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Abstract

Background: Bayesian adaptive designs can be more efficient than traditional methods for multi-arm randomised
controlled trials. The aim of this work was to demonstrate how Bayesian adaptive designs can be constructed for
multi-arm phase III clinical trials and assess potential benefits that these designs offer.

Methods: We constructed several alternative Bayesian adaptive designs for the Collaborative Ankle Support Trial
(CAST), which was a randomised controlled trial that compared four treatments for severe ankle sprain. These
designs incorporated response adaptive randomisation (RAR), arm dropping, and early stopping for efficacy or
futility. We studied the operating characteristics of the Bayesian designs via simulation. We then virtually re-
executed the trial by implementing the Bayesian adaptive designs using patient data sampled from the CAST study
to demonstrate the practical applicability of the designs.

Results: We constructed five Bayesian adaptive designs, each of which had high power and recruited fewer
patients on average than the original designs target sample size. The virtual executions showed that most of the
Bayesian designs would have led to trials that declared superiority of one of the interventions over the control.
Bayesian adaptive designs with RAR or arm dropping were more likely to allocate patients to better performing
arms at each interim analysis. Similar estimates and conclusions were obtained from the Bayesian adaptive designs
as from the original trial.

Conclusions: Using CAST as an example, this case study shows how Bayesian adaptive designs can be constructed
for phase III multi-arm trials using clinically relevant decision criteria. These designs demonstrated that they can
potentially generate earlier results and allocate more patients to better performing arms. We recommend the wider
use of Bayesian adaptive approaches in phase III clinical trials.

Trial registration: CAST study registration ISRCTN, ISRCTN37807450. Retrospectively registered on 25 April 2003.

Keywords: Bayesian adaptive design, Interim analysis, Multi-arm trial, Response adaptive randomisation, Arm
dropping, Monitoring, Orthopaedic, Emergency medicine, Randomised controlled trials, Phase III

Background
The traditional phase III trial design generally involves
randomising patients to one of two arms, often with
equal probability of allocation and using fixed sample
sizes. The sample size is calculated using frequentist
methods, which involve assuming a particular treatment
effect and type I error rate to achieve a particular level
of power. Phase III trials generally require large sample
sizes, have long duration, and many are declared

“unsuccessful” due to a perceived lack of difference be-
tween treatment arms [1]. For decades, statisticians have
been developing more efficient methods for designing
clinical trials, yet the majority of trials continue to use
traditional methods.
Adaptive trial designs have the potential to allow trials

to answer their questions more efficiently, particularly
for multi-arm trials, by enabling design components to
be altered based on analyses of accumulated data. Adap-
tive designs have been encouraged by regulatory bodies
(e.g. [2]) and a Consolidated Standards of Reporting Tri-
als (CONSORT) extension for adaptive designs is being
developed [3]. All possible decisions and adaptations
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must be specified before the trial commences, as well as
the decision criteria. Potential adaptations in multi-arm
trials include: stopping early for high probability of effi-
cacy or futility; arm dropping; and altering the random-
isation probabilities between arms, known as outcome
or response adaptive randomisation (RAR).
RAR methods are increasingly being proposed as an al-

ternative to equal randomisation (ER) for comparative tri-
als since they allow the treatment allocation probabilities
to be updated at each interim analysis based on the ac-
crued outcome data. For instance, the probability of being
assigned to an arm could increase when the accumulated
outcome data suggest that the treatment arm is superior,
and thus maximises the number of patients receiving the
better treatment. Advocates of RAR consider it to be more
ethical than ER since it can allow more patients to be
treated with superior treatments [4–6] whilst providing in-
formation about treatment efficacy. However, the use of
RAR in phase III trials is controversial, particularly for
two-arm trials where it may be inefficient [7, 8].
Arm dropping may be performed in multi-arm trials

to remove an arm that does not appear to be effective
(e.g. [9]). There is no globally optimal method for pa-
tient allocation in multi-arm trials and the choice of
method depends on the aims and setting of the trial, as
some allocation methods may be more practical than
others. It is also advantageous to have planned interim
analyses so that if the treatment effect is large and there
is a high probability of claiming superiority, or con-
versely, if the treatment effect is very small or non-
existent, then the trial can be stopped early.
Adaptive designs have often been constructed and ap-

plied in phase III trials using frequentist approaches (e.g.
[10, 11]). Further advantages to trial design and analysis
can be gained by using Bayesian methods. The Bayesian
approach allows previous information on the treatment
effect or response to be incorporated into the design via
the prior distribution. The prior distribution is updated
as data are observed in the trial to become a posterior
distribution. The posterior distribution provides prob-
abilistic statements about the values of various measures
of interest, such as the treatment effect, adverse event
rates, or arm with the maximum response. For instance,
one could obtain from the posterior distribution the
probability that the relative risk is less than 1. The prior
and posterior distributions also account for uncertainty
in the unknown values of the measures of interest.
Bayesian approaches may be used for fixed or adaptive
designs. The posterior distribution may be updated at
any time to incorporate current information and can be
used to drive the decisions at the interim analyses, in
what we refer to as a “Bayesian adaptive design”.
Bayesian adaptive designs have often been used in

early-phase trials, but there are few published phase III

trials that have used a Bayesian adaptive approach from
the design phase (e.g. [12–14]). In this work we will ex-
plore how Bayesian adaptive designs could be con-
structed for an emergency medicine (orthopaedic) multi-
arm trial and examine the potential benefits that these
designs may offer.

