
Young et al. Trials          (2019) 20:552 
https://doi.org/10.1186/s13063-019-3577-z

METHODOLOGY Open Access

Interval-cohort designs and bias in the
estimation of per-protocol effects: a
simulation study
Jessica G. Young1* , Rajet Vatsa2, Eleanor J. Murray3,6 and Miguel A. Hernán3,4,5

Abstract

Background: Randomized trials are considered the gold standard for making inferences about the causal effects of
treatments. However, when protocol deviations occur, the baseline randomization of the trial is no longer sufficient to
ensure unbiased estimation of the per-protocol effect: post-randomization, time-varying confounders must be
sufficiently measured and adjusted for in the analysis. Given the historical emphasis on intention-to-treat effects in
randomized trials, measurement of post-randomization confounders is typically infrequent. This may induce bias in
estimates of the per-protocol effect, even using methods such as inverse probability weighting, which appropriately
account for time-varying confounders affected by past treatment.

Methods/design: In order to concretely illustrate the potential magnitude of bias due to infrequent measurement of
time-varying covariates, we simulated data from a very large trial with a survival outcome and time-varying
confounding affected by past treatment. We generated the data such that the true underlying per-protocol effect is
null and under varying degrees of confounding (strong, moderate, weak). In the simulated data, we estimated
per-protocol survival curves and associated contrasts using inverse probability weighting under monthly
measurement of the time-varying covariates (which constituted complete measurement in our simulation), yearly
measurement, as well as 3- and 6-month intervals.

Results: Using inverse probability weighting, we were able to recover the true null under the complete
measurement scenario no matter the strength of confounding. Under yearly measurement intervals, the estimate of
the per-protocol effect diverged from the null; inverse probability weighted estimates of the per-protocol 5-year risk
ratio based on yearly measurement were 1.19, 1.12, and 1.03 under strong, moderate, and weak confounding,
respectively. Bias decreased with measurement interval length. Under all scenarios, inverse probability weighted
estimators were considerably less biased than a naive estimator that ignored time-varying confounding completely.

Conclusions: Bias that arises from interval measurement designs highlights the need for planning in the design of
randomized trials for collection of time-varying covariate data. This may come from more frequent in-person
measurement or external sources (e.g., electronic medical record data). Such planning will provide improved estimates
of the per-protocol effect through the use of methods that appropriately adjust for time-varying confounders.
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Background
In randomized trials, the per-protocol effect is the effect
that would have been estimated if all participants had
adhered to their randomly assigned treatment strategies
during the entire follow-up [1]. However, because adher-
ence to the assigned treatment strategy is not in itself
randomized, a naive comparison that excludes trial partic-
ipants who fail to adhere to their assigned strategies will
generally be biased [2].
For example, in a trial of a new treatment versus stan-

dard of care to treat coronary heart disease, adherers to
the treatment may be individuals who also tend to take
antihypertensive treatment. Thus, a lower rate of disease
among adherers may simply reflect their higher uptake
of antihypertensives rather than a benefit of the treat-
ment under study. Therefore, analyses that attempt to
estimate the per-protocol effect typically need to adjust
for prognostic factors that, like antihypertensive use in
our example, are also associated with adherence. That is,
per-protocol analyses are observational analyses of the
randomized trial data and therefore need to adjust for
confounders.
In randomized trials of point interventions that are

administered shortly after randomization (e.g., a one-dose
vaccination, a one-time screening test), adherence to the
assigned intervention is fully determined at baseline and
therefore can only be affected by baseline factors. The
implication is that per-protocol analyses of point interven-
tions only need to adjust for baseline confounders. On the
other hand, in randomized trials of treatment strategies
that are sustained during the follow-up (e.g., treatment for
coronary heart disease, antiretroviral treatment for HIV-
positive patients), adherence to the treatment strategy
must also be sustained during the follow-up. The implica-
tion of this potentially time-varying adherence is that per-
protocol analyses of sustained strategies need to adjust
for time-varying confounders — time-varying prognostic
factors that affect treatment decisions — as well as for
baseline confounders — baseline prognostic factors that
affect treatment decisions [3–6]. For example, in a ran-
domized trial to estimate the effect of two antiretroviral
therapies on mortality, an increased alcohol intake dur-
ing the follow-up is a time-varying confounder because it
affects both the risk of death and of non-adherence to the
assigned treatment.
It follows that valid estimation of the per-protocol

