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Abstract

Background: The logrank test is routinely applied to design and analyse randomized controlled trials (RCTs) with
time-to-event outcomes. Sample size and power calculations assume the treatment effect follows proportional
hazards (PH). If the PH assumption is false, power is reduced and interpretation of the hazard ratio (HR) as the
estimated treatment effect is compromised. Using statistical simulation, we investigated the type 1 error and power of
the logrank (LR)test and eight alternatives. We aimed to identify test(s) that improve power with three types of
non-proportional hazards (non-PH): early, late or near-PH treatment effects.

Methods: We investigated weighted logrank tests (early, LRE; late, LRL), the supremum logrank test (SupLR) and
composite tests (joint, J; combined, C; weighted combined, WC; versatile and modified versatile weighted logrank,
VWLR, VWLR2) with two or more components. Weighted logrank tests are intended to be sensitive to particular
non-PH patterns. Composite tests attempt to improve power across a wider range of non-PH patterns. Using
extensive simulations based on real trials, we studied test size and power under PH and under simple departures from
PH comprising pointwise constant HRs with a single change point at various follow-up times. We systematically
investigated the influence of high or low control-arm event rates on power.

Results: With no preconceived type of treatment effect, the preferred test is VWLR2. Expecting an early effect, tests
with acceptable power are SupLR, C, VWLR2, J, LRE and WC. Expecting a late effect, acceptable tests are LRL, VWLR,
VWLR2, WC and J. Under near-PH, acceptable tests are LR, LRE, VWLR, C, VWLR2 and SupLR. Type 1 error was well
controlled for all tests, showing only minor deviations from the nominal 5%. The location of the HR change point
relative to the cumulative proportion of control-arm events considerably affected power.

Conclusions: Assuming ignorance of the likely treatment effect, the best choice is VWLR2. Several non-standard tests
performed well when the correct type of treatment effect was assumed. A low control-arm event rate reduced the
power of weighted logrank tests targeting early effects. Test size was generally well controlled. Further investigation
of test characteristics with different types of non-proportional hazards of the treatment effect is warranted.
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Background
Randomized controlled trials (RCTs) with a time-to-event
outcome are typically designed according to sample size
and power calculations using the logrank test. The treat-
ment effect is summarized by the hazard ratio (HR)
between the control and research arms, usually estimated
with a Cox proportional hazards (PH) model. During the
last decade or so, researchers e.g. [1, 2] have demon-
strated that non-proportional hazards (non-PH) occur
fairly often in trials across a range of medical research
areas. Non-PH may threaten the power of the logrank
test, potentially distorting the findings of a trial and jeop-
ardizing its success. It is therefore important that trial
designers take into account the possibility and, if feasible,
the probable nature of non-PH in the particular setting of
the study.
We assume that HR < 1 denotes a reduction in the

hazard of an event (e.g. death) in a research arm. Non-PH
means that the HR varies systematically over follow-up
time. We may usefully distinguish four types of HR pat-
terns: PH, early or diminishing effect, late or delayed
effect, other. PH includes the null-hypothesis case of iden-
tical survival curves in the trial arms. With an early effect,
the HR is < 1 in the early follow-up and increases later.
An early effect may, for example, be provoked by ‘wearing
off ’ of the effectiveness of a therapy that is adminis-
tered for a limited period and then stopped. A late or
delayed effect may occur in screening or prevention tri-
als or in trials in immuno-oncology settings, in which
the treatment effect is expected to take time to mani-
fest. Subsequently, we refer to such patterns generically as
late effects.
The ‘other’ type covers all other possibilities, of which

the most readily recognizable are crossing survival func-
tions. Our impression is that in real trials, PH, early and
late patterns predominate. Other patterns are not neces-
sarily simple to characterize; therefore, only these three
are studied in the present paper.
Figure 1 gives examples of pairs of Kaplan-Meier sur-

vival curves illustrating the four types of treatment effects
we have discussed.
We created the datasets by simulation to illustrate rea-

sonable and plausible curves. Although the overall HRs,
numbers of events and logrank test p values for the
treatment comparisons are approximately the same in
each case, the survival-curve comparisons differ consider-
ably. For example, the difference in median survival time
(research minus control) is largest with the early and late
effects, somewhat smaller with PH and close to zero (and
negative) for the ‘other’ pattern (d).
The focus of the present paper is on tests of the null

hypothesis of identical survival functions against specific
alternative hypotheses (PH, early effect, late effect). It is
widely recognized that the logrank test may lose power,

