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Abstract

Health researchers are familiar with the concept of trial power, a number that prior to the start of a trial is intended
to describe the probability that the results of the trial will correctly conclude that the intervention has an effect.
Trial power, as calculated using standard software, is an expected power that arises from averaging hypothetical trial
results over all possible treatment allocations that could be generated by the randomization algorithm. However, in the
trial that ultimately is conducted, only one treatment allocation will occur, and the corresponding attained power
(conditional on the allocation that occurred) is not guaranteed to be equal to the expected power and may be
substantially lower. We provide examples illustrating this issue, discuss some circumstances when this issue is a
concern, define and advocate the examination of the pre-randomization power distribution for evaluating the risk of
obtaining unacceptably low attained power, and suggest the use of randomization restrictions to reduce this risk. In
trials that randomize only a modest number of units, we recommend that trial designers evaluate the risk of
getting low attained power and, if warranted, modify the randomization algorithm to reduce this risk.
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Introduction
Clinical trialists are familiar with the concept of the
power of a clinical trial. It is a number that prior to the
start of a trial is intended to describe the probability
that the results of a trial will correctly conclude that the
intervention has an effect (i.e., will reject the null hy-
pothesis of no effect when the null hypothesis is false).
Conventionally, trials are designed to have 80% or 90%
power. Given the high costs of conducting clinical trials,
trial designers have a responsibility to ensure that the
trial, in fact, attains the desired power. Imagine now that
the power of your proposed trial is established, based on
commonly used power calculation software, to be 80%.
For concreteness, suppose it is a cluster-randomized
controlled trial (cRCT) in which the cluster sizes vary
substantially. At trial kickoff, the trial methodologist per-
forms the randomization of the clusters. However, when
the methodologist attempts to verify the power of the
trial based on the allocation that was obtained, the

power of the trial is determined to be only 75%. How
could this happen and how might it have been avoided?
The fundamental issue is that trial power, as calculated

using standard software, is an expected power that aver-
ages hypothetical trial results over all possible treatment
allocations that could be generated by the randomization
algorithm. However, in the trial that ultimately is con-
ducted, only one treatment allocation will occur, and the
corresponding attained power (conditional on the alloca-
tion that occurred) is not guaranteed to be equal to the
target expected power and may be substantially lower.
Hence, a trial may fail to attain adequate power because
of bad luck. This problem arises because standard soft-
ware packages typically require trial designers to make
simplifying assumptions and to supply inputs that may
not fully reflect the underlying characteristics and pro-
cesses of the actual trial. Simple examples include (1) as-
suming that the sample size will be exactly equal in the
two arms when the randomization algorithm has not
been designed to guarantee this result and (2) using an
average cluster size in the calculations for a cRCT even
though the cluster sizes vary widely. Even when trial
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designers acknowledge and account for these types of is-
sues through trial-specific power investigations (often
via simulation), the calculations almost always continue
to focus on determining the expected power and do not
consider the variation in the attained power associated
with different allocations. To our knowledge, no one has
proposed a general approach for assessing the quantita-
tive impact of varying allocation on attained power. As a
result, the risk that a trial does not achieve the target
power typically is not assessed. Moreover, if trial de-
signers were able to identify the allocations that yield
low attained power, they could modify the
randomization algorithm to avoid those allocations and
ensure that the trial achieves an acceptable attained
power.
Through a series of examples, we illustrate why

attained power may be substantially lower than the tar-
get expected power. We discuss general conditions when
this issue is (or is not) a concern and advocate for exam-
ination of the distribution of the power prior to
randomization as a general approach for evaluating the
risk of obtaining unacceptably low attained power. Fi-
nally, we recommend the use of randomization restric-
tions to reduce this risk.

Why and when you don’t get the power you think
you’re getting
Example 1: Parallel-arm trial with individual
randomization
Consider a simple trial in which 40 participants are ran-
domly assigned individually to one of two arms and the
outcome is a continuous variable (e.g., systolic blood
pressure). The data will be analyzed by using a two-
sided, two-sample t test at the 5% significance level.
Standard power calculation software shows that if the
standardized effect size is 0.91 and 20 patients are allo-
cated to each arm, then the expected power of this trial
is 80%.
However, suppose that when the trial was conducted,

