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Abstract

Background: Retrospective exploratory analyses of randomised controlled trials (RCTs) seeking to identify
treatment effect heterogeneity (TEH) are prone to bias and false positives. Yet the desire to learn all we can from
exhaustive data measurements on trial participants motivates the inclusion of such analyses within RCTs. Moreover,
widespread advances in machine learning (ML) methods hold potential to utilise such data to identify subjects
exhibiting heterogeneous treatment response.

Methods: We present a novel analysis strategy for detecting TEH in randomised data using ML methods, whilst
ensuring proper control of the false positive discovery rate. Our approach uses random data partitioning with
statistical or ML-based prediction on held-out data. This method can test for both crossover TEH (switch in optimal
treatment) and non-crossover TEH (systematic variation in benefit across patients). The former is done via a
two-sample hypothesis test measuring overall predictive performance. The latter is done via ‘stacking’ the ML
predictors alongside a classical statistical model to formally test the added benefit of the ML algorithm. An adaptation
of recent statistical theory allows for the construction of a valid aggregate p value. This testing strategy is independent
of the choice of ML method.

Results: We demonstrate our approach with a re-analysis of the SEAQUAMAT trial, which compared quinine to
artesunate for the treatment of severe malaria in Asian adults. We find no evidence for any subgroup who would
benefit from a change in treatment from the current standard of care, artesunate, but strong evidence for significant
TEH within the artesunate treatment group. In particular, we find that artesunate provides a differential benefit to
patients with high numbers of circulating ring stage parasites.

Conclusions: ML analysis plans using computational notebooks (documents linked to a programming language that
capture the model parameter settings, data processing choices, and evaluation criteria) along with version control can
improve the robustness and transparency of RCT exploratory analyses. A data-partitioning algorithm allows
researchers to apply the latest ML techniques safe in the knowledge that any declared associations are statistically
significant at a user-defined level.
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Introduction

In the medical sciences, randomised controlled trials
(RCTs) provide the gold standard for evidence evaluation
of novel treatments and health interventions. The growing
accessibility and recording of data modalities, arising from
genetics, medical imaging, mobile devices, genomics, and
electronic health records captured on trial participants,
alongside breakthroughs in machine learning (ML) pro-
vide new opportunities for scientific discovery of patient
strata exhibiting systematic variation in treatment effect.
This can improve patient outcomes and optimise treat-
ment recommendations. However, exploratory analyses
of RCTs and correct interpretations of these analyses are
difficult [1, 2] and controversial [3]. Data analytic tools
such as ML algorithms [4] are particularly attractive for
identifying treatment effect modifiers in RCTs due to
their hypothesis-free nature and ability to learn by exam-
ple. Although there have been numerous recent papers
on technical developments and novel methods for sub-
group analysis and treatment effect heterogeneity (TEH)
[5-14], we know of none to date that have considered
ML paradigms purely from a testing perspective that
provides strict control of the false positive rate (type I
error) for the quantities we consider here, namely the
evidence of crossover TEH and the evidence of predictive
improvement of an ML model over a conventional statis-
tical model. Some recent papers, e.g. [15], have derived
test statistics for detecting global heterogeneity using
ML, yet they lack the simplicity of our approach and the
broad applied nature of our work. Moreover, we focus on
detecting actionable (crossover) interactions as well as
quantifying the evidence for the added predictive benefit
of ML over simpler statistical models. A key component
of this work is to provide concrete recommendations
for how subgroup statistical analysis plans (subgroup-
SAPs) can incorporate ML methods (summarised
in Panel 1).

Medical statisticians know how to assess the evidence
when the subgroups or interactions are predefined and the
models are explicit, by counting the ‘degrees of freedom,
or number of free parameters, in the model and using for-
mal tests of hypotheses [16—18]. But for ML algorithms
the models are designed to adapt their complexity and
dependency structures to the underlying problem during
the training phase, and hence notions of counting param-
eters become meaningless. The question then remains:
How to assess the true evidence of an effect following ML
discovery?

