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Abstract

Background: In cluster-randomized controlled trials (C-RCTs), covariate-constrained randomization (CCR) methods
efficiently control imbalance in multiple baseline cluster-level variables, but the choice of imbalance metric to
define the subset of “adequately balanced” possible allocation schemes for C-RCTs involving more than two arms
and continuous variables is unclear. In an ongoing three-armed C-RCT, we chose the min(three Kruskal–Wallis [KW]
test P values) > 0.30 as our metric. We use simulation studies to explore the performance of this and other metrics
of baseline variable imbalance in CCR.

Methods: We simulated three continuous variables across three arms under varying allocation ratios and
assumptions. We compared the performance of min(analysis of variance [ANOVA] P value) > 0.30, min(KW P value)
> 0.30, multivariate analysis of variance (MANOVA) P value > 0.30, min(nine possible t test P values) > 0.30, and
min(Wilcoxon rank-sum [WRS] P values) > 0.30.

Results: Pairwise comparison metrics (t test and WRS) tended to be the most conservative, providing the smallest
subset of allocation schemes (10%–13%) meeting criteria for acceptable balance. Sensitivity of the min(t test P
values) > 0.30 for detecting non-trivial imbalance was 100% for both hypothetical and resampled simulation
scenarios. The KW criterion maintained higher sensitivity than both the MANOVA and ANOVA criteria (89% to over
99%) but was not as sensitive as pairwise criteria.

Conclusions: Our criterion, the KW P value > 0.30, to signify “acceptable” balance was not the most conservative,
but it appropriately identified imbalance in the majority of simulations. Since all are related, CCR algorithms
involving any of these imbalance metrics for continuous baseline variables will ensure robust simultaneous control
over multiple continuous baseline variables, but we recommend care in determining the threshold of “acceptable”
levels of (im)balance.

Trial registration: This trial is registered on ClinicalTrials.gov (initial post: December 1, 2016; identifier: NCT02979444).
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Background
In cluster-randomized controlled trials (C-RCTs), the
clustered nature of intervention and data present added
statistical and logistical complexities, suggesting the re-
quirement for even more meticulous planning than a
typical individually randomized clinical trial [1–3]. In
C-RCTs, as in individually randomized clinical trials,
randomization algorithms that control imbalance in
baseline prognostic factors are ideal [4–6], but the com-
plexities are heightened in C-RCTs as the unit of
randomization is a cluster (usually an entire site) rather
than an individual participant. In general, imbalance in
influential baseline variables across arms, whether in in-
dividually randomized [7–9] or cluster-randomized trials
[1, 2, 4–6], has the potential to result in biased treat-
ment effect estimates and may decrease precision on
intervention effect estimates. In a recent review, Ivers et
al. [4] summarize methods of restricted randomization
for controlling cluster-level baseline variable imbalance
and specifically address advantages and limitations of
each. Common methods include matching, stratification,
minimization, and covariate-constrained randomization
(CCR) [4].
Since it can efficiently control imbalance in multiple

baseline variables simultaneously, multiple authors [1, 2,
4–6, 10–13] recommend CCR, assuming its logistical
feasibility for a given trial over other methods (i.e., sim-
ple randomization and stratified randomization). Al-
though there are many variations [6, 10–13], the general
algorithm suggests the following:

1. Enumerate all or a large subset (e.g., 100,000) of
possible allocation schemes.

2. Evaluate “imbalance” for each iteration.
3. According to a pre-defined criterion (e.g., the lower

10% of the imbalance metric’s empirical distribu-
tion), define a subset of “acceptable” allocations.

4. Randomly select one of these acceptable allocations
for implementation.

Several authors [6, 10–13] have proposed the choice of
the imbalance metric (step 2 above) but these measures
often assume that baseline variables of interest are cat-
egorical [10, 11, 13] or that the C-RCT involves two
study arms [6, 12] or both. In handling continuous base-
line variables in a CCR algorithm, Raab and Butcher [6]
suggest a weighted sum of mean differences across arms,
squared (i.e., “B” or “B(l2)”), whereas Li et al. [12] propose
a weighted sum of absolute mean differences across
arms (denoted “B(l1)”). Common practice involves the
use of the lower 10th percentile of these metrics to de-
fine the pool of “acceptable” allocation schemes [6].
These proposed metrics, however, may not readily ex-
tend to C-RCTs with more than two study arms, and the