Methods
Case study
The Collaborative Ankle Support Trial (CAST; [15–17])
was a phase III pragmatic, individually randomised con-
trolled trial (RCT) that compared the effectiveness of three
types of mechanical ankle support with tubular bandage
(control) for patients with severe ankle sprains. The three
interventions were the Aircast® ankle brace, the Bledsoe®
boot, and a below-knee cast. Patients above 16 years of
age with an acute severe ankle sprain who were unable to
bear weight, but had no fracture, were recruited from
eight emergency departments in England. The primary
outcome was the quality of ankle function at 12 weeks
post-randomisation as measured by the foot- and ankle-
related quality of life (QoL) subscale of the Foot and Ankle
Outcome Score (FAOS) [18]. The FAOS QoL subscale
ranges from 0 (extreme symptoms) to 100 (no symptoms).
Randomisation occurred 2–3 days after the initial visit to
the emergency department at a follow-up clinical visit.
The CAST study was designed using frequentist

methods and initially planned to have a fixed-sample de-
sign, but the sample size was subsequently altered using
adaptive sample size re-estimation. A pragmatic ap-
proach to estimating the sample size was used, where
the Data Monitoring Committee (DMC) reviewed the
assumptions regarding the baseline pooled standard de-
viation of the primary outcome [15]. No comparison of
between-group differences was performed during the
trial in the original CAST study and no alpha was spent
during the study (until the final analysis).
Originally a target sample size of 643 patients was re-

quired to provide more than 90% power to detect an ab-
solute difference of 10 in the FAOS QoL, assuming a
two-sided type I error rate of 5%, a small to moderate ef-
fect size and 20% loss to follow-up [16, 17]. The sample
size calculation was based on a standard sample size cal-
culation for a two-sample t test with equal variances
[16]. The minimal clinically important difference
(MCID) in the FAOS QoL subscale was specified as a
change between 8 and 10. The aim of this trial was to
identify the best arm for treatment of severe ankle
sprains to assist in recovery. A limited number of com-
parisons between the treatment arms were pre-specified
in a hierarchical order to protect against the conse-
quences of multiple testing.
After reviewing the underlying assumptions of the sam-

ple size calculation, a revised sample size was calculated
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by the DMC after 100 participants were recruited and an
estimated target of 480–520 participants provided at least
80% power to detect the MCID, assuming a two-sided
type I error rate of 5% [17].
The CAST study randomised 584 patients: 144 to

tubular bandage, 149 to Bledsoe® boot, 149 to Aircast®
brace, and 142 to below-knee cast. At 12 weeks post-
randomisation, the FAOS QoL was estimated to be 53.5
(95% confidence interval (CI) 48.4–58.6) for the tubular
bandage arm. Clinically important benefits were found
at 12 weeks in the FAOS QoL with the below-knee cast
compared to the tubular bandage (mean difference 8.7;
95% CI 2.4–15.0) and with the Aircast® brace compared
to the tubular bandage (mean difference 8; 95% CI 1.8–
14.2). The Bledsoe® boot did not offer a clinically im-
portant difference over the tubular bandage (mean dif-
ference 6.1; 95% CI 0–12.3). These estimates were
adjusted for baseline FAOS QoL (standardised using the
median as the centre), as well as age and sex.

Potential adaptations for Bayesian designs
In our Bayesian adaptive designs we want to quickly
identify the best performing intervention arm. A second-
ary aim is to deliver the best therapy to patients within
the trial. Our designs will reward better performing arms
and remove poorly performing arms. The Bayesian adap-
tive designs were constructed as one-sided superiority
studies as we were interested in demonstrating improve-
ment over control.
To achieve this, the following types of adaptations will

be explored: RAR, arm dropping and early stopping for
either efficacy or lack of benefit (futility). Below we de-
scribe how these adaptive features have been incorpo-
rated into the Bayesian designs, as well as the rules with
which these adaptations could be implemented. The
rules for implementing these adaptations were deter-
mined based on the input of clinicians, criteria used in
previous studies (e.g. [5, 19]) and the results of simula-
tions which explored a range of clinically relevant values.
Decision thresholds (stopping boundaries, arm dropping
thresholds, trial success criteria) were also chosen to op-
timise the probability of trial success, the average num-
ber of patients randomised, and the proportion of
patients randomised to the best therapy. Stopping
boundaries and final analysis success criteria were also
chosen to ensure that practically relevant values were
used and that the simulated one-sided type I error rate
was <2.5%.
The Bayesian adaptive designs were constructed by a

statistician (EGR) who was independent of CAST and
who was blind to the data and results of the trial until
the operating characteristics of the designs had been
simulated. The designs were constructed using the
CAST protocol, and discussions were held with CAST

investigators (SEL and EW) to derive the design parame-
ters, using as similar values to the original study as pos-
sible, and to determine how the adaptive features could
be incorporated to ensure the designs were practically
feasible.

Interim analysis schedules and candidate designs
We investigated a range of interim analysis schedules
where adaptations could be performed every 50, 100 or
200 patients due for their primary outcome assessment
(12 weeks post-randomisation). We note that, operation-
ally, fewer interim analyses are typically preferred. We
found that performing RAR or arm dropping more fre-
quently increased the probability of trial success and de-
creased the average sample size (results not shown), and
so we only present the adaptive designs that performed
RAR or arm dropping every 50 patients. Assessment of
early stopping for efficacy or futility was performed every
200 patients due for their primary outcome assessment
in each adaptive design. This was performed less fre-
quently than RAR/arm dropping to control the type I
error and reduce operational complexity, particularly for
the monitoring committees who may not need to meet
for randomisation probability updates or arm dropping
decisions. A fixed Bayesian design was also investigated
for comparative purposes. For each adaptive design, the
maximum sample size was specified to be the same as
the original planned sample size (N = 643). The Bayesian
designs explored are described in Table 1. We note that
an interim analysis at 600 patients due for their primary
outcome assessment may not provide much additional
benefit, unless recruitment is slow, since the maximum
sample size may have been randomised by this time.
Wason et al. [20] discuss the importance of considering
the recruitment rate and follow-up duration when plan-
ning the timing of interim analyses in adaptive designs.