We show that it is possible to train such methods, along-
side conventional statistical models, to analyse RCT data
and provide a global hypothesis test for the presence
of TEH. The methodology explicitly uses the underly-
ing treatment randomisation to test for TEH. We show
that it is possible to formally test for the presence of
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patient subgroups (crossover TEH) and also formally
test the added predictive benefit of the ML algorithm
by ‘stacking’ the ML predictions alongside predictions
from a baseline ‘vanilla’ statistical model. ML algorithms
should only be used if their predictive benefit can be
proven superior to that of simpler and more inter-
pretable methods. This framework has important impli-
cations for how existing data can be used in a princi-
pled manner for trusted hypothesis generation. We hope
that it will motivate careful a priori construction and
monitoring of statistical analysis plans utilising the lat-
est ML techniques. This is necessary to ensure optimal
evidence evaluation and learning through retrospective
discovery of TEH.

Our formal approach is illustrated step by step via an
open source R Markdown computational notebook [19]
which uses random forests (RF) [20] to retrospectively
analyse a randomised treatment trial in severe malaria
[21]; see the Methods section for further details on
RE. Throughout this paper we refer to subgroup anal-
ysis and TEH interchangeably. Clinically relevant sub-
groups are a consequence of TEH. We take the con-
vention that a subgroup is said to occur when the
optimal treatment allocation changes, whereas hetero-
geneity more broadly suggests a systematic differential
benefit of any one treatment. It is important to distin-
guish between such crossover and non-crossover TEH
(see Methods), the former directly resulting in a treat-
ment allocation that is dependent on patient charac-
teristics [22]. Non-crossover TEH can result in patient-
dependent optimal treatment allocation, but only when
additional factors (e.g. cost or side effects) are brought
into account to calculate the overall utility of each
treatment.

Methods

We reiterate the principle that subgroups of clinical
importance identified through a retrospective data anal-
ysis, from a trial not explicitly designed to identify these
subgroups, ultimately need to be validated in a focussed,
independent, follow-up RCT [1]. Subgroup analysis typi-
cally exploits data from trials that were designed to answer
a different primary question not involving subgroups, and
hence the analysis cannot by itself provide a complete pic-
ture of the evidence. In this respect, any ML subgroup
analyses should seek to establish the strength of evidence
that heterogeneous treatment effects are real (true posi-
tives). Establishing and controlling the false positive rate
of the discovery procedure mitigates the risk of follow-
ing false leads in subsequent confirmatory trials targeting
the putative subgroup, and aids in the communication of
evidence from the analysis. The following sections outline
a formal methodology for exploratory analysis with strict
control of the type I error.
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Predefining an ML subgroup statistical analysis plan (ML
subgroup-SAP)

Modern statistical and ML methods are able to automate
the discovery of subgroups in high-dimensional data, and
statistical scripting and programming packages such as
R or Python allow the analyst to construct routines that
take trial data as input and apply statistical or ML mod-
els to the data to identify potential heterogeneity. Here
we consider both crossover TEH, whereby the subgroup
is characterised by the set of patients predicted to bene-
fit from a change in treatment compared to the current
standard of care, and non-crossover TEH, whereby the
standard of care is everywhere optimal but the benefits
vary systematically across patient strata. The standard of
care should be defined prospectively (before looking at the
data), even if the analysis is retrospective.

In order to maintain the transparency of the evidence,
an ML subgroup-SAP should be prespecified before any
exploration of the primary RCT data has taken place. Fail-
ure to do so runs the risk of biasing the results [23]. When
formulating the analysis plan, covering either the ML or
statistical method (model) used for discovery, and the set
of potential stratifying measurements used by the method,
researchers should be cautioned against throwing in every
possible variable and every flexible method. There is a
principle here of ‘no free lunch; or rather ‘no free power’
The choice of discovery method and the potential vari-
ables to include is an important step. Methods that trawl
through measurements looking for interactions are not
panaceas or substitutes for careful thought, and the more
judicious the a priori data selection and choice of discov-
ery model, the higher the expected power and ability of
the analysis to detect true effects [24].