the allocation algorithm did not ensure exact balance in
the number randomized to each arm. For example, inde-
pendent “coin flips” were used to allocate the partici-
pants and ultimately this process led to an unbalanced
allocation with 15 and 25 participants in the two arms.
An imbalance of this degree or greater is not a rare oc-
currence; the chance is 15.4%. If the values of the other
parameters remain the same, it is straightforward to ver-
ify that with sample sizes of 15 and 25, the attained
power is only 77.4%. If the imbalance were more ex-
treme with sample sizes of 12 and 28 in the two arms
(the chance of this degree of imbalance or greater is
1.7%), the attained power drops to 72.8%.
In this simple case, the solution to avoiding loss of power

is evident. We need only ensure that the randomization

algorithm allocates (nearly) equal numbers of participants
to each arm. In practice, this balance typically is achieved
by using block randomization. Note that the chance
of getting an imbalance large enough to effect a given
reduction in the attained power decreases rapidly as
the sample size increases (Fig. 1). Hence, depending
on what is judged an important reduction in attained
power, block randomization may not be needed when
the sample size is large. For example, the risk of the
attained power falling below 75% is 3.8% when the
sample size is 40 but is only 0.04% when the sample
size is 100. However, with a sample size of 100, there
remains a 0.7% risk that the attained power will fall
below 77%.

Example 2: Parallel-arm, cluster-randomized controlled
trial (cRCT) with unequal cluster sizes
In a cRCT, groups (clusters) of participants are randomly
allocated to treatments; as a result, everyone within a
given cluster receives the same treatment. The literature
on cRCTs is too extensive to cite here, but an introduc-
tion to the cRCT design can be found in Donner and
Klar [1]. In a cRCT, it is common for the cluster sizes to
be unequal. Methods and statistical software (available
both online and in stand-alone packages) for sample
size/power calculations for a cRCT are widely available
for the case of equal cluster sizes and are less common
for the case of unequal cluster sizes (see Rutterford et al.
[2] for a review). Many of the approaches for unequal
cluster sizes involve replacing the cluster sample size in
the formulae for equal cluster sizes with an appropriate
“effective cluster sample size” derived from a measure of
the variability (e.g., the coefficient of variation) in the
cluster sample sizes. However, to our knowledge, all of
these methods and software provide calculations for only
the expected power; the issue of varying attained power
with varying allocation has not been fully addressed.
Suppose we are conducting a cRCT in 20 clusters. We

expect that in each of six large, six medium, and eight
small hospitals, the enrollments will be 160, 40, and 10
patients, respectively (yielding a coefficient of vari-
ation of 0.95). Under a specified set of parameters, in-
cluding an intraclass correlation coefficient (ICC) of
0.005, an allocation that had perfect balance in the dis-
tribution of hospital sizes across the two treatment arms
(i.e., three large, three medium, and four small hospitals
in each arm) attains 80% power. However, if five large
hospitals were allocated to the same arm (a 21.9%
chance of occurring), the power would fall to 74%. If all
six large hospitals were allocated to the same arm (a
3.1% chance of occurring), the power would fall to 68%.
Let us explain these dramatic drops heuristically.

When the ICC is low, individual observations contribute
nearly equally to the analysis. Hence, a large imbalance
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in the number of participants across the arms impacts
the analysis much like large imbalances in individually
randomized trials. Thus, instead of a comparison of 640
participants in each arm in the balanced case, the com-
parison becomes one between roughly 1000 versus 280
participants in the case with all six large hospitals in one
arm. With a larger ICC, the drop in power is reduced
and may even be negligible. With an ICC of 0.04, the
powers are 79% or 78% when, respectively, five or six
large hospitals are in one arm. This result is due to the
“diminishing returns” in information that additional ob-
servations provide when the primary source of uncer-
tainty is the variability across clusters rather than across
participants within a cluster [3].
In this example, the appropriate way to restrict the

randomization to avoid low attained power seems
clear: ensure that the distribution of cluster sizes (not
just the mean size) is similar in the two arms. The
impact of doing so can be quantified by using the
framework in the following example where varying
cluster size could be viewed as an example of a
cluster-level covariate which may be imbalanced
across the two arms.