effect of sustained treatment strategies requires adequate
data collection of treatment and confounders after ran-
domization. Many randomized trials collect such post-
randomization data, but most only do so at pre-specified
intervals (e.g., every 12 months). Because non-adherence
may occur at any time during the follow-up, the con-
founders measured at the pre-specified times may not
be sufficient or relevant to adjust for non-adherence that

took place at an unknown time between the pre-specified
measurement times.
In this paper, we review the impact of interval mea-

surement on the estimation of per-protocol effects in
randomized trials [7]. We conduct a simulation study
to illustrate the potential magnitude of bias, even using
causal inference methods for longitudinal settings such
as inverse probability (IP) weighting [8], which appropri-
ately account for time-varying confounders affected by
past treatment.

Methods
Simulation design
We simulated data from a hypothetical randomized trial
to quantify the effect of a new drug treatment compared
to the standard of care on 5-year mortality risk.
Each individual is assigned to either the new drug treat-

ment (Z = 1) or to standard of care (Z = 0) and followed
until death or the administrative end of the study (60
months post-randomization), whichever comes first. We
assume the exact month of death is known, as is common
when studies link their data with death registries. For sim-
plicity and without loss of generality, no individual is lost
to follow-up.
Define t = 0, . . . , 60 as an index of follow-up month

with t = 0 the month of randomization (baseline). Let Yt
be an indicator of death by month t with Y0 ≡ 0 for all
individuals (all participants are alive and therefore at risk
of the outcome at baseline) and At an indicator of whether
the new drug treatment is taken in month t. An individual
deviated from the protocol in the first month t in which
At �= Z. In our simulated study approximately 40% of indi-
viduals in both arms deviated from the protocol at some
point during the follow-up. Figure 1 shows the cumulative
proportion of protocol deviations over the study period by
treatment arm.
In randomized trials, treatment At will typically depend

on both baseline (e.g., sex, race, baseline age) and post-
baseline (e.g., lab measurements, concomitant medica-
tions) risk factors for the outcome (e.g., death). Let Lt =
(L1t , L2t) be a vector of such risk factors in month t, with
L1t a lab measurement (continuous) and L2t the use of a
concomitant medication (binary).
The causal diagram in Fig. 2 outlines the data-

generating process of our simulated study. The node U
represents a vector of baseline unmeasured outcome risk
factors that also may affect Lt (e.g., genetic factors) with
no direct effect on treatment at any time (as depicted by
the absence of an arrow from U into At−1 or At in Fig. 2).
As expected in many realistic settings, the time-varying
covariates Lt alsomay be affected by past treatment adher-
ence (as depicted by the arrow from At−1 to Lt in Fig. 2).
For example, adherence to the standard versus the new
treatment may affect values of future lab measurements.



Young et al. Trials          (2019) 20:552 Page 3 of 9

Fig. 1 Proportion of participants who deviate from the protocol over the study period by treatment arm

We generated the data such that 100,000 individuals
are assigned to each arm. We quantified bias for a given
approach by the difference between the effect estimate
obtained by that approach in this very large sample and
the true effect value. Had we used a smaller sample size
(e.g., 100 individuals assigned to each arm), random vari-
ability could explain some differences between effect esti-
mates and the true values of the effect (unless we had used
the average over a large number of small samples, which is
nearly equivalent to generating a single very large sample
— this is illustrated in Additional file 2).
We generated the data such that both the causal effect

of treatment At for all t and the direct effect of random-
ization (Z) not mediated through treatment are null, as
shown in Fig. 2 by the absence of any causal paths (paths
consisting of arrows going in the same direction) con-
necting Z, At−1, or At with the future outcome (Yt+1).

