Constrained on 10 principal components 1.01 (0.89, 1.12) 0234 33%

Constrained on 10 principal components and historic rate of primary outcome 1.00 (0.88, 1.14) 0261 52%°

Constrained on 10 principal components and cluster size at time of randomization 1.00 (0.87, 1.14) 0264  41%°

Constrained on ten principal components, the historical rate of the primary outcome, and cluster size at 1.00 (0.89, 1.13) 0239 31%

time of randomization

Adjusted for constrained baseline characteristics®

Constrained on a minimal set of baseline characteristics® 1.00 (0.89, 1.12) 0232 86%

Constrained on a minimal set of baseline characteristics® and historical rate of the primary outcome 1.00 (0.89, 1.12) 0223 83%

Constrained on a minimal set of baseline characteristics® and cluster size at time of randomization 1.00 (0.89, 1.11) 0221 98%

Constrained on a minimal set of baseline characteristics®, historical rate of the primary outcome, and 1.00 (0.90, 1.11) 0216 9.6%

cluster size at time of randomization

Constrained on 10 principal components 1.00 (0.90, 1.11) 0203  52%°

Constrained on 10 principal components and historic rate of primary outcome 1.00 (0.90, 1.11) 0201 6.0%°

Constrained on 10 principal components and cluster size at time of randomization 1.00 (0.90, 1.11) 0203  63%°

Constrained on ten principal components, the historical rate of the primary outcome, and cluster size at 1.00 (091, 1.11) 0201  64%°

time of randomization

All randomization methods had 1000 randomization schemes. The cohort included patients on dialysis as of April 1, 2014, and any patient who started in-center

hemodialysis at one of the 72 participating centers during the 3-year follow-up

HR hazard ratio, width of Cl width of confidence interval (i.e., upper minus lower confidence limit)

*The confidence interval’s width may not equal the difference between the lower and upper confidence limits because of rounding

PIncluded patient-level information: age, living in a rural area, Black race, Modified Charlson comorbidity index, number of hospital visits in the previous 12
months, number of unique drugs the patient was prescribed in the 6 months before the index date, as well as history in the last 5 years of diagnosis for
peripheral vascular disease, congestive heart failure, coronary artery disease, myocardial infarction, and number of nephrology consults in the previous 12 months

before the index date

“Type 1 error in the various constrained scenarios. Note: The nominal type 1 error is 5%. The observed type 1 error was within an “acceptable range” if it fell
within the 95% confidence interval of the nominal value (i.e., between 3.6% and 6.4%)

9Adjusted analyses included baseline characteristics used in the constraining process

€An acceptable type 1 error was observed for this method (i.e., between 3.6% and 6.4%)

thus, these results may not apply for populations at
randomization less than or more than a year old. Third,
our example cohort randomized a moderately large
number of clusters; a previous review reported that 75%
of published CRTs randomized fewer than 52 clusters.
Covariate-constrained randomization may provide a bet-
ter baseline balance compared to simple randomization
when there are fewer clusters. Finally, our secondary ob-
jective does not constitute a formal test of the type I
error. Computer simulations with more control over the
generated data would be better suited. As such, the
reader should interpret these results cautiously.

Conclusions and guidance for future trials
Although covariate-constrained randomization ap-
proaches used in this setting had modest improve-
ment for balance, there may be substantial
improvements in statistical power [12]. We propose
the following recommendations (Table 5) for CRTs
based on the empirical comparisons presented in this
paper and other published literature. It is worth not-
ing that these recommendations are based on a single
setting, and while we anticipate similar findings in
different contexts, a more formal statistical compari-
son would be beneficial.
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Table.5 Guidance for conducting covariate-constrained
randomization

1. Identify prognostic baseline characteristics a priori using background
literature, historical data, or previous trials.

2. Generate all (or at least 1000) simple randomizations to identify
baseline characteristics that are always balanced between treatment
arms (e.g., 295% of the time).

3. Carefully consider the number of variables added to the constraining
process or consider using a dimensionality-reduction method for many
variables (e.g., principal component analysis).

4. Consider the amount of missingness of constrained baseline
characteristics prior to randomization.

5. Enumerate all possible allocation schemes when there are fewer than
20 clusters or at least 100,000 allocations otherwise.

1. Identify prognostic variables a priori using
background literature, historical data, or previous
trials. Previous work for individual-level randomized
controlled trials showed increases in statistical
power when analyses prespecified covariates
strongly associated with the outcome. The adjusted
covariates had a more considerable impact on stat-
istical power when the prevalence was moderate to
high (between 10% and 50%) [19, 50—52].

2. Researchers should consider generating all (or at
least 1000) simple randomizations to identify
baseline characteristics that are always or almost
always balanced (e.g., >95% of the time) between
treatment arms. There would be no need to include
these baseline characteristics in the constraining
process; however, researchers can have these
variables in the model-based adjustment to improve
the estimates’ precision. Importantly, all prognostic
variables should be specified a priori [52].

3. Carefully consider the number of baseline
characteristics used during the constraining process.
Evidence from our study (and previous simulation
studies) showed that over-constraining could result
in clusters with highly correlated outcomes having
a lower probability of being included in the same
trial arm. Thus, over-constraining can lead to a type
I error below the nominal level and slightly decrease
power [9, 49].

4. Researchers can use a dimensionality-reduction
method (e.g., principal component analysis) to re-
duce many dimensions of the prognostic variables
to several criterion variables used in the constrained
randomization process [53]. As above, all analyses
should account for the dimensionality-reduction
criterion at the analytic stage.

5. While the constraining process utilizes aggregate
patient-level and cluster-level data, investigators
should consider missingness when constraining the
randomization on these variables. When appropri-
ate, variables with missing data should be imputed
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before aggregating the variable at the cluster level
[54].

6. Researchers should consider constraining the
randomization space to the 10% best allocations.
Furthermore, researchers should enumerate all
possible randomization schemes when fewer than
20 clusters or at least 100,000 randomization
schemes [12].
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