notion of the 10th percentile of the distribution of these
abstract metrics may carry little meaning in general.
That is, the researcher may be left wondering whether
the randomization algorithm employed truly achieved
comparable arms in his or her C-RCT.
In this article, we present a complex three-arm C-RCT

case study that involved CCR, aiming to control imbal-
ance for three continuous baseline variables. This case
demonstrated two gaps in the literature regarding CCR:
minimal guidance for (a) choosing an imbalance metric
that readily extends to more than two arms for continu-
ous variables and (b) defining an intuitive threshold of
imbalance to ensure adequate balance in the pool of
possible schemes for implementation. Here, we propose
an imbalance metric—the minimum Kruskal–Wallis
(KW) test P value comparing variables across arms—and
a corresponding threshold of acceptability (P >0.30) to
guide similar C-RCT randomization.
In the sections that follow, we present the case study

and randomization methods implemented for the spe-
cific study, a series of simulation studies exploring the
performance of the proposed metric in comparison with
others, and, finally, overall conclusions and recommen-
dations based on our findings. It is important to note
that the simulations presented illustrate a series of hypo-
thetical trials inspired by the case study.

The Mothers and Babies Case Study
The Patient-Centered Outcomes Research Institute
(PCORI)-funded study “Comparing the Effectiveness of
Clinicians and Paraprofessionals to Reduce Disparities in
Perinatal Depression” is a C-RCT randomly assigning 42
home visitor (HV) sites in the Midwest region of the US
to one of three arms (contract number: AD-1507-31,473).
Previously, the investigators of this study established the
efficacy of the Mothers and Babies (MB) Course when
augmenting core HV services in preventing onset of post-
partum depression and reducing depressive symptoms
when led by mental health (MH) professionals [14, 15].
However, to date, there are no interventions led by
non-health or non-MH professionals that have demon-
strated efficacy in preventing the onset and worsening of
postpartum depression among low-income women. Thus,
we planned a C-RCT in which HV clients receive (a) MB
delivered by MH professionals, (b) MB delivered by para-
professional HVs, or (c) usual HV services. This study de-
sign allows the conduct of a superiority trial that
compares the efficacy of MB delivered by paraprofessional
HVs versus usual care, and the design also allows a
non-inferiority analysis that compares the effectiveness of
MB delivered by MH professionals versus paraprofessional
HVs. Should this study find that paraprofessional HVs are
not inferior to MH professionals in delivering the inter-
vention, HV programs throughout the US could
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implement MB with paraprofessional HVs—an approach
that is considerably more efficient and cost-effective than
employing MH professionals.
The study plan employed a modified CCR design at the

site level by using unequal allocation: for every one control
site, we enrolled three MH-led sites and three HV-led sites
(i.e., 1:3:3 allocation for control: MH delivery of MB: HV
delivery of MB). We intended to control imbalance at the
site level at baseline in three pre-specified potential covari-
ates: (1) percent minority (i.e., non-White) clients as re-
ported by the site, (2) site-reported yearly client volume,
and (3) population density of site location area, defined by
site zip code. We treated all three variables as continuous
for randomization purposes, as categorizing across three
arms with unequal allocation will inevitably result in low
cell counts and loss of efficiency. With minimal guidance
from the literature and experience with regard to choice of
imbalance metric, we chose to use what we deemed an in-
tuitive measure of imbalance: the KW test across the three
arms for each of the three variables. We employed the fol-
lowing general randomization algorithm for this study. It is
worth noting that there were added complexities regarding
“waves” of randomization and adaptations for dropouts, but
for the sake of simplicity, the general logic is below:

1. Enumerate a large number of possible allocation
schemes (100,000), each with the planned 1:3:3
allocation ratio.

2. For each possible scheme, calculate three KW test
statistics and corresponding P values comparing
rank values across the three arms (for each variable:
percent minority, yearly volume, and population
density).

3. If min(KW test P values) > 0.30 [9], then accept the
iteration into a pool of possible scenarios.

4. Randomly select one of these schemes meeting
criteria in step 3 as the one chosen for
implementation in the present study.