The analysis plan should also include the specification
of a test statistic that can compare overall patient benefit
between any two groups and that can be used to quan-
tify the type I error when declaring beneficial subgroups.
The form of this test statistic is study-specific and should
relate to the clinical outcome of interest, such as survival
time, cure rate, or a quantitative measurement of treat-
ment benefit. This will typically match that used in the
original study protocol of the primary trial.

False positive control of crossover interactions: subgroup
detection

Subgroup detection refers to the discovery of crossover
TEH whereby the optimal treatment allocation changes.
We propose using a held-out data approach to construct a
test for a global null hypothesis of ‘no true crossover TEH
(no subgroups)’ Figure 1 illustrates this procedure using
the example of a primary two-arm RCT where the original
trial failed to detect an overall benefit of the experimen-
tal treatment. The approach is as follows. The trial data
are repeatedly randomly divided into two subsets, with the
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ML method fitted independently and separately to each
subset. Each ML algorithm (or statistical model), trained
on one half of the data, is used to predict the individual
treatment effects and thus the optimal treatments for sub-
jects in the corresponding other half of the ‘held-out’ data,
and vice versa. Combining the resulting subjects whose
held-out predicted optimal treatment assignment differs
from the standard of care forms a held-out subgroup of
size ng from the original trial of sample size n. The actual
treatment administered to these subjects in the primary
RCT is random, such that in a balanced two-arm trial we
would expect half of the subjects, %ns, to have received the
standard of care and the other half the experimental treat-
ment. This then facilitates a two-sample hypothesis test,
using the test statistic defined in the analysis plan, with
a null hypothesis of ‘no improved subject benefit identi-
fied through the subgroup analysis plan’ The hypothesis
test compares the outcomes of the patients who were pre-
dicted to benefit from the experimental treatment and
who received the experimental treatment, to those pre-
dicted to benefit from the experimental treatment but
who received the standard of care. A one-sided test would
be appropriate if the test statistic measures patient bene-
fit. If there is no true benefit arising from the alternative
treatment in the subgroup identified by the ML model,
then the distribution of outcomes should be the same in
both groups, and thus the resulting p value is uniformly
distributed over [0,1]. If K iterations of this procedure
are run, randomising the 50-50 data-split at each itera-
tion, then we obtain corresponding K distinct p values
{p1,.-px}. We note that each of these is conservative in
that the discovery model on each subset has half the sam-
ple size to identify the subgroups. Finally it is possible
to form a conservative aggregated p value, summaris-
ing {p1,.,pK}, to compute a global significance test for
the presence of a benefitting subgroup. This aggregation
can be done by adapting a method developed for p-value
aggregation in high-dimensional regression [25]. In brief,
if o is the level of control of the type I error (this is usually
set to 0.05), then the set of p values can be merged into
one test using the following formula (adapted from [25]):

Paggregate = yrel}g}l] I:L 1- loga)Qy ({pt}{i1):| , ()

where Q, ({pi}X;) = min |:1, Quantile, ({1)7/1}11( 1):|
Quantile, (-) computes the y quantile of the set of p val-
ues which have been scaled by 1. This procedure sweeps
over y €[a, 1] to find the minimum value in Q,,. The term
1 — loga corrects for any inflation from searching over
multiple values of y. Alternately the analyst could fix y in
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Example: null hypothesis not rejected by a primary RCT with two arms

Repeat this procedure 1000x to obtain 1000 p-values. A global aggregated
(corrected) p value is then obtained (Eq 1).

\ 4

Step 1:

Randomly divide
the RCT data into
two equally sized
subsets, ‘A’ and ‘B’,
ensuring that
treatment is
balanced within
each subset. Note:
we will use the label
“T” to denote the
experimental
treatment, and “S”
for the standard-of-
care

Step 2:

Train a model, using only
the data in subset A, to
provide an individualized
treatment
recommendation for

for all subjects in B;
Repeat this operation,
training a model on B
and predicting optimal
treatments for subjects
in subset A

future subjects;
» Use this model to predict » subjects whose
the optimal treatment predictions assign them

Step 3:

Combine the
predictions and discard
those subjects
predicted S as their
optimal treatment,
leaving only those

Step 4:

Perform a two-sample
statistical test
comparing the
observed outcomes
from: (i) those subjects

predicted T who
» received T, versus; (ii)
those predicted T who

received S.