sometimes severely, in non-PH situations. Making exten-
sive use of simulation, our aim is to identify good candi-
date(s) for resilience from a set of nine tests that we have
selected. A ‘resilient’ test is one that exhibits acceptable
power under PH and also under some common patterns
of non-PH, while maintaining the type 1 error rate close
to the nominal level. In addition to power, we therefore
also assessed the type 1 error of the tests. The tests and
the rationale for their selection are described in the next
section.
The structure of the article is as follows. In ‘Methods’,

we describe the tests to be compared and our approach
to simulation of the performance (power) of the tests.
In ‘Results’ we report our findings on type 1 error and
power. This section also includes a comparison of the tests
on three selected trials with apparently differing types
of treatment effects. We end with a Discussion and our
Conclusions.

Methods
Tests to be compared
Many tests of two survival curves have been proposed
over the last five decades or so, but very few have found
their way into practice in trials. We have focused on the
most popular, the logrank, a small number of related tests
and particularly on more recent composite tests com-
prising two or more component tests. The logrank test
is the de facto standard for trial design and analysis and
is therefore the natural comparator for other tests. Vari-
ants of the logrank test are typically weighted in such
a way as to be sensitive to particular non-PH patterns.
Composite tests are an attempt to improve power across
a wider range of non-PH patterns than the logrank test
manages.
We have not included tests which require prespecify-

ing a single, fixed time point, t∗ say, for their evaluation.
Examples are the difference at t∗ in Kaplan-Meier survival
estimates or in restricted mean survival times (RMSTs).
Although such tests are intuitively simple and appealing,
their power with some non-PH patterns is vulnerable to
poor choices of t∗.
The nine tests we have included are described briefly

below. All computations were performed using Stata 15.1
[3].

Logrank test (LR)
The logrank test is the optimal (most powerful) rank test
under PH. The test is also valid under non-PH alterna-
tives, but it may then lack power.

Early-effect weighted logrank test (LRE)
LRE is a weighted logrank test with Fleming-Harrington
weight function (1, 0) [4]; that is wi = S (ti − 0). LRE is
intended to be sensitive to early effects. It is similar to the
Peto-Peto-Prentice test [5, 6].
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Fig. 1 Kaplan-Meier survival curves in simulated datasets with similar HRs and p values, but with four types of treatment effects: a PH, b early, c late,
d other (crossing survival curves)

Late-effect weighted logrank test (LRL)
LRL is a weighted logrank test with Fleming-Harrington
weight function (0, 1); that is wi = 1 − S (ti − 0). LRL is
intended to be sensitive to late effects.

Supremum logrank test (SupLR)
The supremum logrank test [7] is based on the maximal
logrank test statistic over the event times t1, . . . , tr . It is
calculated by restricting the logrank test to time ti and
then taking the supremum test statistic over the ti. Local
minima or maxima in the test statistic may be detected
by the supremum logrank test which may indicate a non-
random difference between the survival functions.

Joint test (J)
The joint test [8] combines a Cox test (essentially iden-
tical to the logrank test) with a standard test of non-PH,
the Grambsch-Therneau test. Under PH, the two compo-
nent tests are independent. The joint test statistic is the
sum of the two model chi-square values. It has a known
distribution under the null and under PH alternatives.

Combined test (C)
The combined test [9] combines a Cox test with a per-
mutation test based on the maximal squared standardized
difference in RMST between the control and research
arms. Maximization is over a predefined small set of event
times (t∗). Royston et al. [2] showed that the combined
test outperformed the Cox test (and implicitly the logrank
test) in 55 randomized comparisons based on recon-
structed data from 50 RCTs in various medical research
areas.

Weighted combined test (WC)
The weighted combined test (unpublished, available in
Stata from the first author) is an attempt to improve the
performance of the combined test when a delayed/late
treatment effect is present. The Cox test component is
replaced by the LRL test.

Versatile weighted logrank test (VWLR)
A ‘versatile’ test is one derived by combining several
weighted logrank tests in different ways [10, 11]. Like
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the C and WC tests, a versatile test is designed to be
sensitive to different types of departures from the null
hypothesis H0 : S0 (t) = S1 (t). Karrison’s proposal
[12] which we use here, is the maximum square-root
chi-square statistic among three correlated logrank tests:
unweighted (i.e. standard LR), early-effect weights (as in
LRE) and late-effect weights (as in LRL). The asymptotic
null distribution of the test statistic is available in closed
form.

