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Abstract

Background: When using a continuous outcome measure in a randomised controlled trial (RCT), the baseline score
should be measured in addition to the post-intervention score, and it should be analysed using the appropriate
statistical analysis.

Methods: We derive the correlation between the change score and baseline score and show that there is always a
correlation (usually negative) between the change score and baseline score. We discuss the following correlations
and provide the mathematical derivations in the Appendix:

� Correlation between change score and baseline score
� Correlation between change score and post score
� Correlation between change score and average score.

The setting here is a parallel, two-arm RCT, but the method discussed in this paper is applicable for any studies or
trials that have a continuous outcome measure; it is not restricted to RCTs.

Results: We show that using the change score as the outcome measure does not address the problem of regression
to the mean, nor does it take account of the baseline imbalance. Whether the outcome is change score or post score,
one should always adjust for baseline using analysis of covariance (ANCOVA); otherwise, the estimated treat effect may
be biased. We show that these correlations also apply when comparing two measurement methods using Bland-
Altman plots.

Conclusions: The correlation between baseline and post-intervention scores can be derived using the variance sum law.
We can then use the derived correlation to calculate the required sample size in the design stage. Baseline imbalance
may occur in RCTs, and ANCOVA should be used to adjust for baseline in the analysis stage.
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(ANCOVA), Randomised controlled trial (RCT), Bland-Altman plot
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Background
When using a continuous outcome measure in a rando-
mised controlled trial (RCT), the baseline score should
be measured in addition to the post-intervention score.
In a previous paper [9], we have shown how to derive r,
the correlation between baseline score and post score. In
this paper, we derive correlations between different vari-
ables in the Appendix, assuming r is known. There are
two options for the outcome measure: change score or
post score. We examine the validity of using change
score as the outcome measure in the “Method” section,
and then further discuss the applications of our methods
outlined in the “Discussion” section.

Method
The choice of outcome measure: post score vs. change
score
The methods outlined in this paper are suitable for any
continuous measure, and therefore we have used a gen-
eric notation. Suppose the primary continuous outcome
measure is Y, with Y0 and Y1 denoting the value of Y at
baseline and post-intervention, respectively. Let r denote
the correlation coefficient between Y0 and Y1.
We will call Y1 “post score”, Y0 “baseline score”, and

(Y1 − Y0) “change score”. We note that Y1 is also called
“follow up score” in [17]. The authors assumed there is
no interaction between baseline and intervention group,
and we make the same assumption in this paper.
In analysis of covariance (ANCOVA), we estimate pa-

rameters a, b, and c in the following regression question:

post score ¼ aþ b� baselineþ c� group

where “group” stands for “intervention group”. One is
usually most interested in the estimate of c, the treat-
ment effect, in an RCT. Substituting Y1 for “post score”,
Y0 for “baseline score”, and G for “group”, we have the
following regression equation for a standard ANCOVA
that uses post score as outcome:

Y 1 ¼ aþ bY 0 þ cG ð1Þ
Rearranging Eq. 1, we have

Y 1−Y 0 ¼ aþ b−1ð ÞY 0 þ cG ð2Þ
Equation 2 is ANCOVA using change score (Y1 − Y0)

as outcome and adjusting for baseline Y0. Compared
with the standard ANCOVA in Eq. 1, where post score
Y1 is the outcome, nothing has changed except that the
regression coefficient for Y0 has decreased by 1. The sig-
nificance level and the width of the confidence intervals
for all estimated regression coefficients remain the same
as those in a standard ANCOVA. Further mathematical
details can be found in [14].
Rearranging Eq. 1 in a different way, we have

Y 1−bY 0 ¼ aþ cG ð3Þ

Equation 3 shows that using change score as outcome
without adjusting for baseline is only equivalent to a
standard ANCOVA when b = 1. In practice, the esti-
mated b in an ANCOVA is rarely equal to 1; hence, it is
only a special case of ANCOVA.