Under a null-
hypothesis that the
predictive model in
Step 2 provides no
benefit the resulting p-
value from this test is

to the experimental
treatment (T).

Note: the actual
treatment assigned to
these subjects will be
randomized in the
original RCT

uniform on [0, 1].

Fig. 1 lllustrative example of hypothesis testing in exploratory subgroup discovery using 1000 iterations of twofold cross-prediction. The example
considers a primary RCT with two arms where a null hypothesis of ‘'no improvement from the experimental treatment’ is not rejected; i.e. there is no
significant evidence of the experimental treatment providing improvement over the standard of care. Each random division results in a
corresponding p value against the null hypothesis of no benefitting subgroup. The p values are then aggregated for the overall test (Eq. 1)

the analysis plan, such as y = 0.5 to select the median p
value, and then compute:

B pi K
= Qo <{o.5 ,-—1> )

min (1, Median[ 2p1, 2p3, .., 2pk] ) -

(median)
aggregate

A proof of correctness for this aggregation procedure,
for any value of y € (0, 1), is provided in the supplemen-
tary Appendix, adapted from [25].

Note that if a true subgroup exists in the population
from which the RCT trial participants are drawn, then
s x 100% estimates the subgroup prevalence in that pop-
ulation. The more refined the subgroup, the smaller #; will
tend to be, and hence the resulting test will have lower
power to detect a true effect. That is, rarer subgroups are
harder to detect. Intuitively this highlights how the orig-
inal trial has reduced power to support more intricate
subgroup discovery.

Optimality of this procedure is obtained when the ran-
dom partitioning splits the data into two equal-size sub-
sets. The standard error across the predictions will be
proportional to 1/(/n1 + /n2), where n; + ny = n is
the total trial sample size. This is minimised for n; =
ny = n/2. We illustrate this optimality using RF applied
to simulated data; see supplementary material (Additional

file 1). The number of random partitions, K, should be
chosen large enough such that the aggregate p value sta-
bilises, rendering the analysis reproducible under different
initial random seeds. Stability with respect to K can be
visualised by the traceplot of the aggregated p value for
values k < Kpax. The exact number of random splits
required will depend on the context. In our simulation
studies, K = 1000 is more than sufficient, with results sta-
bilising around K = 200. However, an appropriate choice
of K is context-dependent.

False positive control of the added predictive benefit of
the ML analysis

The primary outcome in a standard RCT will often be
strongly associated with particular baseline covariates and
prognostic factors which are predictive of the event rate,
e.g. severity of disease or co-morbidities. Adjusting for
these differences in baseline risk greatly enhances the
power to detect subgroups of interest [26, 27]. Gener-
alised linear models (GLMs) provide one of the most
interpretable statistical model types for relating clini-
cal outcome to a multivariate combination of prognostic
factors and the randomised treatment. Using more com-
plex and therefore less interpretable ML methods needs
to be justified with respect to the added benefit over
such a baseline model. In this context, the utility of ML
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methods is in their ability to detect non-linear interactions
between prognostic factors and the randomised interven-
tion. Using exactly the same data-splitting approach as
for the discovery of statistically significant crossover sub-
groups, we can objectively evaluate the added benefit of
the ML method. We illustrate the approach using a binary
clinical outcome, y; € {0,1} for the ith subject, and a
logistic regression GLM, where

exp(Z;)
14+ exp(Z)

with the linear predictor Z; = X;8 + T;«a, for prognostic
variables X and randomised treatment indicator 7. The
procedure is summarised as follows.

Pr(Yi=1) =

e Tor K iterations:

1. Split the data into two equally sized subsets with a
balanced number of treated and untreated
individuals in each subset.