Therefore, both the intention-to-treat effect and the per-
protocol effect are null.

Data-generating models
We generated longitudinal data according to the fol-
lowing models for each subject i = 1, . . . , 200, 000
(i = 1, . . . , 100, 000 assigned Zi = 1 and i =
100, 001 . . . , 200, 000 assigned Zi = 0): Ui was generated
from a uniform distribution between 0 and 1. Then the
following were generated for each month t = 0 until
t = 59 or until Yt+1i = 1 was generated, whichever came
first:

• L1ti was generated from a normal distribution such
that L1ti = 6Ui − At−1i − cumavg(At−2i) +
0.25cumavg(L1t−1i) + 0.01t + εi with
εi ∼ N(0, σ = 2) , cumavg(At−2i) is the cumulative

Fig. 2 A causal diagram representing the underlying mechanism for protocol deviations in our study
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average of (A0i, . . . ,At−2i), and cumavg(L1t−1i) is the
cumulative average of (L10i, . . . , L1t−1i).

• L2ti was generated from a Bernoulli distribution with
mean pL2i, equal to the probability that L2t = 1 given
individual i ’s treatment and covariate history and
survival to t, defined such that
logit(pL2i) = −5 + 3Ui + 1.25cumavg(L1ti) +
0.5L2t−1i + 0.25At−1i + 0.25cumavg(At−2i) + 0.01t.

• For any individual i deviating from the protocol by
t − 1 (i.e., At−1i �= Zi), we set Ati = At−1i (once an
individual stops complying we assume they stay
non-compliant). Alternatively, for any individual i
complying with the protocol through t − 1 (i.e., all
Aji = Zi for j < t), Ati was generated from a Bernoulli
distribution with mean pAi, equal to the probability
that At = 1 given individual i ’s treatment and
covariate history and survival to t, such that

logit(pAi) = α0 + 0.4cumavg(L1ti) + 0.35L2t−1i. (1)

For individuals assigned Zi = 1 (active treatment), we
set α0 = 4.0. For individuals assigned Zi = 0
(standard of care), we set α0 = −6.5.

• The death indicator Yt+1i was generated from a
Bernoulli distribution with mean pYi, equal to the
probability that Yt+1 = 1 given individual i ’s
treatment and covariate history and survival to t,
such that

logit(pYi) = θ0 + θ1Ui. (2)

We considered three versions of this data-generating
mechanism, varying the values of θ0 and θ1 in the model
(2). As we explain in the section “Defining and estimating
the per-protocol effect”, given our data-generatingmodels,
the magnitude of θ1 determines the magnitude of time-
varying confounding (and θ0 the baseline event rate). We
considered the following variations: “strong confounding”
θ1 = 8 (θ0 = −11), “moderate confounding” θ1 = 3
(θ0 = −7), and “weak confounding” θ1 = 0.5 (θ0 = −6).
We also considered three variations of the “strong con-
founding” scenario under different choices of α0 in model
(1) that reduced the chance of deviating from the protocol
in both arms. Table 1 displays the cumulative proportion
of protocol deviations by the end of the study period by
treatment arm resulting from different choices of α0.
R code implementing this simulation design is provided

in Additional file 1.

Defining and estimating the intention-to-treat effect
We can define the intention-to-treat effect for any follow-
up month t+1 = 1, . . . , 60 as a contrast of the cumulative
risks in arm Z = 1, Pr [Yt+1 = 1|Z = 1] versus in arm
Z = 0, Pr [Yt+1 = 1|Z = 0]. Our data generation, under

Table 1 Proportion of protocol deviations under different
choices of α0 in (1) by arm under “strong confounding”