Regression to the mean (RTM) and ANCOVA
RTM is a well-known statistical phenomenon, first dis-
covered by Galton in [10]. RTM has been discussed by a
number of authors, e.g. [3, 6, 7, 15], etc. In this paper,
we consider RTM in the context of baseline measures.
If an extreme measure is observed at baseline, then its

value is likely to be less extreme in the post-intervention
measure, even if the intervention has no effect. In the
RCT example in [17], the treatment effect of acupunc-
ture was measured by a 100-point rating score, where
lower scores indicate poorer outcomes. Suppose that the
baseline scores of the control group reflect the scores of
the general population, and that acupuncture has no
treatment effect. If, by chance, the baseline scores of the
intervention group are lower than the scores of the gen-
eral population, their post scores will still be higher than
their baseline scores, due to RTM. We consider two op-
tions of outcome measure:

1. Post score: If post score is positively correlated with
the baseline score (which is usually the case in
clinical practice), acupuncture will appear to have a
negative effect, even though it has no effect; i.e. the
treatment effect of acupuncture will be under-
estimated.

2. Change score: Acupuncture will appear to have a
positive effect, even though it has no effect; i.e. the
treatment effect of acupuncture will be over-
estimated.

In both of the preceding scenarios, the appropriate
statistical analysis is ANCOVA adjusting for baseline
scores. The first scenario corresponds to Eq. 1, with its
left-hand side showing the post score as the outcome
measure. The second scenario corresponds to Eq. 2, with
its left-hand side showing the change score as the out-
come measure.
Using change score as the outcome measure does not

address the problem of RTM, nor does it take account
of the baseline imbalance. Even if change score is
deemed to be the appropriate outcome measure after
careful consideration, ANCOVA should still be used to
adjust for baseline scores, as shown by Eq. 2.
Using change score as outcome does not adjust for

baseline imbalance; instead, any imbalance will be re-
versed due to RTM [4]. Equation 2 shows that when
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change score is the chosen outcome, one should still ad-
just for baseline using ANCOVA. In such a case,
ANCOVA is the valid statistical analysis.
ANCOVA has the advantages of being unaffected by

baseline imbalance [17], and it has greater statistical
power than other methods [16]. An RCT reduces RTM
at the design stage, but one should still use ANCOVA to
adjust for baseline in the analysis stage [3].

The validity of using change score as outcome measure
Let r denote the correlation between post score Y1 and
baseline score Y0. Let s2Y 0

denote the sample variance of

baseline score Y0, s2Y 1
denote the sample variance of post

score Y1, and s2ðY 1−Y 0Þ denote the sample variance of the

change score (Y1 − Y0). Let sY 0 , sY 1 , and sðY 1−Y 0Þ denote
their corresponding standard deviations (SD).
The Appendix shows that the correlation between

change score (Y1 − Y0) and baseline score Y0 is

corr Y 1−Y 0;Y 0ð Þ ¼ r sY 1−sY 0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2Y 0

þ s2Y 1
−2 r sY 0sY 1

q ð4Þ

Equation 4 shows that corr(Y1 − Y0,Y0) will be positive
if r > sY 1=sY 0 , and vice versa. In the special case of r = 0
(i.e. Y1 and Y0 are not correlated), there still will be
negative correlation between change score (Y1 − Y0) and
baseline score Y0. If the post score and baseline have
similar variance, then corr(Y1 − Y0,Y0) will usually be
negative because r ≤ 1. Most importantly, Eq. 4 shows
that there is always a correlation between the change
score and the baseline score; therefore, one should use
ANCOVA to adjust for the baseline score.
Equation 4 was also applied when comparing methods

of measurement [8], where Y1 and Y0 were replaced by
test measure and standard measure, respectively. The
authors of [8] show that plotting difference against
standard method is misleading, because there will be a
negative correlation even if the two methods are not
correlated. The authors also conclude that plotting dif-
ference against the average is more useful in almost all
medical measures.
We now consider the variance of the change score (Y1