Modified versatile weighted logrank test (VWLR2)
VWLR2, the modified version of VWLR, is unpublished
and is available as a Stata program from the first author.
It incorporates a small but potentially important change
to one component of the VWLR test. The LRE test with
weights wi = S (ti − 0) is replaced by a logrank test with
weights given by

wi = max {0.001, [S (ti − 0) − Smin] / (Smax − Smin)}
where Smax = 1 and Smin is the minimum of the left
estimate, S (t − 0), of the Kaplan-Meier survival function.
The support of these weights is the interval [0.001, 1]. The
aim is to increase power when the data exhibit an early
effect with a low event rate.With such data, the coefficient
of variation of the original weights is small, and therefore
the weighted test (LRE) too closely resembles the stan-
dard test (LR). By construction, the issue of too-similar
weights does not arise with the LRL component of VWLR.
The null distribution of the test statistic for VWLR2 fol-
lows from the general result for the maximum of weighted
logrank tests as derived in [4], section 7.5, theorem 7.5.1.

Simulation scenarios
We assessed the power of the nine tests under four alter-
natives: null case (identical survival distributions in con-
trol and research arms), PH with HR = 0.75, early effect,
late effect. Furthermore, we studied two survival distri-
butions in the control arm: high event rate (Smin � 0.1)
and low event rate (Smin � 0.9). The goal was to identify,
within the constraints of the simulation design, the test(s)
which performed best under PH, early effect, late effect
and overall across all three patterns.

Approach to simulation
Survival distributions
Survival distributions in the control arms of two real trials
were chosen to represent the survival function in the con-
trol arm of simulated datasets with low or high event rates,
respectively. The first trial [13] had a low event rate and
the second [14] a high event rate. The survival functions
were approximated using flexible parametric models [15,
16]. A restricted cubic spline with 5 degrees of freedom
was used to model the log cumulative hazard function
as a function of log time to event in each control arm.

Figure 2 shows the observed (Kaplan-Meier) and fitted
survival functions in each of the original datasets.
We used the same approach to approximate the dis-

tribution of time to censoring in each dataset (data not
shown).
From the fitted flexible parametric models, we obtained

small numbers of parameters which describe the survival
and time-to-censoring distributions in the two datasets.
We used the estimated parameter values with suitable
sample sizes in subsequent simulations by applying the
community-contributed Stata package stsurvsim [17,
18]. Further details are given below.

Simulating early and late treatment effects
To create simple early and late treatment effects, we chose
step functions for the time-dependent hazard ratio, HR(t),
as shown in Table 1.
The design implements a treatment effect (expressed as

HR) that persists over (0, t∗) and then ceases (early effect),
or one that is 1.0 when t ≤ t∗ and < 1.0 for t > t∗ (late
effect).
If the change point t∗ is ‘large’ in the early-effect case,

the HR will be nearly constant over the observed follow-
up, and the treatment effect will be close to PH. Vice versa,
if t∗ is ‘close to 0’ in the late-effect case, the treatment
effect will be close to PH. We expect the logrank test to
perform (nearly) optimally in such a situation. In other
situations, we would expect tests specifically designed to
detect types of non-PH to outperform the LR.
The time scale embodied in t∗ is arbitrary. A less scale-

dependent meaning of t∗ being ‘large’ and ‘close to 0’ may
be attributed to the cumulative proportion of events in
the trial before t∗, known as the information fraction (IF).
The IF is an important parameter of the alpha-spending
functions for group-sequential trials. To remove the effect
on the IF of the alternative distributions we simulated, we
limited the IF to the control arm.
We quantified the performance of the nine tests in the

early- and late-effects cases in relation to the control arm
IF as follows. We selected seven suitably placed values of
t∗ for each effect type and event rate (see Table 2).
The t∗ values given in Table 2 provide an appropri-

ate spread of IFs in the control arm of the two original
datasets.
With each chosen value of t∗, we computed the sample

size for each of the four designs (low/high event rate by
early/late effect) using the Analysis of Resources for Trials
(ART) community-contributed software package for Stata
[19]. The procedure was used to obtain sample sizes that
offer a power of 80% or 90% for the LR. We took the LR as
the benchmark test for power comparisons with the other
eight tests. Based on the benchmark power, the sample
sizes used in the simulations varied widely, between about
100 and 18,000 (data not shown).
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Fig. 2 Survival functions in the control arm of two real trials used as the basis of simulations: a low event rate, b high event rate. Jagged lines,
Kaplan-Meier estimates; smooth lines, estimates from flexible parametric models with 5 degrees of freedom. Note the different scaling of the vertical
axes