2. Fita GLM to each subset separately and record
for each individual their out-of-sample linear
predictor ZGLM =X; /3 + T;a, where (/3, ) are
obtained from the in-sample data fit.

3. Fit the ML method to each subset separately and
predict the out-of-sample outcome probabilities,
Pr(Y;=1) = P = fmL(X;, T;), to obtain the
corresponding log-odds out-of-sample prediction
ML _

L

4. Fita ‘stacked’ GLM model to the full dataset using
the # x 2 matrix of prediction values (ZGLM ZML)
as two independent covariate variables,

exp (ZG LMoGLM + 2{‘“ OmL)
1+ exp (ZI"MOGLa + ZMEOp1)

= log <*~) for each individual i

PriYi=1 =

to obtain (§GLM,§ML). Record the p value, pg,
assigned to an analysis of variance (ANOVA) test
for the model with 6,171 # 0 versus a model with
Opr = 0.

e Construct the aggregate p value from the set p1, .., px
using the adjustment method from Eq. 1.

This method is analogous to ‘stacking, a popular ML
technique whereby multiple competing models are aggre-
gated to form a more powerful ensemble model [28]. We
propose ‘stacking’ the standard accepted ‘vanilla’ statis-
tical model (a GLM) alongside the predictions from an
ML model. The aggregate p value formally tests the added
benefit of the ML-based predictions.

Exploratory analysis

These ML-driven procedures for both testing the presence
of crossover subgroups and for testing the added benefit
of ML-predicted TEH provide valid p values. Under the
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null hypothesis, the probability of falling below the sig-
nificance level o is upper bounded by . However, this
approach is by definition non-constructive: the output
does not report an estimate of the discovered subgroup or
an estimate of the treatment effect heterogeneity. A useful
analogy is a conventional ANOVA F test of significance
for levels of a factor. The ANOVA F test is an example of
an ‘omnibus test, which reports the significance (p value)
that the outcome varies across the factors, rather than an
estimate of the individual factor effects themselves. In a
similar manner, our procedure simply reports a p value,
subsequent to which further exploratory data analysis may
be warranted. If the aggregated p value falls below a pre-
specified significance level, the ML model can be fit to the
full dataset to estimate the individual treatment effects.
This could use methods developed specifically for the
determination of the structure of the TEH, e.g. [12, 14, 29],
which use RF, answering questions such as: Which indi-
viduals are contained within the subgroup? Which covari-
ates are predictive of the treatment effect heterogeneity?
Is the subgroup clinically relevant? For example, this could
be done via scatter plots of important covariates against
the individual treatment effects. It is often possible to
characterise a method detecting a true signal in the data
by a few simple rules, for example using a decision tree
(e.g. Fig. 2, panel D). By proceeding in this order, first
evaluating the p value for the null hypothesis, then under-
taking the exploratory analysis using the full data, formal
control of the type I error is obtained.

Transparency and reproducibility

It is essential that all the findings and analysis paths taken
are transparent and auditable to an external researcher.
This can be achieved through the use of statistical note-
books, akin to the laboratory notebook in experimental
science. Mainstream programming environments for data
analysis (such as R and Python) provide open source note-
books such as R Markdown or Jupyter which seamlessly
combine the analysis and the reporting. This allows all
the exploratory analysis paths to be curated. Research
recorded in a computational notebook is transparent,
reproducible, and auditable. Auditability can be further
improved without becoming burdensome through the use
of version control repositories such as github (https://
github.com) which record, timestamp, and preserve all
versions and modifications of the analysis notebooks. In
this way all of the steps, time lines, and historical evolu-
tion of the subgroup analysis are included, and the work
flow is open to external criticism and interrogation. Any
published results can be audited back to the original RCT.
Any p values or statistical estimates that point toward sub-
group effects that are reported subsequent to the hetero-
geneity tests need to be clearly labelled as such and treated
with caution, due to the potential for evidence inflation
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Fig. 2 Graphical visualisation and validation of treatment heterogeneity defined by non-crossover interactions in the SEAQUAMAT trial. Panels a and
b show the univariate relationships to the individual predicted treatment effect for total parasite biomass and base deficit, respectively. The thick
blue lines show spline fits to the data. Panel € shows the cumulative distribution of the p values for the added benefit of the ML model obtained by
repeated data-splitting and stacking of the standard model alongside the ML model. Significance (at the 5% level) is obtained if the black line crosses
above the red boundary. Panel d summarises the overall non-crossover interaction found by the random forest model with a pruned regression tree
model fitted to the individual treatment effects. The leaves of the tree in panel d show the mean treatment effect (difference in mortality between
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and post selective inference that arises from using the data
twice. We prefer to label such measures that follow after
data interrogation as qualitative, or g values, as the formal
statistical sampling uncertainty is often unknown [30].