− Y0). The variance sum law states that the variance of
the change score is

s2Y 1−Y 0ð Þ ¼ s2Y 0
þ s2Y 1

−2 r sY 0sY 1 ð5Þ

Equation 5 shows that if r is small, s2ðY 1−Y 0Þ will be

greater than s2Y 1
; i.e. using change score will add variance

compared with using post score as the outcome meas-
ure, and therefore will be less likely to show a significant
result. Conversely, the post score will be more likely to
show a significant result if r is high. However, the choice

of the outcome measure should not be driven by the
likelihood of a significant result; instead, it should be
pre-specified in the trial protocol [17].
Using change score as outcome has undesirable impli-

cations. For example, if there is a hard lower or upper
limit on the score, it may lead to “floor” or “ceiling” ef-
fects in change score. If transformation of the original
scores is used during data analysis, it is not guaranteed
that the transformation applies to the change score. Dif-
ferent transformations can reorder change scores across
patients. By contrast, using post scores is always valid
and never misleading [12].
The change score can be a reasonable outcome when

the correlation between baseline and post scores is high
(e.g. r > 0.8) in stable chronic conditions such as obesity
[17]. In this instance, ANCOVA is still the preferred
general approach.
In the Appendix, we show that the change score is al-

ways correlated with the baseline score (Eq. 9) and with
the post score (Eq. 10). This is purely a statistical arte-
fact, and it exists regardless of whether the treatment is
effective or not. The method of using change score as
outcome measure is prone to incorrect interpretations
of such correlations.
In summary, one should be cautious about using

change score as the outcome measure. If justification ex-
ists for using change score as the outcome measure, one
should still adjust for baseline using ANCOVA. This will
increase statistical power and avoid the pitfall of RTM.

Discussion
Potential imbalance of baseline in RCTs
In practice, given the finite sample size and random na-
ture of RCTs, any important prognostic factors and
baseline score may not be balanced between arms. RCTs
of small or moderate sample sizes are particularly prone
to such imbalances.
The balance of specific prognostic factors can be

achieved during randomisation. The most commonly
used randomisation methods are stratified permuted
blocks [1] and minimisation [2]. Both methods allow
randomisation to be stratified according to prognostic
factors, such as gender, disease severity, age group, etc.,
which ensures that these characteristics are balanced be-
tween the treatment and control arms. One should ad-
just for stratification or minimisation factors during the
data analysis stage [13].
However, the randomisation methods outlined above

do not deal with the potential imbalance in baseline
scores between arms. It is therefore of particular import-
ance to measure the baseline scores before randomisa-
tion and then use ANCOVA to adjust for baseline in the
data analysis stage, as shown in this paper.

Clifton and Clifton Trials           (2019) 20:43 Page 3 of 6



The correlation between change score and baseline score
The correlation between change score (Y1 − Y0) and
baseline score Y0 has previously been observed in the
context of initial blood pressure and its fall with treat-
ment [11]. We provide a detailed mathematical deriv-
ation in the Appendix. Equation 9 shows that there is
always a correlation between the change score and the
baseline, regardless of any treatment effects. This correl-
ation will be negative if r is small; that is, if the change
score is the chosen outcome measure (for instance, of
blood pressure), we will observe a fall in the blood pres-
sure against the baseline blood pressure. An incorrect
interpretation of such an observed decrease in the
change score would be to conclude that the treatment is
more effective for patients whose initial blood pressure
is high.

Deriving correlation between baseline score Y0 and post
score Y1
In this paper, we have assumed that the value of r, the
correlation between baseline score Y0 and post score Y1,
is known. However, the value of r is usually not readily
available in the design stage of an RCT. In a previous
paper [9], we have shown how to derive r using the vari-
ance sum law based on a published paper,and then use
the derived value of r to calculate sample size using dif-
ferent methods.
Once we have derived r, we can derive correlations be-

tween different variables using equations derived in the
Appendix. In the ideal situation when the raw data are
available, one can fully investigate correlations between
different variables using the equations provided in this
paper.

Bland-Altman plots
The same mathematical principles derived in the Appendix
can be applied to both choosing outcome measures in an
RCT and assessing agreement between two measurement
methods [5, 8]. A Bland-Altman plot shows the difference
of the two measures on the y-axis and their average on the
x-axis.
When assessing the agreement between two meas-

urement methods, one should use a Bland-Altman
plot showing the difference of the two measures
against their average. The correlation r between the
two measures does not assess their agreement [5].
We note that if the ranges of the two measures are
different, their variances will be different; therefore,
there will be a trend on the Bland-Altman plot,
caused by the correlation shown in Eq. 13. There-
fore, one should examine the variances of the two
measures before using Bland-Altman plots.

Similarly, in the context of outcome measures in an
RCT, one can plot the change score against the aver-
age of the baseline and post scores, as in a
Bland-Altman plot. Equation 13 shows that the cor-
relation between the change score and their average
will be zero if the baseline score and post score have
equal variance.