This agreed-upon randomization algorithm required up-
front data collection from each site, careful but straightfor-
ward programming, and less than a 24-h computing lag
time to run required iteration scenarios on a local com-
puter. We deemed this method of randomization intuitive
and rather simple to implement. The question remains,
however, whether our randomization “worked” or achieved
imbalance control in these variables. Figure 1 illustrates the
resultant distribution of each variable and relevant sum-
mary statistics for sites randomly assigned to date.
Although the distributions appear well balanced, the

common question “Did the randomization method work?”
came about. To explore the performance of this algorithm
and imbalance metric, we performed a simulation study
comparing the chosen metric of imbalance with other po-
tential metrics of imbalance which we may have chosen.
We aimed to (a) explore which of a given list of imbalance

Fig. 1 Distribution of site-level randomization variables by arm for trial NCT02979444. We planned for a total of 42 randomized sites (6:18:18), but
owing to dropout we have 38 active sites. Sample size and power considerations accounted for dropout that we observed. Medians (interquartile
ranges) are displayed in each arm for each variable above
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metrics tended to be most conservative overall and (b) de-
termine which imbalance metrics adequately detected
covariate-level imbalance. The following section provides
details of simulation methods, exploring several metrics of
imbalance. The simulation logic and metrics explored
emulate those of a similar exploration by Ciolino et al. [7]
in the individually randomized trial setting. In this con-
text, the term “conservative” refers to a metric that is less
likely to accept an individual allocation scenario into the
pool of possible scenarios (i.e., one that is more restrictive
or constrained).

Methods
We conducted multiple simulation studies inspired by
this case study: one from hypothetical data under several
different scenarios meant to mirror potential real-world
data and one resampling actual data from the case study.
The basic simulation logic is as follows:

1. Assume that three cluster-level variables (X1, X2,
and X3) come from a multivariate normal distribu-
tion with some pre-specified level of correlation.

a.
X1

X2

X3

� MVN
μ1
μ2
μ3

;
σ1 σ12 σ13

σ12 σ2 σ23

σ13 σ23 σ3

0
@

1
A ¼ MVNðμ;ΣÞ.

b. We explored four different covariance
structures among these cluster-level variables:
i. No correlation among any of the covariates
ii. Compound symmetry such that the off-

diagonal correlation coefficients ρ12 = ρ13
= ρ23 = 0.3

iii. One large correlation between two of the
variables (ρ12 = 0.5, ρ13 = ρ23 = 0)

iv. A correlation structure similar to that
observed in the case study dataset: ρ12 =
0.12, ρ13 = 0.67, ρ23 = − 0.09.

2. Simulate data from three arms under the
assumptions specified in step 1. We simulated
under simple random allocation in general,
assuming μ = (0, 0, 0)′ for each arm. We further
explored the performance of imbalance metrics via
imposing imbalance across arms on average in
addition to skewness in select variables. Although it
is unrealistic to assume imbalance across arms on
average, we sought to determine the performance of
the metrics explored under extreme scenarios.
Therefore, we explored the following:
a. Balance on average: μ = (0, 0, 0)′ for each arm
b. Large imbalance on average: μ = (1, 0, 0)′ for

arm 1; μ = (0, 0, 2) for arm 2; and μ = (0, 0, 0)′
for arm 3

c. Slight imbalance on average: μ = (1, 0, 0)′ for
arm 1 and μ = (0, 0, 0)′ for arms 2 and 3

d. Slight imbalance as in 2c but with an added
skewness to each variable in each arm

3. Calculate all imbalance metrics for each simulated
C-RCT:
a. Minimum of three analysis of variance

(ANOVA) P values for the statistical test
comparing mean of each variable across the
three arms [denoted min(ANOVA)]

b. Min(KW three P values) as above
c. Multivariate analysis of variable (MANOVA) P

value for overall test comparing simultaneous
means across arms (single P value)

d. Minimum of a series of two-sample independent
t test P values (nine total)
i. Comparing mean of X1, X2, and X3 across

arms 1 and 2
ii. Comparing mean of X1, X2, and X3 across

arms 1 and 3
iii. Comparing mean of X1, X2, and X3 across

arms 2 and 3
e. Min(Wilcoxon rank-sum [WRS] test P values);

nine total, similar to above.