Response adaptive randomisation
ER was used prior to the first interim analysis. We
wanted to use RAR so that more allocations could be
given to the better dose. A number of methods have
been proposed for calculating the trial arm allocation
probabilities for RAR (e.g. [4, 5, 19, 21, 22]), depending
on the aims of the trial. We use the approach given
in Equation 2 of [22]. At each interim analysis the ran-
domisation probabilities for the intervention arms were
updated to be proportional to the posterior probability
that the arm was the best intervention arm:

Pr πt ¼ maxfπboot ;πbrace;πbelow−knee castð g dataj Þγ ;
ð1Þ

where πt is the probability that intervention arm t is the
best arm and πboot, πbrace, πbelow − knee cast are the
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probabilities that each of the intervention arms are the
best. This probability was raised to the power γ to avoid
extreme randomisation probabilities. We chose γ = 0.6
based on the operating characteristics it produced. The
randomisation probabilities were then adjusted to sum
to 1. Enrolment was suspended to arms that had a ran-
domisation probability <0.1 (and the randomisation
probabilities were re-adjusted to sum to 1). The sus-
pended arm(s) could re-enter the randomisation alloca-
tion at later interim analyses if the randomisation
probabilities crossed above the threshold.
Similar to Viele et al. [23], we explored designs that

employed different approaches for control arm alloca-
tion in RAR. First, we simulated trials in which the con-
trol allocation was matched to the intervention arm with
the highest probability of allocation. This maximises the
power for the comparison of the best arm to the control.
We then assumed a fixed control allocation of approxi-
mately 40%, which may be preferred for logistical rea-
sons. Various fixed allocations for the control were
explored via simulation and the allocation of 40% was
chosen based on the resulting power it produced (results
not shown). A similar optimal control allocation has
been previously found [23, 24]. Finally, we explored a
design in which the control arm (tubular bandage) allo-
cation varied according to its probability of being the
best arm. In this design, all arms were considered as in-
terventions, and recruitment to the tubular bandage arm
could be suspended if it had a low probability of being
the best arm (as for the other arms).

Arm dropping
We also investigated the use of permanent arm dropping,
where an arm could be dropped if it had a low posterior
probability (<10%) of being the best arm at an interim
analysis. In the arm dropping designs, the control arm
could not be dropped, but any intervention arm could be
dropped. If an arm was dropped, the randomisation block

size was reduced, but the overall maximum sample size
was kept the same. Equal allocation was used for the
remaining arms.

Early stopping for efficacy or futility
Early stopping for efficacy and futility was assessed at in-
terim analyses performed when 200, 400 and 600 pa-
tients were due for their primary outcome assessment
visit (12 weeks post-randomisation) in all adaptive
designs.
For most of the adaptive designs explored (designs 2–

5; Table 1), we allowed early stopping for efficacy if
there was a fairly large posterior probability of there be-
ing an MCID of 8 between the best intervention arm
and the tubular bandage in the primary outcome (Eq. 2)
and if there was a high probability (>90%) that the arm
is the best arm (Eq. 3):

Pr θBest−θtubular bandage > 8jdata� �
> Si ð2Þ

and

Pr πt ¼ maxfπboot ;πbrace;πbelow−knee castð g dataj Þ > 0:9

ð3Þ

where θBest and θtubular bandage are the FAOS QoL
scores at 12 weeks for the best intervention arm and the
tubular bandage, respectively, and Si is the stopping
boundary for efficacy at interim analysis i for the com-
parison of the best arm to the tubular bandage.
Both criteria in Eqs. 2 and 3 must be met for the trial

to stop early for efficacy. The Si values used were 0.75,
0.7 and 0.6 for interim analyses performed at 200, 400
and 600 patients due for their primary outcome visit, re-
spectively. These values were used for designs 2–5
(Table 1). The stopping boundaries were chosen to en-
sure acceptable power and were clinically relevant
values.

Table 1 Bayesian adaptive designs explored for the Collaborative Ankle Support Trial

Design Interim analysis
schedulea

Arm allocation Control allocation Early stopping

1 None 1:1:1:1 Equal to other arms None

2 Every 200 patients 1:1:1:1 Equal to other arms Efficacy or futility every
200 patients

3 Every 50 patients Arm dropping assessed at each
interim analysis

Equal to other arms Efficacy or futility every
200 patients

4 Every 50 patients RAR at each analysis Matched to best intervention arm Efficacy or futility every
200 patients

5 Every 50 patients RAR at each analysis Fixed at 40% Efficacy or futility every
200 patients

6 Every 50 patients RAR at each analysis No designated control; tubular bandage is treated as
an intervention arm

Efficacy or futility every
200 patients

RAR Response adaptive randomisation
aAt number of patients due for primary outcome follow up (at 12 weeks post-randomisation)
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We also defined success criteria for the trial at the
final analysis to enable the type I error and power to be
calculated and compared across the designs. At the final
analysis, the trial was declared successful for designs 1–5
if:

Pr θBest−θtubular bandage > 8 jdata� �
> 0:5 ð4Þ

If this criterion was not met, then the trial was de-
clared unsuccessful.
For designs 2–5, early stopping for statistical futility

was based on having a small posterior probability that
the best arm is better than the tubular bandage:

Pr θBest > θtubular bandage j data
� �

< 0:05 ð5Þ
Design 6 (Table 1) used RAR where allocation to the

tubular bandage arm could vary according to its prob-
ability of being the best arm. This design focussed on
identifying the best arm overall with a high probability
rather than looking for an MCID between intervention
arms and the tubular bandage arm. The motivation be-
hind design 6 was to reduce allocation to poorly per-
forming arms, including the tubular bandage arm. Early
stopping for efficacy or futility was based on the prob-
ability of being the best arm, evaluated at the best arm:

Pr πt ¼ maxfπtubular bandage; πboot;πbrace;πbelow−knee cast
� �

dataj Þ;

where t is the best arm. If this probability was <0.1 at in-
terim analyses performed at 200, 400 or 600 patients,
then the trial was stopped early for futility. If this prob-
ability was >0.975 at 200 patients, >0.95 at 400 patients,
or >0.925 at 600 patients, then the trial was stopped
early for efficacy. The trial was deemed to be successful
at the final analysis if this probability was >0.9. These
stopping boundaries were chosen to produce high power
and (1-sided) type I error <2.5%.