The ‘true’ survival functions used in the simulations for
each of the scenarios shown in Table 2 are illustrated in
Fig. 3.
Note that in panels c and d of Fig. 3, t∗ = 0 corre-

sponds to PH. Despite the abrupt, seemingly unrealistic
step changes in the HR at t∗ used to define non-PH, the
survival functions look both reasonable and plausible.
Realistic datasets were simulated for each arm of a

hypothetical trial with 1:1 treatment allocation using
the flexible parameter estimates and the Stata program
stsurvsim cited in the previous section. Five thousand
replicates were simulated for each power, event rate, effect
type and value of t∗. Power of a given test at the two-sided
5% significance level was estimated as the number of repli-
cates in which p < 0.05, divided by 5000. Mean observed
IF values in the control arm of the simulated datasets were
used to define the x-axis in graphs of the power for the
various tests and conditions.

Table 1 Hazard ratios defining treatment effects with
non-proportional hazards in the simulation studies

Effect Event HR(t)

type rate t ≤ t∗ t > t∗

Early Low 0.3 1.0

High 0.5 1.0

Late Low 1.0 0.3

High 1.0 0.5

Treatment effects under PH
Treatment effects under PH are covered by the special
case of late effects with t∗ = 0 and were not handled
separately.

Type 1 error
Treatment effects under the null hypothesis H0 : S0 (t) =
S1 (t) were tested using simulation, as with the power
studies. For each chosen sample size (n), we simulated
5000 replicate datasets comprising two replicates each
with n/2 observations, based on the estimated time-to-
event and time-to-censoring distributions in the control
arm. We took 12 values of n in the range [400, 10, 000]
in the low event-rate scenario and 12 more in the range
[40, 1000] in the high event-rate scenario. Under PH, the
effective sample size is the number of events. With the
given sample sizes and event rates, we aimed to cover a
wide range of numbers of events.

Table 2 Time points (t∗) used in the simulation studies

Event rate Early effect Late effect

Low t∗ 10 12 14 17 19 22 25 0 4 7 10 13 16 19

IF% 40 49 56 68 75 87 95 0 16 28 40 53 64 75

High t∗ 3 4 5 6 7.5 9 10.5 0 1 2 3 4 5 6

IF% 45 57 69 77 85 91 96 0 12 27 45 57 69 77

IF% denotes the information fraction expressed as a percentage of the total number
of events in the control arm of the original datasets. See text for further details
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Fig. 3 True survival functions used in the simulations. Dashed lines represent the control arm, other lines the research arm with the change point in
the HR at different values of t∗

The empirical type 1 error (size) of a given test at the
nominal α = 0.05 level was estimated as the number
of replicates in which p < 0.05, divided by 5000. A test
with size exceeding 0.05 is termed ‘anti-conservative’ or
‘liberal’, whereas one whose size is below 0.05 is deemed
‘conservative’.

Results
Type 1 error
We estimated the empirical type 1 error (size) of the nine
tests at the α = 0.05 level by simulation. We pooled the
5000 replicates for each event rate and sample size into
datasets, each with 5000 × 12 = 60, 000 observations.
Results by event rate are given in Table 3.
The supremum logrank (SupLR, results shown in bold

type) test stands out as it is conservative for both
event rates, the size being about 4.5%. For the low
event rate, the size of the remaining tests is close to
the nominal 5%, whereas for the high event rate, the
WC, LRE, LRL, VWLR and VWLR2 tests appear a little
anti-conservative.

Further investigation (data not shown) revealed that
minor size inflation may occur in the high event-rate case
when there are fewer than approximately 100 events in the
dataset (see Table 4).
The SupLR test is again conservative for both event

rates. Inflation of the size of most of the other tests,
including the LR test, occurs with the high event rate.
Such inflation is not evident when there aremore than 100
events (data not shown).
Aside from minor issues, all of the empirical type 1

errors of the nine tests are close to the nominal, two-
sided 5% significance level. We are therefore justified in
performing power assessments of all the tests.

Power
We report power results for an early effect and then for a
late effect. Each category is subdivided into low and high
event rates.