It is important to note that we are using these metrics
as tools to evaluate imbalance. We are not using them
to test hypotheses in a traditional statistical sense, but
we are using them to evaluate how similar or dissimilar
distributions in important influential variables may be
across randomization arms. In reality, there is no clear
definition or gold standard that one may use to state
that arms are “balanced” or “imbalanced”, but these met-
rics are used for relative comparisons.

Simulation study 1
Initially, we simulated according to a three-arm,
equal-allocation design with 10 sites per arm or 30 total
sites (10:10:10). We anticipated that this design would be
more commonly implemented in cluster-randomized set-
tings than our design involving unequal (1:3:3) allocation.
In these simulations, we sought to explore the impact of
correlation structure and imposed imbalance and skew-
ness in data. We simulated each scenario above 10,000
times; thus, we ended with (10,000 iterations) × (four cor-
relation structures) × (four mean vector assumptions) =
160,000 simulated C-RCTs with varying levels of (im)bal-
ance in three baseline variables across three arms.

Simulation study 2
Following these initial simulations, we explored the per-
formance of these metrics under a scenario similar to
our case study: assuming balance on average or a simple
randomized design where μ = (0, 0, 0)′ for each arm and
unequal allocation (1:3:3): six control sites, 18 sites in
intervention arm 1, and 18 in intervention arm 2 for a
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total of 42 sites. We used correlation structure iv from
step 1b above to mimic the structure observed in this
dataset. We simulated 100,000 C-RCTs on the basis of
these assumptions.

Simulation study 3
Finally, we resampled from the actual MB study data;
the basic logic mirrored that above without distribu-
tional assumptions. From the sites with available data,
we (a) sampled 10 (without replacement) sites for each
arm in each iteration and (b) also sampled under the
unequal-allocation scenario as in our present study
(6:18:18). Note that we ended with 38 active sites in the
current study, but we had available data at baseline for
45 sites total, as several sites dropped out prior to or
during the randomization process. We used all available
data for resampling described here. For each simulated
iteration, we proceeded with step 3 above. We repeated
the resampling process 100,000 times for each allocation
ratio; that is, we ended with 200,000 simulated C-RCTs
with varying levels of (im)balance across three arms in
the three actual trial variables.

Analysis of simulated data
For each simulated trial, we had five metrics of imbal-
ance—all were P values corresponding to specific statis-
tical tests. We recognize the flexibility and breadth of
possibilities for these imbalance metrics (i.e., we could
have chosen to use the test statistics themselves or some
other metric). The purpose of these simulations, however,
was to explore operating characteristics of our criterion
for adequate balance in the true MB study, min(KW P
value) > 0.30, in comparison with other intuitive measures
that we may have otherwise chosen. For each imbalance
metric in each simulated C-RCT, we created a dichotom-
ous variable for “adequate” versus “inadequate” balance on
the basis of P > 0.30. Then we used simple descriptive sta-
tistics to explore the sensitivity and specificity of each cri-
terion. The cutoff of P > 0.30 to indicate sufficient balance
comes from the individually randomized trial literature
[9]. Though not explicitly stated by Zhao et al. [9] as a for-
mal recommendation, the P > 0.30 may be viewed as “suf-
ficient” and would ensure that our pool of acceptable
randomization schemes is not overly restrictive (i.e., that
we have a sufficient number of possible randomization se-
quences in order to prevent bias via over-restriction on
the randomization space).
Scenarios simulated under balance on average have the

potential to result in chance non-trivial levels of imbal-
ance; similarly, scenarios simulated under imbalance have
the potential to result in chance levels of balance. There-
fore, we cannot use the rate of adequacy alone to deter-
mine the sensitivity and specificity to guide selection of
appropriate metrics of imbalance. As we mention above,

there is no clear definition or gold standard that one may
use to state that arms are “balanced” or “imbalanced”.
Thus, we created a new variable: max(mean differences),
the standardized (on the standard deviation unit scale) ab-
solute value of the maximum mean difference in any one
variable across any two arms. Max(mean difference) > 1.0
may be deemed “unacceptable” or “large” [16] for our pur-
poses, as it would indicate that at least one variable ex-
hibits an entire standard deviation unit difference across
two arms. This is a situation that, in a real-world C-RCT
setting, one would hope to avoid. We explored the distri-
bution of max(mean difference) and the frequency by
which adequate balance by each P > 0.30 criterion would
result in max(mean difference) > 1.0. Note that, in this
case, sensitivity is preferred over specificity, as “conserva-
tive” is ideal in terms of controlling imbalance.