Example 3: Parallel-arm trial with covariate adjustment
Assessments of attained power should consider balance
not only in sample size but also in potentially important
covariates. As in Example 1, consider a trial with 40

participants, individually randomly assigned to one of
two arms, and a continuous outcome. We now assume
that the randomization algorithm ensures equal sample
sizes in the two arms, so given the same parameter
values as before, the power of the trial should be 80%.
However, suppose that there exists a binary baseline
covariate which may be a determinant of the outcome
but this covariate was not considered in the
randomization algorithm. If this covariate turns out to
be imbalanced across the treatment arms, we are obli-
gated to adjust for it in the analysis in order to avoid po-
tential confounding of the treatment effect estimate.
Suppose that the covariate does not affect the outcome.
If seven patients in one arm and 13 patients in the other
arm have this attribute, the increase in the standard
error of the treatment effect estimate due to the correl-
ation between treatment arm and this covariate leads to
a drop in the attained power to 77%. This reduction in
the attained power is not a rare occurrence; there is a
6.9% chance of getting an imbalance this large (or
greater). If six patients in one arm and 14 patients in the
arm have this attribute (0.7% chance of occurrence), the
attained power drops to 74%.
Methods for preventing covariate imbalance include

stratified randomization and minimization [4, 5]. Whereas
the discussion of the benefits of these methods often
focuses on the goal of pre-empting potential confounding
bias in treatment effect estimates, the impact on trial

Fig. 1 Risk of the attained power falling below threshold values (77%, 75%, or 73%) due to sample size imbalance as the number of units randomized
(total sample size) increases in a parallel, two-arm, individually randomized trial using unrestricted randomization. Results were obtained under the
condition that the power is 80% when the sample sizes are equal in the two arms. The risk of low attained power can be substantial with small
sample sizes but decreases rapidly as the sample size increases. (The lack of smoothness is a consequence of discretization on the probabilities of
obtaining allocations with different sample sizes.)
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power has also been considered. See, for example, the lit-
erature cited within the reviews by Kahan and Morris [6]
and Scott et al. [7].
As in Example 1, covariate imbalance typically is not

an issue in individually randomized studies when a large
number of units are randomized. The risk of an imbal-
ance large enough to lead to a meaningful loss in the
attained power decreases quickly as the number of units
randomized increases.
Cluster-level covariate imbalance can also arise in

cluster-randomized trials and is more common as the
number of clusters randomized typically is modest. Pre-
vious works [8, 9] have shown that adjustment for a
non-prognostic cluster-level covariate reduces the (ex-
pected) power. This loss in power, however, is greatly re-
duced if the randomization is constrained by dis-
allowing allocations with large covariate imbalance [10].
The natural heuristic explanation is that the removed al-
locations predominantly are the ones with low attained
power (analogous to the example above for the individu-
ally randomized trial), so their removal increases both
the attained and the expected power. Software imple-
menting covariate-balancing randomization algorithms
is available [11, 12]. However, the next example involves
a type of cluster-randomized trial design in which a
cluster-level covariate cannot be fully balanced and for
which covariate adjustment is a critically important de-
terminant of the attained power when the number of
clusters is small.

Example 4: Stepped-wedge trial with unequal cluster
sizes
A stepped-wedge trial is a special type of cluster-
randomized trial. In the standard form of this design,
every cluster begins with enrollment of participants into
the control intervention and ends with enrollment into
the experimental intervention. The object of
randomization is the time point at which a cluster tran-
sitions from the control to the experimental interven-
tion. The stepped-wedge trial design [13, 14] has
received considerable attention in recent years. Methods
and software for calculating power for various types
(cross-sectional and cohort) of stepped-wedge trials with
equal cluster sizes are becoming widely available [15,
16]. Kristunas et al. [17] reported that imbalances in
cluster size do not result in a meaningful loss of power
in cross-sectional stepped-wedge trials. More recently,
Girling [18] derived analytic expressions for the effi-
ciency of stepped-wedge and related designs with un-
equal cluster sizes relative to designs with equal cluster
sizes while assuming that randomization was size-
stratified so that the distribution of cluster sizes is the
same in each treatment sequence (study arm). However,
both of these studies focus solely on expected power. As

in the preceding examples, we demonstrate that the
attained power may vary substantially across allocations.
One difference from the preceding examples is that it is
not immediately obvious which allocations lead to low
power.
For this example, we will adopt the expected cluster

sample sizes from a real cross-sectional stepped-
wedge trial under development. In this trial, there are
20 clusters (hospitals). If one assumes that enroll-
ments will be approximately proportional to the
population catchment areas of the hospitals, the ex-
pected cluster sample sizes range from six up to 86
for the 16 smallest clusters, and the sizes for the four
largest clusters are 234, 215, 112, and 109. The coeffi-
cient of variation for these cluster sizes is 1.17. At
each of five time points, four hospitals will transition
from the control to the experimental intervention.
For illustrative purposes, the results presented were
obtained using an ICC of 0.05.
We can argue the dependence of the attained power