Simulation settings
Simulations of the designs were performed in the Fixed
and Adaptive Clinical Trial Simulator (FACTS; version
6.2) [25] software so that the operating characteristics of
each design could be studied. We used a recruitment rate
of 5 patients/week and assumed it took 12 weeks to reach
this recruitment rate. We also explored recruitment rates
of 25 and 56 patients/week (assuming it took 12 weeks to
reach these recruitment rates). We used the same dropout
rate that the original study design assumed (20%).
The posterior distribution was estimated for each treat-

ment arm, and the FAOS QoL estimates at 12 weeks were
adjusted for the baseline scores using a linear model. The
(unadjusted) mean response for each arm was assumed to
be normally distributed with a mean FAOS QoL of 50 and
a standard deviation of 20. The variance of the FAOS QoL
was modelled using an inverse-gamma distribution, where

the central variance value was assumed to be 202 and a
weight of 1 was used (giving α = 0.5, β = 200). There was lit-
tle previous information available at the time that the
CAST study was designed and so we relied upon the opin-
ions of clinicians in forming the prior distributions. Further
details on the model and priors used are given in
Additional file 1.
Prior to the start of the CAST study there was uncer-

tainty regarding the effect size and FAOS QoL values, and
so we simulated a range of different true effect size scenar-
ios for each design. The different scenarios explored for
the primary outcome in each arm are given in Table 2.
We simulated 10,000 trials for each scenario in Table 2

for each design. The type I error was estimated using the
proportion of simulations that incorrectly declared the trial
to be successful when no difference was present in the true
primary outcome scores (null scenario above). The power
was calculated as the proportion of simulations that cor-
rectly declared the trial to be successful, when at least one
treatment was superior in the true FAOS QoL score.
We wanted to accurately estimate the response of the

arm that was chosen to be the best. Some studies have
shown that RAR can lead to a larger estimation bias
compared to ER (e.g. [8]). To quantify bias in the esti-
mates of the best arm responses, we use the mean
square error (MSE) of estimation where the expectation
is taken over the space of successful trials since estima-
tion of the best arm is only important in this scenario.

Virtual re-execution of designs
A virtual re-execution of the CAST study was performed
by implementing the Bayesian designs using the CAST
data to illustrate the application and potential benefits of
the Bayesian adaptive designs on a real-world trial. We
maintained the original enrolment dates for the CAST pa-
tients in the re-execution. Since designs 3–6 incorporated
arm dropping or RAR every 50 patients, the required allo-
cations for these designs are unlikely to match the alloca-
tions that actually occurred in the CAST data. Therefore,
at each interim analysis we used the updated randomisa-
tion probabilities to obtain allocations for the next 50 pa-
tients and then randomly sampled (with replacement) a
CAST patient for the re-execution dataset that had a
matching treatment allocation and was randomised into
the original CAST study within ±6 weeks of the re-
execution enrolment date. To avoid bias, for each design
the trial was virtually re-executed 1000 times by drawing
data from the CAST dataset and performing the interim
analyses. A flow diagram of the re-sampling and interim
analysis process for designs 3–6 is given in Fig. 1. Further
details are given in Additional file 1.
Designs 1 and 2 had fixed arm allocation probabilities

throughout the trial, and so we could use the actual CAST
data in the virtual executions of these designs without the
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need for re-sampling. We also used a simplified version of
the process described in Fig. 1 to re-sample many datasets
from the CAST data to virtually execute designs 1 and 2
so that their results were more comparable to those from
designs 3–6. This also enabled us to examine potential
gains in efficiency over a range of datasets.
Since the CAST study only recruited 584 patients, we

were unable to perform all planned interim analyses. The
last interim analysis for early stopping for efficacy/futility
occurred at 400 patients. The final analysis occurred once
follow-up data had been collected for the 584 patients.
The re-executions were performed in R (version 3.5.0; R
Foundation for Statistical Computing) and the JAGS pack-
age [26] was used to perform the Bayesian analyses. We
used a similar approach to Luce et al. [27] to perform the
virtual re-executions and re-sampling of patients.

Results
Operating characteristics for Bayesian designs
Select operating characteristics for the Bayesian designs
are presented in Table 3 and Fig. 2. Further operating
characteristics are given in Additional file 2. Boxplots of
the distribution of the allocations to the control/tubular
bandage and true best arm for each scenario across the
10,000 simulations are presented in Fig. 3. The effect of
using a faster recruitment rate is summarised in
Additional file 3.
The Bayesian adaptive designs generally offered a de-

creased average sample size and increased power/prob-
ability of trial success across the scenarios explored,
compared to the Bayesian fixed design (design 1). The
Bayesian adaptive designs only offered small savings in the
average sample size for the null scenario (Naverage = 637–
642 compared to N = 643 in the fixed design) since we
used stringent futility stopping rules. For designs 1–5,
which used efficacy criteria based on the probability of an
MCID, the simulated type I error was approximately 0.
Whilst the efficacy stopping boundaries could have been
lowered to produce a type I error closer to 2.5%, we felt
that lower thresholds for efficacy stopping would not have
been practically sensible nor accepted by the clinical

community. Designs 2–5 offered modest reductions in the
average sample size when a difference of 5 was assumed
between the tubular bandage and the best intervention
arm, with design 2 producing the lowest average sample
size (Naverage = 617) and highest probability of trial success
(14.54%).
Designs 4 and 5, which performed RAR, tended to pro-

duce the lowest average sample sizes and highest power
for the scenarios where one arm was clearly performing
best and had an MCID, in other words “One works, 10
more”, “Better, best”, and “One worse, others work” sce-
narios. Based on the average sample sizes, these designs
offered savings of 142–193 patients across the above-
mentioned scenarios whilst maintaining >84% probability
of having a successful trial. Designs 2 and 3 were only
slightly less efficient for these scenarios. For the scenario
where two arms offered the same MCID (“All work, two
similar”), designs 2–5 offered similar savings to the sample
sizes (Naverage = 584–589) and provided similar probability
of trial success (range 89.15–91.79%).
Bayesian design 6, which used RAR and allocated all

arms according to their probability of being the best arm,
had an acceptable type I error of 2.3%. Design 6 offered
large sample size savings for the “One works, 10 more”,
“Better, Best” and “One worse, others work” scenarios
where the average sample sizes ranged from Naverage = 379
to Naverage = 473 across these scenarios. The probability of
trial success was ≥94% for design 6 for these three scenar-
ios. This design offered moderate gains in efficiency for
the “One works, 5 more” and “All work, two similar” sce-
narios, with average sample sizes of Naverage = 589 and
Naverage = 592, respectively, and probabilities of trial suc-
cess of 68.53% and 67.88%, respectively.
We also simulated a scenario where all the interven-

tion arms were inferior to the tubular bandage arm
(mean FAOS QoL 50, 45, 45, and 45 for tubular ban-
dage, boot, brace, and below-knee cast, respectively;
standard deviation = 20 for each arm). In designs 1–5, all
of the simulated trials were declared to be unsuccessful
at the final analysis for this scenario and 41.72–58.91%
of the simulated trials stopped early for futility (designs