Results
The correlation structure simulated had minimal overall
impact; the following results thus collapse all simulated
C-RCTs under differing mean vector assumptions into a
single scenario for ease of interpretation.
The t test and WRS test P value criteria tended to be

the most conservative in detecting baseline variable im-
balance. The MANOVA and ANOVA criteria tended to
be least conservative. Recall that, in this context, the
term “conservative” refers to a metric that is less likely
to accept an individual allocation scenario into the pool
of possible scenarios (i.e., one that is more restrictive or
constrained). Table 1 illustrates the adequacy rate for
each metric—based on the P value > 0.30 criterion—for
both simulations mirroring our case study at the 1:3:3 al-
location ratio: (simulation study 2) the hypothetical data
according to a multivariate normal distribution and
(simulation study 3) the resampled data. Note that,
under simple random allocation, all 100,000 iterations
would be deemed adequate; however, we see in Table 1
that only 10%–13% of these scenarios would be deemed
adequate for implementation according to the pairwise
comparisons involving either the t statistic or WRS. Of
the metrics explored, the overall MANOVA metric, per-
haps unsurprisingly, was the least sensitive, as about
70% of these scenarios were deemed appropriate for im-
plementation. Additional file 1: Table S1 contains similar
results for the scenarios exploring imbalance and skew-
ness (simulation study 1). Briefly, when simulating large
and unrealistic imbalance on average, all metrics except
for the ANOVA and MANOVA deemed all simulated
trials inadequately balanced; however, when simulating
minor imbalance or skewness (or both), the pairwise
tests remained highly sensitive, as over 93% of these pur-
posefully flawed scenarios would never be acceptable ac-
cording to these metrics. In general, the KW metric
demonstrated higher sensitivity than both ANOVA and
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MANOVA in the imbalanced and skewed scenarios
(Additional file 1: Table S1) but comparable sensitivity
to the ANOVA for the simulations based on our case
study (Table 1).
For those scenarios deemed adequate on the basis of

the P value > 0.30 criterion, Figure 2 shows the distribu-
tion of the standardized max(mean difference) variable
for the simulations based on the actual study data with
unequal allocation (studies 2 and 3). The MANOVA and
ANOVA metrics using the 0.30 threshold perform simi-
larly to the simple random allocation scenarios with
maximum values at 3.52 for the resampled scenarios and
90th percentiles at 1.00 and 0.94, respectively. The max-
imum value under simple random allocation was 4.21
with a 90th percentile of 1.16. The pairwise comparisons
again demonstrated the most sensitivity, as these metrics
almost never allowed implementation of an allocation
scheme with max(mean difference) > 1.0. The KW cri-
terion allowed for max(mean difference) as large as 2.14
with a 90th percentile equal to 0.84.
Table 2 presents the sensitivity and specificity of each im-

balance criterion in detecting a large (i.e., >1.0) max(mean
difference) between any two arms. Sensitivity of the t test
was 100% for both hypothetical and resampled simulated
scenarios, and the WRS demonstrated over 97% in each
scenario. The KW criterion maintained higher sensitivity
than both the MANOVA and ANOVA criteria (89% and
over 99% in the resampled and hypothetical scenarios, re-
spectively) but was not as sensitive as the pairwise criteria.
Additional file 1: Table S2 illustrates sensitivities in

detecting large levels of pairwise imbalance under the pur-
posefully imbalanced and skewed hypothetical scenarios
(study 1). In these instances (assuming equal allocation
across 30 sites), the sensitivity of the KW test criterion
ranged from 98% to 100%, and the ANOVA and MAN-
OVA criteria exhibited decreased sensitivity for detecting
imbalances of 1.0 standard deviation unit mean differences
between two arms. In the minor imbalance-on-average sce-
nario, the sensitivities were 65% and 30%, respectively. In
the largely imbalanced scenarios, the sensitivities were
more than 99% for these two metrics of imbalance.
For each test P value, we chose a criterion of P value >