Scenario Arm α0 Cumulative proportion deviated

0 Z = 1 4.0 41%

Z = 0 -6.5 41%

1 Z = 1 5.0 21%

Z = 0 -7.5 20%

2 Z = 1 6.0 9%

Z = 0 -8.5 8%

all scenarios, is consistent with no confounding for the
effect of Z on survival, as illustrated in Fig. 2 by the
absence of any open backdoor paths (open paths consist-
ing of arrows going in different directions and, therefore,
non-causal paths) [9] connecting the treatment arm indi-
cator Z and the future outcome Yt+1. As a result, and
because of the absence of loss to follow-up, a simple com-
parison of the estimated risks (i.e., cumulative incidences)
in arm Z = 1 versus arm Z = 0 is an unbiased estimator
of the intention-to-treat effect Pr [Yt+1 = 1|Z = 1] ver-
sus Pr [Yt+1 = 1|Z = 0] at any post-randomization time
t + 1 = 1, . . . , 60.
We are able to recover the true intention-to-treat effect

in our study, regardless of the presence of protocol devi-
ations, because unbiased estimation of the intention-to-
treat effect only relies on the random assignment of Z and
no loss to follow-up. In contrast, unbiased estimation of
the per-protocol effect requires additional assumptions.

Defining and estimating the per-protocol effect

Let Ya=1
t+1 denote an individual’s indicator of death by

month t + 1, had she, possibly contrary to fact, continu-
ously followed the protocol in arm Z = 1. Similarly, let
Ya=0
t+1 denote this outcome bymonth t+1, had she, instead,

continuously followed the protocol in arm Z = 0. We can
then formally define the per-protocol effect at month t+1
as a contrast of the counterfactual risks:

Pr
[
Ya=1
t+1 = 1|Z = 1

]
versus Pr

[
Ya=0
t+1 = 1|Z = 0

]
.

(3)

Note that, because Z was randomly assigned, we
could alternatively define the per-protocol contrast
as Pr

[
Ya=1
t+1 = 1

]
versus Pr

[
Ya=0
t+1 = 1

]
(unconditional on

Z). Many randomized trials include a “naive” per-protocol
analysis in which the survival curves are estimated after
censoring participants at the time that they deviate from
the protocol. This “naive” approach generally fails to
recover the true per-protocol effect because it fails to
account for confounding for the effect of received treat-
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ment due to risk factors that affect both future adherence
and survival. In Fig. 2, such confounding is represented by
open backdoor paths connecting At−1 and At to Yt+1, e.g.,
the path At ← Lt ← U → Yt+1. The data-generating
models we have described previously ensure the pres-
ence of this path by the dependence of At on past values
of the time-varying risk factors (L0, . . . , Lt), the depen-
dence of Lt on U, and the dependence of Yt+1 on U. As
described in the section “Data-generatingmodels”, we var-
ied the degree of confounding (strong, moderate, or weak)
by varying themagnitude of the parameter θ1 in themodel
(2), which quantifies the strength of the dependence of
Yt+1 on U.
Even though there is confounding for the per-protocol

effect, the data generation mechanism in our study still
allows unbiased estimation of the per-protocol effect as
long as the study actually recorded all monthly covariates
Lt and treatments At . Graphically, in Fig. 2 there are no
open backdoor paths connecting At−1 and At to Yt+1 con-
ditional on past time-varying covariate changes [9]. For
example, the open backdoor path At ← Lt ← U →
Yt+1 is blocked by conditioning on Lt . Note that the mea-
surement of the variable U is unnecessary to adjust for
confounding when the variables Lt are measured in all t.
However, valid estimation of the per-protocol effect

(3) requires the use of adjustment methods that, like IP
weighting, can handle the fact that Lt is affected by past
treatment [3, 4, 10]. We give a detailed description of
the IP weighting algorithm in Additional file 2 and the R
code in Additional file 1. Briefly, this approach involves:
(1) as in the naive analysis, censoring participants when
they deviate from their assigned protocol; (2) estimating
IP weights which, at each time, are either 0 for censored
participants or the reciprocal of the cumulative product
of the time-varying probabilities of adherence to the pro-
tocol given the participant’s measured confounder history
up to that time for uncensored participants; and (3) esti-
mating IP weighted survival curves. Risk differences and
risk ratios can then be estimated by the complement of
the IP weighted survival estimates. In addition to full mea-
surement of the time-varying covariates, the validity of
this approach also relies on correct specification of the
model for the adherence probabilities in step 2.