Early effect
Low event rate Figure 4 shows the power for eight tests
as a function of the mean IF.
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Table 3 Empirical type 1 error (size) of the nine tests in 60,000 simulated samples for low and high event rates

Test Abbrev. Low event rate High event rate

Size (%) 95% CI Size (%) 95% CI

Logrank LR 5.0 (4.8, 5.2) 5.1 (4.9, 5.3)

Logrank (early) LRE 5.0 (4.8, 5.2) 5.1 (5.0, 5.3)

Logrank (late) LRL 4.9 (4.7, 5.1) 5.3 (5.1, 5.4)

Supremum logrank SupLR 4.5 (4.4, 4.7) 4.6 (4.5, 4.8)

Joint J 5.1 (4.9, 5.3) 5.0 (4.9, 5.2)

Combined C 4.9 (4.7, 5.1) 5.0 (4.8, 5.2)

Weighted combined WC 4.8 (4.6, 5.0) 5.4 (5.2, 5.6)

Versatile WLR VWLR 5.0 (4.8, 5.2) 5.2 (5.0, 5.4)

Versatile WLR (modified) VWLR2 5.1 (4.8, 5.1) 5.2 (5.0, 5.4)

We have excluded the LRL test because its power is low
in this setting and its results reduce the legibility of the
plots. When IF<0.8, five tests are superior to the logrank:
J, C, WC, SupLR and VWLR2. When IF > 0.8, the treat-
ment effect approaches PH. Here, the WC, J and VWLR
tests are weakest; the other five tests perform about the
same. Irrespective of the IF, the LRE test is slightly better
than the LR.
Figure 5 displays the results in a different way. For each

of the 7 + 7 = 14 sets of simulated datasets, the test with
the largest empirical power is identified. This ‘best’ result
among all nine tests serves as the benchmark power and
constitutes the horizontal axis of each plot. Note that the
test which performs best is not necessarily the same for all
14 sets of datasets.
For a given test, we define the deficit to be the

mean difference over the 14 datasets between the
power of the test and the benchmark. The deficit
for each test is plotted as the dashed horizontal line
parallel to the solid line of identity representing the
benchmark.

According to the deficit metric, the five best tests (with
the deficit in parentheses) are C (0.010), SupLR (0.011),
VWLR2 (0.017), J (0.018) and WC (0.040). The LRL test
is by far the worst performer here (deficit 0.610).

High event rate Plots for the high event rate equivalent
to Figs. 4 and 5 are 6 and 7, respectively.
A slightly different pattern emerges. With IF < 0.8, all

tests (except LRL, excluded) outperform the LR. With IF
> 0.8, two tests are worst: J and WC.
All tests except LRL have broadly similar deficits, with

that for the LR test being the largest (0.068). The VWLR
and VWLR2 tests now perform about the same.

Late effect
Low event rate Plots equivalent to Figs. 4 and 5 are 8 and
9.
When IF> 0.2, five tests dominate: J, WC, LRL, VWLR,

VWLR2. The C and SupLR tests are consistently worse
than LR. When IF < 0.2 (near PH), the worst three tests
are J, WC, LRL.

Table 4 Empirical type 1 error (size) of the nine tests in pooled simulated samples with low or high event rates and ≤ 100 events in
each simulation replicate

Test Abbrev- Low event rate High event rate

iation Size 95% CI Size 95% CI

Logrank LR 5.2 (4.9, 5.6) 5.5 (5.1, 5.8)

Logrank (early) LRE 5.2 (4.9, 5.6) 5.3 (4.9, 5.6)

Logrank (late) LRL 4.8 (4.5, 5.2) 6.0 (5.6, 6.3)

Supremum logrank SupLR 4.3 (4.0, 4.6) 4.5 (4.2, 4.9)

Joint J 5.2 (4.9, 5.6) 5.1 (4.8, 5.5)

Combined C 5.1 (4.7, 5.4) 5.6 (5.2, 5.9)

Weighted combined WC 4.7 (4.4, 5.0) 6.2 (5.8, 6.6)

Versatile WLR VWLR 5.1 (4.8, 5.4) 5.7 (5.3, 6.1)

Versatile WLR (modified) VWLR2 5.0 (4.7, 5.4) 5.7 (5.4, 6.1)

Pooled sample sizes of simulated datasets are 15,818 and 15,527, respectively
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Fig. 4 Power of eight tests versus mean IF at t∗ for early effects with a low event rate. t∗ denotes the time point of the change in the hazard ratio

The deficits show a clear picture. The best five tests
are J (0.022), WC (0.024), LRL (0.017), VWLR (0.008),
J (0.016). The C (0.129), SupLR (0.151) and LRE (0.109)
tests are all worse than the LR (0.097).

High event rate Plots for the high event rate equivalent
to Figs. 8 and 9 are 10 and 11, respectively.
The results are broadly similar to those for the low event

rate.