Limitations
The methods described in this paper only consider con-
tinuous variables or outcome measures. They are not ap-
plicable to binary variables.

Appendix
We denote the variance of variables X and Y by σ2X
and σ2Y , respectively, and their correlation ρ. We use
corr(), cov(), var () as the generic notation for correl-
ation, covariance, and variance, respectively.

Correlation between (Y − X) and X
In this section, we derive corr(Y − X, X), the correlation
between variables (Y − X) and X.
By definition, we have

corr Y−X;Xð Þ ¼ cov Y−X;Xð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Y−Xð Þ � var Xð Þp

¼ cov Y ;Xð Þ−σ2Xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var Y−Xð Þ � σ2X

p ð6Þ

By the variance sum law, we have

var Y−Xð Þ ¼ σ2Y−2ρσXσY þ σ2X ð7Þ
By definition, we have

cov Y ;Xð Þ ¼ corr Y ;Xð ÞσXσY ¼ ρσXσY ð8Þ
Substituting Eqs. 8 and 7 into Eq. 6, we have

corr Y−X;Xð Þ ¼ ρσXσY−σ2X
σX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2X−2ρσXσY þ σ2

Yð Þ
p

¼ ρσY−σXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
X−2ρσXσY þ σ2Y

p ð9Þ

Correlation between (Y − X) and Y
Following the same method for deriving corr(Y − X, X)
in the previous section, it can be shown that corr(Y −
X,Y), the correlation between variables (Y − X) and Y,
is

corr Y−X;Yð Þ ¼ σY−ρσXffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2X−2ρσXσY þ σ2Y

p ð10Þ

Equations 9 and 10 have been discussed in the
context of comparing two measurement methods
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[8]. In the special case of equal variance between
the two methods (i.e. σX = σY), they reduce to

corr Y−X;Xð Þ ¼ −

ffiffiffiffiffiffiffiffi
1−ρ
2

r

corr Y−X;Yð Þ ¼
ffiffiffiffiffiffiffiffi
1−ρ
2

r

Correlation between (X − Y) and (X + Y)
In this section, we derive the correlation between vari-
ables (X − Y) and (X + Y).
By definition, we have

corr X−Y ;X þ Yð Þ ¼ cov X−Y ;X þ Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var X−Yð Þ � var X þ Yð Þp

¼ σ2X þ cov X;Y Þ− covðY ;Xð Þ−σ2Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var X−Yð Þ � var X þ Yð Þp

¼ σ2
X−σ

2
Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

var X−Yð Þ � var X þ Yð Þp
ð11Þ

By the variance sum law, we have

var X−Yð Þ ¼ σ2X − 2ρσXσY þ σ2Y

var X þ Yð Þ ¼ σ2X þ 2ρσXσY þ σ2Y

Therefore,

var X−Yð Þ � var X þ Yð Þ ¼ σ2X−2ρσXσY þ σ2
Y

� �

σ2X þ 2ρσXσY þ σ2
Y

� � ¼ σ2
X þ σ2

Y

� �2
− 2ρσXσYð Þ2

ð12Þ
Substitute Eq. 12 into Eq. 11, we have

corr X−Y ;X þ Yð Þ ¼ σ2X−σ
2
Yffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2
X þ σ2Yð Þ2− 2ρσXσYð Þ2

q ð13Þ

Equation 13 shows that:

� If X and Y have equal variance ði:e: σ2X ¼ σ2Y Þ, the
correlation between (X − Y) and (X + Y) will be zero.
This is true whether or not X and Y are correlated.

� If X and Y are uncorrelated (i.e. ρ = 0), then the
correlation between (X − Y) and (X + Y) will be

corr X−Y ;X þ Yð Þ ¼ σ2X−σ
2
Y

σ2
X þ σ2Y

ð14Þ

It can be shown that

corr X−Y ;X þ Yð Þ ¼ corr X−Y ;
X þ Y

2

� �
ð15Þ

A Bland-Altman plot shows the difference (i.e. X − Y)
of two measures against their average ði:e: XþY

2 Þ . The
right-hand side of Eq. 15 is what a Bland-Altman plot
shows; therefore, what we have derived in this section
also applies to Bland-Altman plots.
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