Table 2 Scenarios explored for Bayesian designs

Scenario Mean control/tubular bandage FAOS
QoL (SD)

Mean boot FAOS QoL
(SD)

Mean brace FAOS QoL
(SD)

Mean below-knee cast FAOS QoL
(SD)

Null 50 (20) 50 (20) 50 (20) 50 (20)

One works, 10 more 50 (20) 50 (20) 50 (20) 60 (20)

One works, 5 more 50 (20) 50 (20) 50 (20) 55 (20)

Better, Best 50 (20) 55 (20) 60 (20) 65 (20)

One worse, others
work

50 (20) 45 (20) 55 (20) 60 (20)

All work, two similar 50 (20) 55 (20) 60 (20) 60 (20)

FAOS Foot and Ankle Outcome Score, QoL quality of life, SD standard deviation

Ryan et al. Trials           (2020) 21:83 Page 6 of 16



2–5). For this scenario, design 6 had similar results to
the “One arm works, 5 more” scenario since it did not
consider the tubular bandage to be a control arm and
considered one arm to be superior by an FAOS of 5.
A faster recruitment rate was found to decrease the effi-

ciency of the adaptive designs (Additional file 3). Due to
the lack of successful trials in the null and “one arm
works, 5 more” scenarios for the majority of designs, the
MSE was not calculated for these scenarios. The adaptive
designs tended to have slightly higher MSE than the fixed
design, apart from design 6 which had lower MSE. RAR
and arm dropping designs had lower MSE compared to

the design that just had early stopping for efficacy or futil-
ity (design 2).
Across the designs, the correct selection of the best arm

was made in 94–100% of the simulated trials, where at
least one arm was superior to control by an MCID (see
Additional file 2). From Table 3 and Fig. 3, it can be seen
that, on average, more allocations were given to the best
arm under designs that incorporated RAR or arm drop-
ping when at least one arm was superior. Equal allocation
to the treatment arms was achieved in the null scenario
for these designs. Design 6 tended to allocate the highest
proportion of patients to the best arm. Designs 3–5

Fig. 1 Flow diagram showing the process for the virtual re-execution of designs 3–6. Response adaptive randomisation or arm dropping was
performed every 50 patients until the final analysis (at N = 584). Early stopping for efficacy or futility was assessed every 200 patients. The process
depicted in this figure was repeated 1000 times. CAST Collaborative Ankle Support Trial
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Table 3 Operating characteristics for Bayesian designs for the Collaborative Ankle Support Trial

Scenario Proportion
stopping early for
efficacy

Proportion
stopping early for
futility

MSE Mean proportion
allocated to control

Mean proportion
allocated to boot

Mean proportion
allocated to brace

Mean proportion
allocated to below-knee
cast

Null (50, 50, 50, 50)

Design
1

NA NA NA 0.25 0.25 0.25 0.25

Design
2

0.0063 0.013 NA 0.25 0.25 0.25 0.25

Design
3

0.0025 0.0248 NA 0.36 0.21 0.21 0.21

Design
4

0.0022 0.0125 NA 0.33 0.22 0.22 0.22

Design
5

0.0015 0.0134 NA 0.37 0.21 0.21 0.21

Design
6

0.0117 0 NA 0.25 0.25 0.25 0.25

One arm works, 10 more (50, 50, 50, 60)

Design
1

NA NA 2.77 0.25 0.25 0.25 0.25

Design
2

0.732 0 5.03 0.25 0.25 0.25 0.25

Design
3

0.6919 0.0022 3.68 0.40 0.11 0.11 0.39

Design
4

0.796 0 3.56 0.39 0.11 0.11 0.39

Design
5

0.7909 0 3.29 0.36 0.10 0.10 0.44

Design
6

0.9972 0 2.34 0.13 0.13 0.13 0.61

One arm works, 5 more (50, 50, 50, 55)

Design
1

NA NA NA 0.25 0.25 0.25 0.25

Design
2

0.1091 0.0015 NA 0.25 0.25 0.25 0.25

Design
3

0.0624 0.0052 NA 0.39 0.13 0.13 0.35

Design
4

0.0733 0.0008 NA 0.37 0.14 0.14 0.35

Design
5

0.0677 0.001 NA 0.37 0.13 0.13 0.37

Design
6

0.5654 0 NA 0.15 0.15 0.15 0.54

Better best (50, 55, 60, 65)

Design
1

NA NA 3.29 0.25 0.25 0.25 0.25

Design
2

0.7953 0 5.11 0.25 0.25 0.25 0.25

Design
3

0.6843 0.0001 4.16 0.37 0.10 0.19 0.34

Design
4

0.8177 0 4.05 0.36 0.11 0.19 0.35

Design
5

0.8069 0 3.86 0.36 0.10 0.18 0.37

Design 0.8982 0 1.95 0.07 0.10 0.22 0.61
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tended to have similar allocations. The designs with RAR
or arm dropping (designs 3–6) had a fairly large variation
in their allocations to the best arm and the control, and
were quite often skewed in their distribution. For design 3,
the proportion of arm drops was low for the best arm and
high for the other arms (Additional file 2).