Statistical and ML algorithms for subgroup detection

The optimal choice of statistical or ML algorithm will
depend on the context of the data and on the primary
endpoint of interest. When the number of candidate pre-
dictors is large but where the effects are likely to be
linear, then penalised regression models such as the least
absolute shrinkage and selection operator (lasso) or ridge
are generally recommended [31]. An alternative, particu-
larly if non-linear effects are expected, is random forests
(RF). RF are one of the most popular and general ML
methods in use today, in part as they consistently exhibit
good empirical performance with little to no tuning of
parameters. RF work by repeatedly building deep decision

trees' on bootstrapped subsamples of the data, and then
aggregating predictions made by the individual trees. RF
can be applied to both classification and regression. Chap-
ter 15 of reference [31] provides a detailed overview.

In brief, the standard RF algorithm for binary classi-
fication problems proceeds as follows (for example, as
implemented in the R package randomForest). A user-
determined number of binary decision trees are con-
structed, where each tree is constructed independently
of one another. Usually 500 trees are sufficient to obtain
approximate convergence, and this is the default setting
in the R package. Each tree is built on a random boot-
strapped version of the training data (using sampling
with replacement). At each node in the decision tree, a

IFigure 2, panel D gives an example of a shallow decision tree. In contrast, RF
build deep decision trees from subsamples of the data where the branches
(questions) descend until only a small number of samples lie within each leaf
of each tree. Predictions on new data are then averaged across all trees.
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user-determined number of predictive variables are sam-
pled without replacement (for classification problems the
default setting is the square root of the number of avail-
able predictors). The node is then defined as the optimal
data partition over all splits amongst the sampled vari-
ables with respect to a user-defined objective function (as
default the Gini impurity is used for classification). The
decision tree is grown until the number of training cases
in each leaf reaches a lower bound (the default is 1 for clas-
sification). Note that as the training data are split at each
internal node in the tree, the sample size on each branch
decreases monotonically down the tree. Prediction on a
new test case is done by aggregating the individual tree
predictions, thus giving a classification probability. RF are
also applicable to data with continuous endpoints, with
extensions to survival data [32], and further extensions
to the general detection of treatment effect heterogene-
ity [14]. Some of the well-known advantages of RF are
that they are generally insensitive to the tuning parameters
used in the model (e.g. the number of trees, the parame-
ters governing the depth of trees), and they can implicitly
handle missing values. In our illustrative application, we
use RF with the default parameter settings from the R
package randomForest. This analysis can be exactly repli-
cated using the compute capsule available on Code Ocean
[19], and readers are encouraged to play with the default
parameter settings should they wish to explore further.

Results

ML-driven exploratory RCT subgroup analysis

Panel 1 summarises how ML methods can be used for
exploratory analyses testing for the presence of signifi-
cant crossover TEH which results in statistically signif-
icant subgroups. The framework we propose is novel,
and it relies on recent results in the statistics literature
for aggregating correlated p values into a single, repro-
ducible p value for the null hypothesis ‘no crossover
TEH' The core of the framework relies on random data-
splitting and cross-prediction, leading to unbiased opti-
mal treatment predictions. To increase transparency, we
recommend using computational notebooks to document
the process, ideally prespecified via an ML subgroup-
SAP. In the following we illustrate how this framework
is applied to a large randomised treatment trial in severe
malaria, the analysis of which provides an open source
computational template for ML exploratory subgroup
analysis [19].