0.30 to signify adequate balance. Although we anticipate
tests’ P values to be correlated with one another, they
will not exhibit a linear one-to-one relationship. We
would expect the P values exploring difference in any in-
dividual variable across two arms (i.e., the t test and

Table 1 Threshold summary statistics by simulated scenario and
imbalance criterion (1:3:3 scenarios)

Imbalance criterion Resampled Hypothetical

N % N %

Min(KW P value) 60,508 60.51 62,341 62.34

Inadequate (P <0.30)

Adequate (P >0.30) 39,492 39.49 37,659 37.66

min(ANOVA P value) 61,691 61.69 61,114 61.11

Inadequate (P <0.30)

Adequate (P >0.30) 38,309 38.31 38,886 38.89

MANOVA P value 29,997 30.00 29,824 29.82

Inadequate (P <0.30)

Adequate (P >0.30) 70,003 70.00 70,176 70.18

Min(t test P value) 90,223 90.22 87,872 87.87

Inadequate (P <0.30)

Adequate (P >0.30) 9777 9.78 12,128 12.13

Min(WRS P value) 88,029 88.03 87,114 87.11

Inadequate (P <0.30)

Adequate (P >0.30) 11,971 11.97 12,886 12.89

Abbreviations: ANOVA analysis of variance, KW Kruskal–Wallis, MANOVA
multivariate analysis of variance, WRS Wilcoxon rank-sum

Fig. 2 Maximum pairwise imbalance observed for scenarios meeting
adequacy threshold (P > 0.30) in simulated trials by criterion. Each
panel represents the distribution of the max(mean difference) for
simulated scenarios meeting the criterion for “adequate” overall
variable balance across arms. All simulated schemes meet criteria for
adequate under simple random allocation (panel a), but the
remaining panels illustrate only those allocation schemes meeting
the P > 0.30 criterion for each metric. The mean difference depicted
is on the standard deviation unit scale. Those meeting this criterion
would ideally have a small max(mean difference), and we deem a
max(mean difference) > 1.0 (vertical line) unacceptable since
previously a value of 0.8 would be deemed “large” [16]
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WRS P values) to be more sensitive than those evaluat-
ing an individual variable across all three arms (i.e., the
KW and ANOVA P values); in turn, we would expect
the global test (MANOVA) to demonstrate the least sen-
sitivity. Here, we determine sensitivity on the basis of
the distribution of these P values. Figure 3 illustrates a
series of scatterplots comparing the KW P value with
each additional metric explored in these simulations.

Discussion
The case study presented here illustrates some complex-
ities that may arise in a real-world C-RCT setting. Under
simple random allocation (i.e., when we simulated bal-
ance on average), we observed non-trivial (>1.0 standard
deviation unit mean difference across two arms) levels of
imbalance nearly 20% of the time in these when simulat-
ing data similar to those seen in our case study. Thus,
we would like to be able to detect and prevent such
levels of imbalance at baseline in an actual C-RCT.
Modified constrained randomization procedures allow
us to determine a subset of adequately balanced inter-
vention allocation schemes, but we illustrate the care
that one must take in choosing an imbalance metric for
continuous baseline variables across multiple arms.
When we have more than two arms, typical metrics [6,

12, 13] become difficult to use, as they often focus on cat-
egorical variables or those readily applied to the two-arm,
equal-allocation scenario. In our present study, we chose
the min(KW test P value) > 0.30 to signify adequate imbal-
ance. We made this decision piecing together intuition and

the guidance in the literature at the time. However, we
present simulations here that illustrate other candidate
measures of imbalance that have varying abilities to detect
large imbalance under many scenarios. It is not surprising
that some metrics are more conservative than others. We
would expect those evaluating on all possible pairwise dif-
ferences (i.e., the t test and WRS criteria) to be more con-
servative and have the ability to detect levels of imbalance
much smaller than the global metrics (i.e., the MANOVA).
Recall that "conserative" in this sense refers to a metric that
is more likely to indicate imbalance or result in fewer pos-
sible allocation schemes that would be deemed accept-
able. We chose the min (KW test P value) because of the
small number of sites in our study across three arms and
the anticipated violation of the normality assumptions for
each of the three actual study variables.
The simulation results give us confidence that our