Virtual re-execution of designs
Table 4 presents a summary of the virtual re-execution
of the CAST study under each Bayesian design across
the 1000 trials that re-sampled the CAST study data.
The results of the re-executions show that the Bayesian

adaptive designs recommended early stopping for efficacy
in 7.6–25.9% of trial re-executions, with the most frequent
early stopping occurring in design 2 which had fixed allo-
cations and only allowed for early stopping of the trial.
None of the trial re-executions recommended early stop-
ping for futility since all of the interventions performed
better than the tubular bandage. At the final analysis for
designs 1–5, 83.5–89.4% of the trials were declared suc-
cessful. Design 6, where decisions were based on having a
high probability of being the best arm, had a low

proportion (23%) of trials that were declared successful at
the final analysis. This is due to the fact that the brace and
below-knee cast had similar primary outcome scores, and
both performed well compared to the other arms. Thus,
one arm was not often declared superior with a high prob-
ability. For each of the Bayesian designs, the below-knee
cast was most frequently declared the best arm at the final
analysis in the re-executions and thus had the same con-
clusion as the original trial.
The medians of the posterior estimates for the treat-

ment effects over the 1000 re-executions were generally
similar to the original frequentist analysis estimates. De-
signs 4 and 5 (RAR with control allocation matched to
best arm and RAR with fixed control allocation, respect-
ively) had slightly lower estimates of the mean difference
between Bledsoe boot and tubular bandage. Design 6
had slightly higher estimates of the mean difference be-
tween the ankle brace and tubular bandage, and also be-
tween the below-knee cast and tubular bandage. One
should also bear in mind that the re-executions were
performed on re-sampled data from the original dataset,
and so the estimates are likely to vary slightly.

Table 3 Operating characteristics for Bayesian designs for the Collaborative Ankle Support Trial (Continued)

Scenario Proportion
stopping early for
efficacy

Proportion
stopping early for
futility

MSE Mean proportion
allocated to control

Mean proportion
allocated to boot

Mean proportion
allocated to brace

Mean proportion
allocated to below-knee
cast

6

One worse, others work (50, 45, 55, 60)

Design
1

NA NA 2.96 0.25 0.25 0.25 0.25

Design
2

0.6341 0 5.10 0.25 0.25 0.25 0.25

Design
3

0.6123 0.0005 3.86 0.38 0.07 0.18 0.36

Design
4

0.6872 0 3.67 0.38 0.07 0.18 0.37

Design
5

0.6856 0 3.43 0.36 0.07 0.17 0.40

Design
6

0.8972 0 1.95 0.10 0.07 0.22 0.61

All work, two similar (50, 55, 60, 60)

Design
1

NA NA 3.39 0.25 0.25 0.25 0.25

Design
2

0.2701 0 5.24 0.25 0.25 0.25 0.25

Design
3

0.2692 0.0004 3.87 0.36 0.11 0.27 0.26

Design
4

0.2744 0.2744 3.73 0.35 0.12 0.27 0.27

Design
5

0.2744 0 3.54 0.37 0.10 0.26 0.27

Design
6

0.5493 0 2.93 0.06 0.12 0.41 0.41

MSE mean square error, NA not applicable
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Fig. 2 Average sample sizes (a, c, e, g, i, k) and probability of trial success (Pr(Success); b, d, f, h, j) for each design. Each row represents a
different scenario: a, b “Null” scenario; c, d “One works, 10 more”; e, f “One works, 5 more”; g, h “Better, Best”; i, j “One worse, others work”; k, l
“All work, two similar”. The type I error is represented in b; The power is given in d, f, h, j, l
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Further summaries of the results and randomisation
allocations at each interim analysis for each adaptive de-
sign are given in Additional file 4, as well as the results
for the re-executions of designs 1 and 2 where no re-
sampling of the data was performed. These results show
that the randomisation probabilities differed between
Bayesian designs 4–6 at each interim analysis, and that
these RAR designs often had quite different allocations

to the CAST study, depending on which arm was “the
best” at that interim analysis.

Discussion
Summary
In this study we have demonstrated how Bayesian adap-
tive designs can be constructed for phase III multi-arm
RCTs. Using an orthopaedic trial as a case study, we

Fig. 3 Allocations (Prop Alloc) across 10,000 simulated trials for the tubular bandage arm and true best arm. Each design is represented on the x
axis. a “One works, 10 more” tubular bandage allocation; b “One works, 10 more” true best arm allocation; c “One works, 5 more” tubular
bandage allocation; d “One works, 5 more” true best arm allocation; e “Better, Best” tubular bandage allocation; f “Better, Best” true best arm
allocation; g “One worse, others work” tubular bandage allocation; h “One worse, others work” true best arm allocation; i “All work, two similar”
tubular bandage allocation; j “All work, two similar” true best arm allocation
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outline the process involved in constructing the designs,
describe the adaptive schemes and stopping rules
employed, and demonstrate the behaviour of the designs
through their operating characteristics across a range of
scenarios. We also performed virtual executions of the
Bayesian designs using data from the CAST study to
demonstrate the decisions that would be made using the
Bayesian designs and the trial data. Through use of the
Bayesian adaptive approach we were able to make deci-
sions about whether to stop the trial early based on the
probability of having an MCID, update the randomisa-
tion allocations according to the probability of being the
best arm, and suspend recruitment to arms that had a
low probability of being the best.
Based on the operating characteristics, the use of Bayesian

adaptive designs for this case study generally increased the
power and decreased the average sample size compared to a
fixed design. The use of RAR generally offered slightly in-
creased power and slightly smaller average sample sizes
compared to adaptive designs that employed equal random-
isation allocations at each interim analysis (with or without
arm dropping) when it was assumed that one arm offered
an MCID. Small sample size savings were obtained when no

effect or a small effect was assumed to occur, and when two
arms were assumed to have an MCID. All designs had low
type I error and high probabilities to detect an MCID in at
least one arm when it was assumed that one arm was super-
ior and had an MCID. The correct selection of the best arm
was made in 94–100% of the simulated trials where at least
one arm was superior to control with an MCID. Use of
RAR or arm dropping produced simulated trials that gave
more allocations to the best arm when at least one arm was
superior. Equal allocation occurred when the arms had ap-
proximately the same primary outcome scores.
Design 6, the decisions of which were made based on

the probability of being the best arm, showed that it
could potentially produce large savings in sample size
for scenarios where one arm was clearly superior and
had an MCID, whilst maintaining high power. However,
this design was less efficient when two arms showed a
similar improvement compared to the other arms since
it was unable to declare a single arm as superior with a
high probability. Design 6 had different objectives and
decision criteria to the other Bayesian designs, and so
care should be taken when choosing a preferred design
since the designs are tailored to the aims of the

Table 4 Summary of re-executions of the Collaborative Ankle Support Trial using each Bayesian design