Antimalarial pharmacodynamics of artemisinin in severe
malaria

Severe Plasmodium falciparum malaria is a medical emer-
gency with case fatality rates ranging from 10 to 40% [33].
A recent major advance in the treatment of severe malaria
has been the introduction of parenteral artesunate. In
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Asia, this has been shown to reduce mortality by a third
[21], and in Africa by a fifth [34]. To illustrate the method-
ology advocated in this work, we use data from the
definitive study of artesunate for severe malaria in Asia
(SEAQUAMAT: South East Asian Quinine Artesunate
Malaria Trial). This was a large multi-country randomised
trial comparing intravenous quinine to intravenous arte-
sunate [21].

The superiority of parenteral artesunate for severe
malaria is now well established [35]. Thus, in this ret-
rospective analysis the artesunate arm is considered
‘standard of care. The complete statistical analysis is
published as an open source Code Ocean capsule and is
entirely reproducible [19]. This analysis provides an easily
adjusted template for new exploratory subgroup analyses
of different datasets.

We chose to use RF to fit the data, one of the most
popular and important ML methods in use today [20].
The RF method deals well with multiple correlated covari-
ates, as is the case in these data. We first evaluate
whether there is evidence for a subgroup of patients who
would benefit from quinine treatment as opposed to arte-
sunate. The subgroup analysis does not reject the null
hypothesis of homogeneous optimal treatment allocation’
(p = 1), showing that there is no evidence in the data of
any subgroup benefitting from quinine.

This analysis was followed by examining the added
benefit of the predictive RF ML model relating patient
survival to the baseline measurements and treatment. An
aggregation of the p values obtained by repeated data-
splitting and ‘stacking’ of the out-of-sample ML model
predictions alongside the validated best linear predictor
(the linear predictor on the logistic scale comprising Glas-
gow coma scale, base deficit, and treatment [36]) showed
a strongly significant added benefit of the RF ML model
(p = 1075, Fig 2, panel C). The statistical significance of
the repeated data-splitting and cross-prediction proce-
dure can be assessed visually by comparing the cumulative
distribution of the resulting p values against the boundary
curve as given by Eq. 1.

Further exploratory analysis attempted to characterise
possible interactions explaining this variation in predicted
individual treatment effect. This analysis showed that
significant TEH can be partially explained by the total
non-sequestered parasite biomass (panel A) and the base
deficit (panel B). This treatment heterogeneity can be
summarised using a pruned classification and regression
tree (CART) model decision tree (panel D). This suggests
that the greatest benefit of parenteral artesunate (esti-
mated as 20 percentage points difference in mortality) is
seen in patients with large numbers of circulating young
ring stage parasites (an interaction between total para-
sitaemia and % of young rings). This is not highlighting
a clinically relevant subgroup, but it helps elucidate the
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mechanism of action of artemisinin, a useful exercise in
light of emerging drug resistance [37]. Moreover, these
results are concordant with the current proposed mech-
anism of action of the artemisinin derivatives and the
importance of the artemisinin-specific mode of action in
the treatment of severe malaria. Artemisinin derivatives
kill a broader range of parasite stages compared to qui-
nine, notably the younger circulating ring forms, thereby
reducing further sequestration and subsequent death in
patients with a high parasite biomass [38].