Summary
The power results for the four subcases (early/late effects
by low/high event rates) are summarized in Fig. 12.
Results for PH treatment effects (represented by late

effects with t∗ = 0) have been extracted separately, and
deficits for late effects exclude them. For a given type of
treatment effect, we subjectively defined as acceptable a
test with a mean deficit across low and high event rates
of < 0.05. Acceptable tests and their mean deficits are
summarized in Table 5.
If an early effect is expected, acceptable tests are SupLR,

C, VWLR2, J, LRE and WC. If a late effect is expected,
acceptable tests are LRL, VWLR, VWLR2, WC and J.
Under PH, acceptable tests are LR, LRE, VWLR, C,
VWLR2 and SupLR.
If the expected type of treatment effect is unknown,

our preference is for VWLR2, since it is the only test
that is acceptable with all three types of treatment effects.
Its maximum deficit of 0.031 across the six individual

results is the smallest among the nine tests and the only
one that is < 0.05. VWLR2 also has the smallest over-
all mean deficit (0.021). On this criterion the second-
best test is J, with a maximum deficit of 0.080 (mean
0.041). However, J performs poorly under PH. See also
Fig. 12.

Example
We exemplify the performance of the nine tests with three
RCTs, chosen because they appear to show early, late and
PH treatment effects. PATCH1 [20] concerns treating cel-
lulitis of the leg. UKCTOCS [21] is a trial of screening for
ovarian cancer. For illustration, we have combined the two
research arms (different screening modes) into a single
arm (screenees). RE01 [22] compares palliative treatments
in advanced kidney cancer. Table 6 gives basic information
on the studies.
Figure 13 shows Kaplan-Meier curves for the three

datasets.
In Fig. 13 note the large sample size and very low event

rate in b, the UKCTOCS ovarian cancer screening trial.
Table 7 shows the p values for the treatment effect on

applying the nine tests to the trial datasets.
It is striking that, in each dataset, the tests deemed

‘acceptable’ for the corresponding type of treatment effect
have the lowest p values (shown in bold type) among the
nine.
In PATCH1, the ‘standard’ test, LR, just misses sig-

nificance at the conventional 0.05 level. All other tests
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Fig. 5 Test power compared with benchmark for early effects with a low event rate

except LRL are significant. In UKCTOCS, only the accept-
able tests for a late effect are significant. In RE01,
all the tests are significant, while LR has the smallest
p value.

Are alternative tests ready for the primary analysis?
Based largely on our simulation results, we have rec-
ommended VWLR2 as a good choice of resilient test
under prior ignorance of the characteristics of the sur-
vival curves. However, as with all simulation studies, only
a tiny fraction of possible types of survival curves has been
explored. For example, a recent editorial in the context
of cancer trials [23] (see their Figure A1) demonstrated
anomalous behaviour of the LRL test. The authors showed
a constructed example in which the experimental arm
survival curve always lay below the control-arm curve,
whereas the late-effect (LRL) test rejected the null hypoth-
esis in favour of the experimental arm. Such a result seems
to contradict common sense. However, it can be under-
stood in terms of the conditional survival distributions
that manifest after the initial steep drop in survival in the
experimental arm. Details will be explored elsewhere.

For weighted logrank tests and versatile tests that
include them, several strands of supporting research evi-
dence are lacking before the tests may be regarded as seri-
ous candidates for practical use in trial design and analy-
sis. For example, we need more comprehensive examples
of their characteristics under different non-PH patterns,
possibly including a more detailed and nuanced under-
standing of the effect of the Fleming-Harrington parame-
ter values on test power.
For alternative tests in general, we need to know how

to use them in the primary analysis, how to assess data
maturity (readiness to analyse accrued data) and also how
to perform intermediate analyses for benefit or lack of
benefit.
We conclude that although useful progress has been

made, much needs to be done before any proposed alter-
native tests are considered ready for the primary analysis
of trial data.