Estimating the per-protocol effect under interval
measurement
In practice, many randomized trials are conducted as
interval cohorts such that adherence and covariates are
recorded only at regular, scheduled follow-up times.
When there are gaps between measurement times, the
full history of treatment and covariate changes over the
follow-up will not be completely observed and, generally,
there will be unmeasured confounding; that is, under our
data-generating assumption represented by Fig. 2, open

backdoor paths will remain after conditioning on only the
measured past. Also, the full history of treatment changes
will be only partially observed. Under a non-null scenario,
failure to measure interim treatment changes may pro-
duce an additional source of unmeasured confounding for
treatment effects even at measured times; e.g., in Fig. 2,
were there an arrow fromAt−1 into Yt+1, then an unblock-
able open backdoor path (by failure to measure At−1)
connecting At and Yt+1 would be present. Partial knowl-
edge of treatment changes thus also requires some form
of imputation to estimate the per-protocol effect which
is defined by counterfactual intervention in all months,
not only months in which measurements are taken. Any
imputation method may rest on strong assumptions, for
example, imputation under the assumption that treat-
ment does not change during measurement gaps or under
missing at random (MAR) assumptions [11].
Suppose, without loss of generality, that the inter-

val between measurements is constant throughout the
follow-up, e.g., m months. We computed an IP weighted
estimator of the per-protocol effect (3) and corresponding
estimates of the counterfactual survival curves had all par-
ticipants continuously complied with the protocol in each
treatment arm under an interval-cohort scenario with
m = 12, that is, a scenario in which treatment and covari-
ate changes are measured only at baseline and then every
12 months. In interim months, treatment and covariates
were set to the last measured value and the contribution
to the weight cumulative product set to 1 for all subjects
at these times. In this scenario, there will be residual con-
founding by failure to adjust for time-varying covariates
at unmeasured times. At measured times, IP weights can
only be based on the inverse probability that a subject con-
tinues to adhere in month s given her partially measured
confounder history. This probability is unknown under
our data-generating mechanism (because we generated
each At from the full history). Thus, we would also expect
some bias due to model misspecification under this sce-
nario. Here we chose to model adherence based on the
cumulative average of past measured values of the contin-
uous time-varying covariate (based on only the baseline
and every 12-month measurement) and the current value
of the binary covariate (as the value from the previ-
ous month, the true value needed, will not be measured
in this case).

Results
Intention-to-treat effect estimates
Figure 3 shows the estimated intention-to-treat sur-
vival curves Pr [Yt+1 = 0|Z = 1] and Pr [Yt+1 = 0|Z = 0]
based on the the cumulative proportion of deaths in each
arm by each follow-up month. Results are shown for
the “strong confounding” scenario and the main study
of approximately 40% deviators per arm (Scenario 0 in
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Fig. 3 Intention-to-treat survival estimates by treatment arm

Table 1). As expected, there is no bias in these estimates
of the intention-to-treat effect; the curves completely
overlap, which is consistent with the fact that the true
intention-to-treat effect is null in all months t + 1.

Naive versus IP weighted per-protocol effect estimates
under full measurement
As illustrated by the top panel of Fig. 4, in our study a
“naive” unweighted estimator that ignores time-varying
confounders fails to recover the true null per-protocol
effect because the curves do not overlap. Rather the esti-
mates of the per-protocol 5-year risk difference and risk
ratio for standard versus new treatment are 0.11 and 1.77,
respectively. The bottom panel of Fig. 4 shows IP weighted
estimates of the per-protocol effect under full measure-
ment of the time-varying covariates (m = 0). As expected,
the estimated survival curves completely overlap, consis-
tent with the truth, which is null. Figure 4 depicts results
only under strong confounding. As expected, survival esti-
mates across treatment arms under the naive approach
that ignores confounding become closer as the strength
of confounding weakens, while IP weighted estimates of
the survival curves completely overlap under all scenarios
(weak and moderate results are not shown).