on the allocations in at least two ways. The first argu-
ment is that the attained power will be higher when the
large hospitals transition at the third (i.e., middle) step
since these hospitals contribute the most information
and their information is maximized by balancing the
number of enrollments across the two interventions
within these hospitals. However, it is vital to recognize
that, in a stepped-wedge trial, participant treatment
allocation is inherently highly correlated with time by
design. Participants enrolled during the early periods
predominantly will receive the control intervention
while participants enrolled during the later periods pre-
dominantly will receive the experimental intervention.
For a five-step balanced (equal cluster size) design, the
Pearson correlation coefficient is 0.68 [19]. Thus, if
there is any possibility that a secular time trend exists
in the outcomes, we are obligated to adjust for the time
(step) in the analysis in order to remove potential bias.
As discussed in Example 3, adjustment for a covariate
correlated with treatment allocation can reduce the
attained power and the magnitude of the reduction in-
creases with higher correlation. Hence, a second argu-
ment is that we can reduce the loss in attained power
by reducing the correlation between participant treat-
ment allocation and time. This correlation is lower
when the large hospitals transition at the first or last
steps. In this example, the correlation coefficient will be
roughly 0.57 when the four largest hospitals transition
at the first or last steps but will be roughly 0.78 when
these hospitals transition at the middle step. Through
simulation, we observed that whereas this trial would
achieve 80% power if the randomization algorithm re-
stricted the four largest hospitals to transition at the
first or last steps (two hospitals at each of these steps),
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it would achieve only 73% power if the algorithm re-
stricted those hospitals to transition at the middle step.
Thus, it appears that, at least in this example, reducing
the correlation between treatment allocation and time
is more important than balancing observations in the
large clusters. Other authors have reported related re-
sults. Lawrie et al. [20] showed that in a cross-sectional
setting with equal cluster sizes, the most efficient de-
sign allocates more clusters to transition at the first and
last steps than in the intermediate steps. Li et al. [21]
extended this result to the cohort setting. Girling and
Hemming [22] showed that if (equal sized) clusters are
allowed to enroll purely into either the control condi-
tion or the intervention condition, as is done in a paral-
lel cRCT, the most efficient design is obtained by
allocating roughly two thirds of the clusters using the
stepped-wedge layout and one third using the parallel
layout. Though not discussed in these papers, it can be
shown that in each case the treatment-time correl-
ation decreases when moving from the standard
stepped-wedge design to the most efficient design.
Thus, it appears that this correlation parameter is a
crucial determinant of power (attained and expected)
across a wide range of settings, although its absolute
impact and relative importance compared with other
factors affecting power have yet to be investigated.

The pre-randomization power distribution and
randomization restriction
In complex trial designs, many factors can interact to
affect the attained power, and it may not be easy to de-
termine the risk that a specified randomization

algorithm will lead to low attained power. One approach
to determining this risk is to construct the algorithm’s
pre-randomization power distribution (power distribu-
tion [PD] hereafter). Conceptually, this distribution can
be obtained by calculating the attained power associated
with every possible allocation that can be generated by
the randomization algorithm and constructing a prob-
ability distribution (either the density or the cumulative
distribution, as needed) from this collection of attained
powers. By examining the PD, one can determine, for
any given threshold, the probability that the attained
power will fall below that threshold. For example, the
second and third columns in Table 1 display the
probability that the attained power will fall below se-
lected thresholds based on the PD for the unre-
stricted randomization algorithms used in Examples 1
and 4. The PD can also be summarized graphically
(Fig. 2, upper and middle panels). If the risk based on
the PD is deemed unacceptable, the randomization
algorithm could be modified. As noted earlier for
Example 1, merely restricting the randomization to
ensure equal sample sizes would guarantee 80%
attained power. For Example 4, the risk of an attained
power below 75% is 2.7% (column 3, Table 1) when unre-
stricted randomization is used. But if allocations are re-
stricted to include only the ones in which the four largest
clusters transition at the first or last steps (two clusters at
each of these steps), the risk drops to zero and in fact this
restriction guarantees a power of at least 79% (column 4,
Table 1 and lower panel, Fig. 2).
We do not make recommendations about what are

appropriate minimum threshold power values or

Table 1 The risk that the attained power will fall below selected threshold values

Threshold Risk that the attained power falls below the threshold value

Example 1 (unrestricted)a Example 4 (unrestricted)b Example 4 (restricted)c

72% 0.6% 0.0% 0.0%

73% 1.7% 0.2% 0.0%

74% 1.7% 1.0% 0.0%

75% 3.8% 2.7% 0.0%

76% 3.8% 7.3% 0.0%

77% 8.1% 16.6% 0.0%

78% 15.4% 33.5% 0.0%

79% 26.8% 57.9% 0.0%

80% 87.5% 81.0% 5.4%

81% 100.0% 97.8% 68.0%

82% 100.0% 100.0% 99.0%

83% 100.0% 100.0% 100.0%
aResults are for unrestricted randomization in Example 1.
bResults are for unrestricted randomization in Example 4.
cResults are for a randomization algorithm that allows only allocations with the four largest clusters transitioning at the first or last steps (two clusters at each of
these steps) in Example 4.
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acceptable risks; these are subjective judgments and
their importance will be context-dependent.