Panel 1: Overview of exploratory hypothesis-
generating ML-guided analysis

o TEH results in either crossover or non-crossover
interactions Crossover interactions are actionable
and imply that the optimal treatment allocation dif-
fers between patients (e.g. there is a subgroup of
patients who benefit from a change in treatment
away from the standard of care). Non-crossover
interactions are those where one treatment is every-
where optimal but the level of benefit varies system-
atically with subject characteristics. Non-crossover
TEH, although not directly actionable, is important
for the understanding of intervention mechanisms
and subsequent cost-benefit analyses (which may be
actionable).

e Retrospective subgroup analysis Before under-
taking a retrospective hypothesis-generating sub-
group analysis on RCT data that have already been
collected, it is important to write a subgroup statisti-
cal analysis plan (subgroup-SAP), which should pre-
specify the statistical or ML algorithm and the set of
potential stratifying variables along with any poten-
tial explanatory, prognostic factors. This must define
the ‘standard-of-care’ treatment (which could be dif-
ferent from that used when the trial was designed).
More careful data curation will increase the power
to detect a true effect. The outcome variable should
ideally match that used in the main trial.

e Prospective subgroup analysis We recommend
including a subgroup-SAP with the main trial proto-
col. In the same way as for a retrospective analysis,
this must prespecify the variables included in the
analysis and the algorithm used for the subgroup dis-
covery. If the outcome variable is different from the
main trial outcome, this should be explicit.

e Random data partitioning for an unbiased
assessment of TEH A single unbiased, reproducible,
conservative p value testing the null hypothesis of
‘no crossover TEH’ can be obtained by aggregating
individual p values obtained by repeated balanced
twofold data-splitting with cross-prediction. This p
value can be taken at face value, and if below a pre-
specified significance level, the proposed subgroups
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from a full data analysis (fitting the same model to
the full dataset) can be used to inform further trials.
o Further exploratory analyses As data are accrued
and analysed, further reactive analyses may be
of interest. Such exploratory analyses are recom-
mended but should be clearly distinguished from
the main prespecified subgroup analysis. The p val-
ues generated from these analyses can be denoted ‘g
values’ (qualitative p values).

e Statistical notebooks The entire subgroup dis-
covery process should be undertaken using com-
putational notebooks (e.g. R Markdown, Jupyter).
Combined with version control tools such as github
and cloud computing such as Code Ocean, this allows
for a fully reproducible and transparent process.

Discussion

This work demonstrates how modern machine learning
algorithms can be trained safely to discover treatment
effect heterogeneity in a way that rigorously controls for
type I error. The validity of our data-splitting and cross-
prediction procedure holds irrespective of the method
used, provided that samples are independently recruited
from the study population—the same assumption neces-
sary for the validity of cross-validation methods. If this is
not the case, for example if patients are recruited in pairs,
or are related in some manner, then adjustments need to
be made to ensure that the p value reports the correct out-
of-sample evidence. The choice of discovery algorithm
should depend on the measurement variables collected
(how many, and of which type) and the primary or sec-
ondary outcomes of the study for which subgroup analysis
is to be applied, e.g. survival time, binary outcome, con-
tinuous risk score. The specification of the stratifying
measurements used by the method needs careful thought
under a principle of ‘no free power’ in that feeding in irrel-
evant predictor variables will reduce the ability to detect
true signals [24].

The approach we advocate here is generic. Exploring the
benefit of one predictive model over another, either tradi-
tional or machine learning, can be done within a common
statistical machine learning analysis plan, where the null
hypothesis is that Model B provides no additional benefit
in prediction over that of Model A. In our corresponding
compute capsule available on Code Ocean [19], we imple-
mented a test for the added benefit of random forests over
a generalised linear model, and the reader can easily adapt
this code to compare other models, traditional or other-
wise, as long as each model can provide a prediction of the
outcome following treatment.

It is important that the analysis is transparent, that the
methods, data transformations, and analytic procedures
are laid out and documented in an auditable plan, and that
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any code base used is properly documented and available
for scrutiny. We recommend the use of open source repos-
itories such as github or cloud computing services such
as Code Ocean for fully reproducible data analyses. By
following some simple guidelines, we hope to improve
upon the reliability and stability of subgroup analysis
reported in the literature. Recent advances in statistical
machine learning algorithms along with recent advances
in measurement technologies have the potential to impact
heavily and positively in the advancement of medical sci-
ence. However, alongside these advances great care must
be taken to ensure that the integrity of the statistical anal-
ysis and the validity of the evidence base are upheld at
all times.
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