Discussion
Based on our extensive simulation study, we conclude that
the modified VWLR test VWLR2 is probably the best
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Fig. 6 Power of eight tests versus mean IF at t∗ for early effects with a high event rate

general choice among the nine tests we have compared
when the form of any difference between survival curves
cannot be predicted reliably in advance. We would argue
that this would hold true in many cases. The VWLR2 test
has an advantage over the combined (C) and weighted
combined (WC) tests in that the distribution of the test
statistic is known under the null hypothesis S0 (t) = S1 (t).
An important question is whether the simplified type of
non-PH we have investigated here (see further remarks
below) is general enough to enable a broader recommen-
dation. This question can really only be addressed by both
performing further simulation studies with a wider range
of alternative hypotheses and comparing the preferred
test(s) with others when applied to a varied spectrum of
datasets from real RCTs.
In an unpublished research report posted online (see

https://arxiv.org/abs/1909.09467v1) after our manuscript
was submitted to Trials, Lin and colleagues [24] came
to conclusions broadly similar to ours. They also used
Monte Carlo simulation to study the performance of nine
tests, of which only LR, LRL and LRE overlapped our set.
The six additional tests were a weighted logrank test with
index (1, 1); a versatile weighted logrank test with four
components (MaxCombo, identical to the present VWLR
test except that it also includes the (1, 1) test); difference
in restricted mean survival time; Breslow’s test; weighted
Kaplan-Meier test; and Lee’s combination test. Besides PH
and a range of early-effect and late-effect non-PH exam-
ples, they investigated scenarios with crossing survival

curves. Consistent with us, they summarised by stating
‘There is not a single most powerful test across all scenar-
ios. In the absence of prior knowledge regarding the PH or
non-PH patterns, the MaxCombo test is relatively robust
across patterns.’ In both our and their investigations, a
composite weighted logrank test seems to perform well.
In a recent analysis [2], we compared the combined

test (C) with the Cox test (very similar to LR). We found
results in favour of the combined test in an analysis of
datasets reconstructed from the published Kaplan-Meier
survival curves in 50 phase III RCTs. The trials, which
were reported in four leading medical journals in 2013,
were in a variety of medical research areas. In this par-
ticular sample of trials, graphical analysis suggested that
significant treatment effects were mostly near-PH or early
in nature, clear late effects being rare. However, in some
areas of medical research, for example immuno-oncology
and screening and prevention trials, late effects are often
anticipated. Thus, the potential to detect late effects
remains important.
As with all simulation studies, due to the inevitable

restriction on the numbers and types of scenarios that
may be investigated, interpretation and generalizability of
results require caution. We have limited our early and
late scenarios to piecewise constant HRs with a single
change point placed at different time points (see Fig. 3 for
the corresponding survival functions). The full range of
possible early or late effects is not and cannot be repre-
sented. However, our approach allowed us to study how
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Fig. 7 Test power compared with benchmark for early effects with a high event rate

Fig. 8 Power of eight tests versus mean IF for late effects with a low event rate
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Fig. 9 Test power compared with benchmark for late effects with a low event rate

Fig. 10 Power of eight tests versus mean IF at t∗ for late effects with a high event rate
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Fig. 11 Test power compared with benchmark for late effects with a high event rate

the position of the change point in the HR in relation to
the control-arm information fraction affected power, tak-
ing the LR test as the benchmark. This turned out to be
an important consideration (see Figs. 4, 6, 8, 10). The five
tests we identified as most powerful for an early effect
were superior only when the change point was at IF ∼ 0.8
or smaller. The equivalent condition for detecting a late
effect was IF ∼ 0.2 or larger. Whether such a characteri-
zation is of practical help in selecting a test prospectively
when designing a new trial needs further exploration.
A major issue we have not considered here is how best

to describe and estimate treatment effects under non-
PH. Hitherto, standard practice has been to use a test
and an estimate of the treatment effect, together with
its confidence interval (CI), that are coherent. This is
perfectly reasonable under PH, when the null hypothe-
sis concerns the HR, and the latter is a design parameter
which is meaningful and independent of follow-up time.
Many earlier trials, for example some in oncology with
simpler research regimens, were reasonable candidates
for PH and were possibly too small to detect important

non-PH except in rare cases. Today, treatments are more
complex, sample sizes are often large and follow-up is
sometimes of necessity long (e.g. in screening trials for
relatively rare conditions). Consequently, the chance of
encountering non-PH is much larger than before. It may
be argued that what is needed is a resilient test and, not
necessarily coherent with it, relevant measures to help
describe and interpret the treatment effect. Of the tests we
have studied here, several are constructed frommore than
one component and therefore have no obvious associated
estimate.
In the case of non-PH (and, arguably, even of PH), no

single summarymeasure can adequately capture the treat-
ment effect. One is left with careful inspection of the
estimated survival curves in order to judge the clinically
relevant nature and magnitude of the treatment effect.
Investigation of the related topics of estimation and inter-
pretation is beyond the scope of the present paper. We
shall discuss these topics in a later paper.
We also note that some people object to tests that place

more weight at certain times compared with others, for
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Fig. 12 Summary of power results for nine tests and three types of treatment effects (early, late, PH) and two event rates (low (L) and high (H)).
Values for LR (early) and LR (late) tests plotted at 0.2 indicate deficits of 0.2 or more

example by placing more weight on a later event. Such
weighting schemes may imply that having a late event
is worse than having an early event. When the survival
curves cross, it can even happen that LRL rejects in favour
of one treatment arm and LRE in favour of the other arm.
Our view is that we are testing whether the two survival
curves are equal. If we conclude that they are not, and the
curves cross, the preferred treatment will depend on indi-
vidual preferences regarding the trade-off between early
versus later risks.