chosen KW test-based metric implemented in our
study (P > 0.30) is robust and has high sensitivity in
general for detecting non-trivial levels of baseline co-
variate imbalance. The MANOVA and ANOVA test
criteria (using P > 0.30 for adequate levels of imbal-
ance) were not as sensitive in general. In fact, the dis-
tribution of the max(mean difference) for scenarios
deemed acceptable according to these criteria looks
similar to that of the simple randomization scenarios
(Fig. 2). This suggests that using one of these metrics
to indicate sufficient levels of balance as part of a
modified CCR scheme has a performance similar to
that of simple randomization.

Table 2 Sensitivity and specificity of detecting 1.0 standard deviation max(mean differences) across arms (1:3:3 allocation)

Imbalance criterion Resampled Hypothetical

max(mean diff) < 1.0 max(mean diff) > 1.0 max(mean diff) < 1.0 max(mean diff) > 1.0

N % N % N % N %

KW 44,340 54.15 16,168 89.27 43,800 53.80 18,541 99.73

Inadequate (P <0.30)

Adequate (P >0.30) 37,549 45.85 1943 10.73 37,609 46.20 50 0.27

ANOVA 46,555 56.85 15,136 83.57 45,758 56.21 15,356 82.60

Inadequate (P <0.30)

Adequate (P >0.30) 35,334 43.15 2975 16.43 35,651 43.79 3235 17.40

MANOVA 18,933 23.12 11,064 61.09 18,630 22.88 11,194 60.21

Inadequate (P <0.30)

Adequate (P >0.30) 62,956 76.88 7047 38.91 62,779 77.12 7397 39.79

t test 72,112 88.06 18,111 100.00 69,281 85.10 18,591 100.00

Inadequate (P <0.30)

Adequate (P >0.30) 9777 11.94 0 0 12,128 14.90 0 0

WRS 70,287 85.83 17,742 97.96 68,523 84.17 18,591 100.00

Inadequate (P <0.30)

Adequate (P >0.30) 11,602 14.17 369 2.04 12,886 15.83 0 0

Abbreviations: ANOVA analysis of variance, KW Kruskal–Wallis, MANOVA multivariate analysis of variance, WRS Wilcoxon rank-sum
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The t test and WRS test P value > 0.30 criteria were
the most conservative the most often in all simulated
scenarios. Using one of these metrics would likely
also ensure adequate baseline covariate balance in
similar C-RCTs. One potential drawback, however,
may be a problem of potential over-constraint; specif-
ically, the recommendation for analyses based on
randomization through permutation tests relies heav-
ily on the constrained randomization space [11, 17].
For example, when we examine the simulated scenar-
ios imposing unrealistic but minor imbalance on aver-
age, the t test and WRS metrics would deem these
scenarios adequate just 3–4% of the time. This may
not matter if analyses do not call for permutation
tests. However, use of these metrics makes a permu-
tation test less plausible.

Study limitations and alternative approaches
We recognize the fact that we have explored a finite num-
ber of imbalance metrics options when, in reality, there are
an infinite number of metrics we could have chosen. We
originally chose the KW test P value criterion as it is intui-
tive and easy to use. The others explored in these simula-
tions are also intuitive and fairly easy to use. The cutoff of
P > 0.30 to indicate sufficient balance stemmed from the
recommendation of Zhao et al. in individually randomized
trial literature [9]. As previously mentioned, another sug-
gestion from the C-RCT literature involves using the 10th
percentile (upper/lower, depending upon the measure) of
all simulated/enumerated allocations to determine the pool
of “acceptable” allocation schemes [6, 11]. Although we
could have adopted this criterion in our current trial or in
the simulations, we found this notion not as intuitive. In