Design 1 Design 2 Design 3 Design 4 Design 5 Design 6

Proportion stopping for efficacy at 200
patients

NA 0.216 0.148 0.166 0.147 0.072

Proportion stopping for efficacy at 400
patients

NA 0.043 0.011 0.017 0.011 0.004

Proportion stopping for futility at 200 patients NA 0 0 0 0 0

Proportion stopping for futility at 400 patients NA 0 0 0 0 0

Proportion re-executions declared successful
at final analysis

0.855 0.894 0.835 0.865 0.877 0.23

Proportion re-executions tubular bandage
(control) declared best at final analysis

0 0 0.001 0 0 0

Proportion re-executions boot declared
best at final analysis

0.054 0.057 0.085 0.036 0.021 0.007

Proportion re-executions brace declared
best at final analysis

0.437 0.402 0.43 0.451 0.481 0.432

Proportion re-executions below-knee cast
declared best at final analysis

0.509 0.541 0.484 0.513 0.498 0.561

Median (IQR) of the posterior mean estimates
for tubular bandage

54.25 (52.70–
55.68)

53.72 (51.90–
55.46)

54.40 (52.99–
55.74)

53.91 (52.52–
55.30)

53.97 (52.64–
55.33)

52.49 (51.68–
52.96)

Median (IQR) of the posterior estimates of
the difference in means between boot
and tubular bandage

5.60 (3.65–7.48) 6.00 (4.02–8.25) 5.65 (3.75–7.56) 4.77 (2.42–6.84) 4.85 (2.58–7.05) 6.42 (3.98–8.15)

Median (IQR) of the posterior estimates
of the difference in means between brace
and tubular bandage

8.60 (6.52–
10.63)

8.66 (6.67–
10.89)

7.62 (4.81–
10.22)

8.48 (5.65–
10.71)

8.67 (5.99–
10.73)

9.64 (6.01–
11.66)

Median (IQR) of the posterior estimates of
the difference in means between below-knee
cast and tubular bandage

8.70 (6.86–
10.91)

9.69 (7.22–
13.29)

8.06 (5.44–
10.53)

8.79 (6.57–
11.39)–

8.68 (6.58–
11.27)

10.57 (8.69–
11.78)

IQR interquartile range, NA not applicable
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investigators. Criteria such as those used in Design 6 are
useful for multi-arm studies in which the investigators
want to order the treatments by effectiveness.
The virtual executions of the Bayesian designs using

the CAST data showed that early stopping for efficacy
only occurred in a small proportion of trials and that no
trials stopped early for futility. At the final analysis,
>80% of the trials were declared successful in the 1000
executions of designs 1–5. When design 6 was executed
1000 times using the resampled trial data, only 23% of
the trials were declared successful at the final analysis
since both the brace and below-knee cast performed
similarly well and a “best arm” was not declared with a
high probability. A benefit of design 6 was that the tubu-
lar bandage arm, which was the control arm in the other
designs, had smaller allocation probabilities which
allowed more allocations to better performing arms. The
below-knee cast was most often declared the best arm at
the final analysis in the re-executions, and so the Bayes-
ian designs led to the same conclusion as the original
trial. If we had known a priori that two arms were likely
to perform similarly well, then we would have chosen
different success criteria. These results also reflect the
problem of dichotomy at a final analysis—if we just re-
ported posterior probabilities of a treatment benefit or
MCID then the trial would likely have been viewed more
optimistically.
The decisions made at the interim and final analyses

of the Bayesian designs were driven by the primary out-
come. We did not incorporate other outcomes and are
not intending that the conclusions generated in this re-
execution be used to inform clinical practice or to alter
the conclusions of the original study.
Recruitment can often be challenging in clinical trials,

causing delays in their delivery. Approaches which re-
duce the sample size whilst maintaining high power to
determine the effect of interventions should be wel-
comed by study teams to assist them in completing re-
cruitment on time and within budget.

Limitations
Adaptive designs have great promise for producing trials
with better operating characteristics but present a num-
ber of practical challenges. Korn and Freidlin [28] pro-
vide a summary of some of the advantages and
disadvantages of different adaptive design elements.
Wason et al. [20] provide a discussion around the situa-
tions in which adaptive designs are and are not useful,
and some of the logistical challenges they present.
Adaptive designs require a larger amount of expertise

and work to build and evaluate potential designs com-
pared to fixed designs, often involving extensive simula-
tions, and may take more effort to obtain approval from
review boards. However, the use of the simulations

forces the study team to consider the effects of faster/
slower recruitment, follow-up length, smaller effect sizes
than anticipated, or higher/lower response rates than an-
ticipated on the operating characteristics of the adaptive
designs. Thus, the simulations required by adaptive de-
signs allow study teams to anticipate the effects of differ-
ing trial conditions, which are often not considered
when using traditional designs.
Adaptive designs can also be more complicated to imple-

ment. Performance of the interim analyses and making the
required adaptations is dependent on being able to collect,
enter, clean and analyse data in a timely manner, and alter
the randomisation system with ease. This requires the trial
management team, statisticians, programming teams and
trial treatment providers/intervention suppliers to be re-
sponsive to changes that need to be made. Otherwise, the
adaptive designs may lose their gains in efficiency. Timely
data entry may be difficult for orthopaedic studies where
primary outcomes may be obtained from patient-
completed questionnaires that are collected within a 2- to
4-week window of a long follow-up period. The rapid
changes required may not be possible in all trial settings.
The interim analyses also need to be adequately spaced

to allow time for DMCs and Trial Steering Committees
(TSCs) to meet. Statistically, more frequent interim ana-
lyses generally produce better operating characteristics for
designs that use RAR or arm dropping (e.g. [29]), but fre-
quent interim analyses may not always be practical. The
DMC/TSC may not necessarily need to meet for every in-
terim analysis, for example for RAR adaptations, but
would need to meet for stopping decisions.
The types of adaptations that can be made to multi-arm