IP weighted per-protocol effect estimates under interval
measurement
In the interval-measurement scenario, we are generally
unable to recover the truth of no per-protocol effect.
In our study, IP weighted per-protocol effect estimates

under m = 12 diverged from the null as the strength
of confounding increased. Specifically, Fig. 5 shows that
differences in the survival curves increase with the
strength of confounding, which results in 5-year risk dif-
ference/risk ratio estimates of 0.034/1.19 under strong
confounding, 0.028/1.12 under moderate confounding,
and 0.01/1.03 under weak confounding in our large
sample.
Figure 6 illustrates that, even under strong confounding,

bias decreases with more frequent measurement; esti-
mates of the 5-year risk difference get closer to the truth
of zero with decreasing m. Specifically, the IP weighted
estimates of the risk difference/risk ratio were 0.017/1.02
under m = 3, 0.029/1.04 under m = 6, and 0.034/1.19
underm = 12.
Finally, Fig. 7 illustrates that, even under strong con-

founding and long interval measurement (m = 12), bias
diminishes with decreasing non-adherence. Specifically,
when the proportion of deviators decreased from approx-
imately 40% (Scenario 0 in Table 1) to 20% (Scenario 1
in Table 1), the IP weighted estimates of the risk differ-
ence/risk ratio were closer to the null. Bias was negligible,
with risk difference/ratio estimates of 0.004/1.005, when
there were fewer than 10% deviators per arm (Scenario 2
in Table 1).

Discussion
We used a simulation to study bias in the estimation of
per-protocol effects in randomized trials with interval-
cohort designs. Bias arose even using methods such as
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Fig. 4 Naive versus IP weighted estimates under strong confounding
but complete measurement of covariate history

IP weighting, which appropriately adjust for time-varying
confounders. However, IP weighted estimates were less
biased than estimates from a naive analysis that ignored
time-varying confounding.
We considered the simple case of per-protocol effects

defined by static treatment strategies (e.g., always take
the new treatment versus always take the standard treat-
ment), but our approach could also be applied to dynamic
strategies under which treatment changes in response to
pre-specified events (e.g., a drug toxicity) [12–14]. Also,
we considered a simulation without censoring by loss to
follow-up. Censoring may prevent unbiased estimation
of both per-protocol and intention-to-treat effects with-
out sufficient and appropriate adjustment for baseline and
time-varying covariates [10, 15].
The bias created by interval measurement in the esti-

mation of time-varying treatment effects has been pre-
viously highlighted in the computer science literature
[16] and in epidemiological studies such as the Fram-
ingham Heart Study and the Nurses’ Health Study [7,
17]. In practice, the interval length required to make the

Fig. 5 IP weighted estimates of per-protocol survival under the
m = 12 interval-measurement scenario and different confounding
scenarios

bias negligible will depend on the frequency with which
treatment and confounders can change. For example, in
studies of treatments that rarely change more than once
per month (like the one in our simulation), an interval
length of one month will likely suffice. In other stud-
ies, measures of more frequent covariate changes may be
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Fig. 6 IP weighted estimates of per-protocol survival under strong
confounding and decreasing values ofm

necessary. In addition to more frequent in-person follow-
up, complementary data sources such as electronic health
records and pill cap monitors can help capture these
changes.

Conclusions
The bias that arises from interval measurement high-
lights the need for randomized trials designed to collect

Fig. 7 IP weighted estimates of per-protocol survival under strong
confounding and decreasing proportion deviating

post-baseline data on time-varying prognostic factors
and adherence. This data may be obtained from various
sources (e.g., more frequent in-person follow-up, elec-
tronic health records, pill cap monitors). Such planning,
aided by the use of causal diagrams representing subject
matter knowledge and assumptions, will ultimately pro-
vide improved estimates of the per-protocol effect, an
informative complement to the intention-to-treat effect.
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