Discussion
The examples are presented as “proof of principle” that
the attained power of a trial may be substantially below
the target power that was generated by using standard
power calculations. The magnitude of this risk is a com-
plex function of the number of units randomized, the
type of study design (individually randomized, cRCT,

stepped-wedge, etc.), the specifications of the study de-
sign (e.g., randomization restrictions and number of
steps in a stepped-wedge), and population characteristics
(e.g., ICC and variation in cluster sizes). We have shown
that when the number of units randomized is large in an
individually randomized trial, the risk of this event is
sufficiently low that it might be ignorable. Similar results
should hold for cluster-randomized trials, although work
is needed to quantify the impact of cluster-design pa-
rameters on the conclusions. However, the conditions
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Fig. 2 Density plot (histogram) of the power distribution. Upper panel: Individually randomized trial from Example 1 with unrestricted randomization.
Middle panel: Stepped-wedge trial from Example 4 with unrestricted randomization. Lower panel: Stepped-wedge trial from Example 4 with restricted
randomization (four largest clusters transitioning to intervention at the first or last step, two clusters at each of these steps).
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under which this risk should not be ignored do arise in
real trials; the calculations presented in Example 4 were
a key determinant in our decision to adopt the restricted
randomization scheme for that trial. Whenever the num-
ber of units randomized is modest, trial designers should
investigate the risk that the randomization algorithm will
yield an unacceptably low attained power. We have pro-
posed evaluating that risk using the power distribution.
If that risk is unacceptably high, then the problem
allocations should be identified, and the randomization
algorithm should be modified to exclude them. Imple-
menting restrictions to allocations with high attained
power will also increase the expected power. In Example
4, using the restricted randomization algorithm raised
the expected power to 80.8% from 78.5% for the unre-
stricted algorithm. If a substantial gain in expected
power can be achieved, it potentially allows for increased
efficiency via a reduction in overall sample size.
One concern regarding restricting randomizations is

that the randomization subspace may include pairs of
clusters that tend to be in the same arm (treatment se-
quence). Conceptually, this could lead to violation of as-
sumptions needed for valid randomization inference
[23]. Greene [11] discusses an example where this may
be a concern. The conditions under which this problem
occurs are not apparent and warrant further exploration.
Analytic formulae for calculating the PD are not easily

obtained except for the simplest trial designs/
randomization algorithms, so at least some of the calcu-
lations will involve simulation. A simulation approach
also has the advantage that it can accommodate arbitrar-
ily complex trial designs and analyses with relatively
modest programming effort. These simulations can in-
volve substantial computational time since a separate
attained power needs to be calculated for each possible
allocation. A “brute force” approach (i.e., one without
much effort put into reducing the computation time)
used to obtain each of the PDs in Example 4 required
about 90 h on a desktop PC to evaluate the attained
power for 1000 randomly sampled allocations with 10,
000 simulation runs per allocation.
Our primary aim here has been to raise conceptual

awareness of an important design consideration that
seems to have been overlooked, rather than to provide
solutions for specific trial designs. Much work needs to
be carried out to support trial designers in selecting op-
timal restricted randomization algorithms. Evaluation
of the attained power for every allocation may not be
feasible when the number of possible allocations is large
(e.g., with 20 unique cluster sizes in Example 4, the
number of unrestricted allocations is greater than 300
billion). Strategies, efficient algorithms, and software to
enable accessible and timely calculation of PDs need to
be developed. In addition, trial designers need guiding

principles that enable them to quickly target the most
promising randomization restrictions for different types
of designs. One natural way to facilitate the use of the
PD would be to embed methods for determining PDs into
the framework of Li et al. [10] with options for choosing a
PD-based metric (e.g., exclude allocations with attained
power below a threshold value) that could be used, along-
side covariate balance or other metrics, to restrict
randomization and assess the acceptability of a proposed
randomization algorithm. Availability of these tools and
guidelines will enable researchers to ensure that the power
of a trial is not compromised by chance.
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coefficient; PD: (Pre-randomization) power distribution
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