trials are situation-dependent. RAR presents difficulties in
being able to anticipate and arrange for the delivery of
treatments. The original CAST study design, which had
fixed allocations, allowed the supply of treatment arms
(including the supply of staffing) to be planned more easily
than a design with RAR. RAR may not always be possible
due to restrictions on resources for delivering the treat-
ments or delays in collecting the primary outcome data.
Closure of arms may be practically easier to achieve, par-
ticularly for a trial such as CAST for which there need to
be sufficient supplies of each treatment available as well as
staff proficient in their administration. Whilst early stop-
ping of trials may have benefits for funding agencies, aca-
demic trial investigators often do not wish to terminate
trials early due to potential loss of research income and
staff retention. Changes in funding models are likely to be
required to fully take advantage of innovation in trial de-
sign, such as a minimum study time funded with a mech-
anism to release funding if full study time is required.
Additionally, trials that stop early may have little informa-
tion on the long-term effects of treatment, on secondary
outcomes, or on cost-effectiveness. They are also likely to
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produce less precise estimates of the treatment effects.
Gallo [30] provides further discussion on some of the op-
erational challenges in adaptive design implementation.
Multi-arm, multi-stage (MAMS) designs are another

method for improving the efficiency and ethics in multi-
arm trials (with a common control) where experimental
arms may be dropped at pre-planned analysis points if
they show insufficient evidence of effectiveness. Wason
and Trippa [6] showed that Bayesian designs with RAR
are more efficient than MAMS designs when there is a
superior experimental arm, but that MAMS designs per-
form slightly better if none of the experimental arms are
effective. They also showed that the operating character-
istics for the RAR designs were less sensitive than
MAMS designs to changes in the amount of primary
outcome data available at the interim analyses to the ori-
ginal planned number.
The use of RAR remains controversial and some of its

properties are not well understood by clinicians. RAR has
its greatest potential in multi-arm trials but has limited
usefulness in two-armed trials [7, 31]. Adaptive designs
are more susceptible to changes in patient population over
time. Designs with RAR have been shown to be robust to
moderate changes in patient population, and certain RAR
rules have been shown to be effectively unaffected by time
trends [32, 33], but adaptive designs are not appropriate if
the patient population changes dramatically during the
trial. When evaluating adaptive designs, simulation is re-
quired to illustrate the operating characteristics and po-
tential benefits, and investigate potential biases introduced
by each adaptive feature.
Fairly short follow-up times, relative to the planned re-

cruitment duration, are required for adaptive designs to
offer improved efficiency. Adaptive designs are difficult
to implement for very fast recruitment rates, particularly
for studies that have relatively longer follow-up periods
since less information will be available at each interim
analysis [6, 20]. We also found that a faster recruitment
rate decreased the efficiency of the adaptive designs.
This poses difficulties for phase III trials, such as those
performed in orthopaedics/rehabilitation, since the pri-
mary outcome is often based on long-term measures,
and it may be difficult to design adaptive trials without
extending the time frame of recruitment to allow for the
interim analyses and potential adaptations to occur.
Thus, there may be a trade-off in reduced sample size
but increased recruitment time (at a slower recruitment
rate) for some adaptive trial design contexts.
In this work we virtually executed each of the pro-

posed Bayesian designs using trial data to illustrate their
practical applicability. However, in reality, one design
would have been chosen and implemented, depending
on its operating characteristics, practical restraints and
the aims of the trial. Although we tried to ensure that

the statistician (EGR) remained blind to the trial results
until the design operating characteristics had been ob-
tained via simulations, the study clinicians were involved
in discussions around the prior distributions and stop-
ping criteria. It is difficult to completely remove hind-
sight bias in these historical case studies.
When virtually executing the designs that incorporated

arm dropping or RAR, re-sampling from the original
trial data was required to obtain the required randomisa-
tion allocations. This may lead to an underestimation of
the uncertainty in the results [5]. We addressed this by
re-executing the CAST study 1000 times and re-sampled
patients within each trial. If different datasets had been
used, different conclusions may have been obtained
using these designs.
We did not simulate the decision making process of a

DMC/TSC. We have assumed that the decision-making
process was driven by the primary outcome, but the
DMC/TSC would also examine safety data and any rele-
vant external evidence. Whilst the role of these commit-
tees is to ensure that the study protocol is accurately
followed, they may also need to make deviations to en-
sure patient safety. For example, RAR may recommend
increasing the allocation probability to an arm that has a
higher rate of adverse events—an event that was not
accounted for in the RAR algorithm. Alterations to the
previously defined adaptations can lead to unknown op-
erating characteristics.
The Bayesian adaptive designs were constructed as one-

sided superiority studies, whereas the original CAST study
was a two-sided trial. We were interested in demonstrat-
ing improvement over a much cheaper control and felt
that a DMC would be unlikely to continue enrolment into
a poorly performing comparator just to show it is worse.
Under most of our Bayesian adaptive designs, if an inter-
vention arm performed poorly it would be dropped or
have a very low probability of allocation. Harm may or
may not be reflected in the FAOS QoL score, but the
DMC could intervene if any arms were causing harm.
The designs presented here are situation-specific and

have been tailored to the clinical situation and aims of
the CAST study. The definition of a successful trial and
the level of sufficient evidence required to make deci-
sions will differ between researchers and stakeholders,
and will depend on the consequences of the actions that
may be taken. The designs and findings from this work
will not generalise to all phase III RCTs, but similar ap-
proaches can be used to construct Bayesian adaptive de-
signs. We recommend that simulations are used to study
the impact of each type of adaptive component on the
operating characteristics when constructing Bayesian
adaptive designs for multi-arm trials.
One of the potential barriers to using Bayesian adaptive

designs in practice is the computational time and
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resources that are required to construct the designs. Trial-
ists or statisticians less familiar with Bayesian methods
may not have the time or knowledge to program their
own Bayesian adaptive designs, and commercial solutions
such as FACTs may not be available to all. A review of
available software and code for adaptive clinical trial de-
signs is provided by Grayling and Wheeler [34].

Conclusions
To enable phase III trials to achieve their aims, more ef-
ficient methods are required. Innovation in clinical trial
design is extremely important as it can potentially im-
prove the efficiency, quality of knowledge gained, cost
and safety of clinical trials. In this work we have demon-
strated how Bayesian adaptive trials can be designed and
implemented for multi-arm phase III trials. Using a pub-
lished example from orthopaedic medicine, we highlight
some of the benefits of these designs, particularly for
multi-arm trials.
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