Table 5 Summary of findings from our simulation studies

Effect Acceptable tests (mean deficits over low
and high event rates)

Early SupLR (0.011), C (0.015), VWLR2 (0.022),
J (0.030), LRE (0.040), WC (0.041)

Late LRL (0.004), VWLR (0.008), VWLR2 (0.013),
WC (0.014), J (0.021)

PH LR (0.000), LRE (0.018), VWLR (0.021),
C (0.027), VWLR2 (0.029), SupLR (0.038)

Acceptable tests for different presumed types of treatment effects in increasing
order of their mean power deficits. See text for details

Table 6 Basic information for the three example trials

Trial

PATCH1 UKCTOCS RE01

Outcome
(time to)

Recurrence Ovarian
cancer
death

Death (any
cause)

Research
arm

Penicillin Screening Interferon-α

Control
arm

Placebo No
screening

MPA

Type of
treatment
effect

Early Late PH

Event rate Low/medium Low High

n 274 202,546 347

Events 129 649 322

Smin 0.419 0.996 0.045
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A key question potential users will ask is how high a cost
(i.e. increase in sample size) is incurred under PH when
using a test other than the standard logrank. Our results
on power deficit (see Fig. 12) do address this issue, but fur-
ther simulations, for example with different control-arm
survival distributions and event rates, would certainly be
desirable.
Where do we go from here? The only test that has been

extensively researched, implemented, validated and used
in a multitude of trials is the logrank. Furthermore, moni-
toring trial maturity and hence determining when the trial
is ready to analyse is straightforward, requiring only the
cumulative number of events. Under non-PH and using a
different test, how best to assess maturity is an open issue.
Further experience with the power of a test in different
non-PH situations is needed.
How would a test be used in practice? Stata soft-

ware is (or will soon be) freely available to perform
all nine tests investigated here, and power/sample size
calculations have been implemented for some of the

non-standard tests, e.g. those in [25, 26] for the com-
bined test (C), and will soon be made available for the
preferred test, Ka2. Clearly, a preferred test would have
to be specified up front in the study protocol for use in
the sample size calculations and in the primary analysis.
We stress the need to avoid defective statistical practice,
such as performing a logrank test first and finding it to
be ‘nearly’ significant, followed up by (say) a combined
test to try to obtain more power and ‘achieve’ the magic
p < 0.05. How to implement appropriate guidance (e.g.
stopping rules) for benefit or lack of benefit at interim
analyses when using an alternative test also requires
investigation.

Conclusions
On present evidence, our test of choice is VWLR2. The
recommendation assumes ignorance of the type of treat-
ment effect to be expected. Several tests performed well
when the correct type of treatment effect was assumed:
SupLR, C, VWLR2, J, LRE and WC with an early effect;

Fig. 13 Kaplan-Meier survival curves for the three example trials. Horizontal axis shows years since randomization. Solid lines, control arm; dashed
lines, research arm. Values in parentheses below the graphs denote number of events in each interval
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Table 7 p values for the nine tests on three example datasets

Test Trial

PATCH1 UKCTOCS RE01

(early effect) (late effect) (PH)

LR 0.052 0.076 0.009

LRE 0.020 0.077 0.010

LRL 0.573 0.008 0.047

SupLR 0.012 0.153 0.013

J 0.023 0.028 0.028

C 0.023 0.112 0.014

WC 0.027 0.014 0.036

VWLR 0.036 0.013 0.018

VWLR2 0.017 0.016 0.019

Values in bold type indicate acceptable tests according to the simulation results.
See text for details

LRL, VWLR, VWLR2, WC and J with a late effect; and
LR with a PH or near-PH effect. A low control-arm event
rate reduced the power of weighted logrank tests target-
ing early effects. Test size was somewhat inflated with
a high event rate and less than about 100 events in the
dataset. The results must be regarded as initial. Further
investigation of test characteristics with different types of
non-proportional hazards of the treatment effect may be
required.
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