Fig. 3 Pairwise scatterplots exploring associations between Kruskal–Wallis (KW) P value with other measures. The panels here present a selection
of pairwise plots to illustrate the relationships between the imbalance metric we used in our randomization algorithm, the KW test P value, and
additional candidate imbalance metrics explored. Each plot includes 5000 observations from the resampled scenarios using 1:3:3 allocation as in
our present study. In each plot, there is often a non-linear relationship. For example, the first plot illustrating min(KW P value) in comparison with
the multivariate analysis of variance (MANOVA) demonstrates a somewhat noisy relationship between the two whereby the min(KW P value)
tends to be lower than the overall MANOVA P value, but the two are related. The comparison of the min(KW P value) versus the min(Wilcoxon
rank-sum [WRS] P value) shows a more pronounced relationship and a clearer, non-linear pattern. All metrics of imbalance as determined are
highly related; broadly, the more global tests (e.g., MANOVA) tended to be less conservative (i.e., have larger P value) than the corresponding
more specific tests based on more than one comparison (e.g., WRS). The line y = x has been added for reference
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fact, the corresponding upper/lower thresholds depend
highly on the underlying distribution of variables across
arms, although in theory the underlying assumption is that
the arms are balanced on average. When we resampled the
MB data in our simulations, the 90th percentile P values
for MANOVA, ANOVA, KW, t test, and WRS test were
0.90, 0.57, 0.59, 0.30, and 0.32, respectively. The lower 10th
percentile of the maximum mean difference across arms
was 0.43. If data were to come from a theoretically skewed
or imbalanced distribution or both (although this is very
unlikely in a real C-RCT setting), these thresholds would be
different. Therefore, using the KW test P value > 0.30 cri-
terion that we chose allows a larger pool of possible treat-
ment allocation schemes that otherwise would have been
thrown out, as they would not have met the 90th percentile
criterion.
Finally, a note should be made regarding the analyses of

such C-RCTs. Recently, Turner et al. presented a review of
design [2] analysis methods for C-RCTs [17]. As mentioned
in section 2, the unit of analyses for this MB case study is
the individual participant. Therefore, the site-level variables
we explore here are only surrogates for the true underlying
participant-level variables (i.e., race, environment, and level
of individualized care) for which we ultimately hope to con-
trol imbalance as a result of the randomization scheme im-
plemented. Thus, we cannot be sure whether our algorithm
was truly successful in achieving relative balance across
arms until we assess final participant-level variables for all
enrolled participants; this research is under way. There may
be some unmeasured or unaccounted for variables that can
present bias in analyses, but the analytic strategy will ac-
count for intra-class correlation and important
participant-level covariates appropriately as recommended
in analyses of C-RCTs [17, 18] in order to minimize type I
error rate inflation, bias, and ultimately false conclusions.

Conclusions
Although any of the metrics we explore here for ensuring
comparability in C-RCTs may suffice for an individual
trial, we use these simulations as a guide to researchers
who are planning to implement C-RCTs with CCR tech-
niques. To researchers planning such a trial, especially
one with more than two arms, we suggest the following:

1. Always consider baseline variables in both the
design and analysis phase in C-RCTs; we cannot as-
sume that simple randomization will solve all prob-
lems with respect to covariate imbalance [7, 8, 19].

2. Consider using the KW test P value > 0.30 as in our
scenario, as it seemed sensitive and not overly
conservative.

3. Consider using continuous variables in place of
categorical variables because of the potential

sparsity in cell counts. It is worth noting that the
choice of a cut point or threshold for variables
otherwise considered continuous may be somewhat
arbitrary and come at a cost as well [20].

4. Explore properties of imbalance metrics prior to
implementation in any real C-RCT. Any of the imbal-
ance metrics we explore here are potential candidate
measures, but care should be taken to determine the
appropriate threshold for “adequate” balance.

5. Other metrics to consider include the following:
a. The MANOVA or ANOVA with larger

threshold P value (e.g., simulations suggest
ANOVA P >0.56 and MANOVA P >0.90) that
corresponds to the upper 10% as recommended
by Raab and Butcher [6].

b. The pairwise tests (i.e., t test and WRS test),
although these have potential to be overly
conservative. If the research does not plan to use
permutation tests or if weights imbalance control
more heavily than overly constrained
randomization, these tests may be the better option.
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Additional file 1: Table S1. Threshold summary statistics by simulated
scenario and imbalance criterion (1:1:1 Scenarios). Table S2. Sensitivity
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