
METHODOLOGY Open Access

Preventing false discovery of
heterogeneous treatment effect
subgroups in randomized trials
Joseph Rigdon1* , Michael Baiocchi2 and Sanjay Basu3

Abstract

Background: Heterogeneous treatment effects (HTEs), or systematic differences in treatment effectiveness among
participants with different observable features, may be important when applying trial results to clinical practice.
Current methods suffer from a potential for false detection of HTEs due to imbalances in covariates between candidate
subgroups.

Methods: We introduce a new method, matching plus classification and regression trees (mCART), that yields balance
in covariates in identified HTE subgroups. We compared mCART to a classical method (logistic regression [LR] with
backwards covariate selection using the Akaike information criterion ) and two machine-learning approaches increasingly
applied to HTE detection (random forest [RF] and gradient RF) in simulations with a binary outcome with known HTE
subgroups. We considered an N = 200 phase II oncology trial where there were either no HTEs (1A) or two HTE
subgroups (1B) and an
N = 6000 phase III cardiovascular disease trial where there were either no HTEs (2A) or four HTE subgroups (2B).
Additionally, we considered an N = 6000 phase III cardiovascular disease trial where there was no average treatment
effect but there were four HTE subgroups (2C).

Results: In simulations 1A and 2A (no HTEs), mCART did not identify any HTE subgroups, whereas LR found 2 and 448,
RF 5 and 2, and gradient RF 5 and 24, respectively (all false positives). In simulation 1B, mCART failed to identify the two
true HTE subgroups whereas LR found 4, RF 6, and gradient RF 10 (half or more of which were false positives). In
simulations 2B and 2C, mCART captured the four true HTE subgroups, whereas the other methods found only false
positives.
All HTE subgroups identified by mCART had acceptable treated vs. control covariate balance with absolute
standardized differences less than 0.2, whereas the absolute standardized differences for the other methods typically
exceeded
0.2. The imbalance in covariates in identified subgroups for LR, RF, and gradient RF indicates the false HTE detection
may have been due to confounding.

Conclusions: Covariate imbalances may be producing false positives in subgroup analyses. mCART could be a useful
tool to help prevent the false discovery of HTE subgroups in secondary analyses of randomized trial data.
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Background
Precision medicine aims to direct the right medication
to the right patient at the right time [1]. A requirement
of precision medicine is that the effect of a treatment on
a given patient must be accurately estimated, to deter-
mine if that patient systematically differs from the aver-
age in a randomized trial, for instance.
Heterogeneous treatment effects (HTEs)—or system-

atic differences in treatment effects among participants
with different observable features—are increasingly
identified through post-trial data analyses [2, 3]. Be-
cause common univariate subgroup analyses of ran-
domized trial data have been found to lack statistical
power to detect HTEs [4], some researchers have de-
ployed multivariate models to detect how covariates
may produce different expected treatment effects for
different participants based on a multivariate risk/bene-
fit score [5]. Both traditional statistical regression ap-
proaches [6] and newer machine-learning methods
such as random forest (RF) methods [7] are increas-
ingly being used to estimate HTEs.
HTE estimation approaches attempt to predict

individual-level treatment effects and identify subgroups
of participants with above average or lower average
benefit from a treatment. In this paper, we focus on
identifying subgroups with HTE, rather than
individual-level treatment effects. A major challenge in
HTE subgroup analysis is that, even if the data come
from a randomized trial, subgroups that are identified
may be imbalanced on important clinical characteristics
[8]. For example, for a blood pressure treatment trial,
one subgroup with high benefit from treatment may be
individuals of black race with baseline systolic blood
pressure >140 mmHg. Yet it may be that among individ-
uals with black race and baseline systolic blood pres-
sure >140 mmHg, those randomized to the treatment
arm had much better kidney function than those ran-
domized to the control arm. Hence, race and baseline
blood pressure may not have correctly identified a HTE,
since the subgroup identified may have been falsely de-
tected due to an imbalance in another feature (kidney
function) between the treatment and control groups.
While randomization aims to avoid such confounding in
the overall trial, it does not guarantee that all subgroups
of interest will achieve adequate balance to avoid
confounding in the estimation of a subgroup-specific ef-
fect. If HTE subgroups were known in advance, re-
stricted or constrained randomization within subgroups
would be an attractive option for inference on the HTEs.
However, in practice, HTE subgroups are rarely known
in advance and creating subgroups from combinations
of all levels of prognostic categorical variables (such as
those listed in Table 1) would likely lead to an impracti-
cal randomization scheme.

The consequences of falsely identifying a subgroup
can be dire: a life-saving treatment could be withheld
or an ineffective treatment prescribed that increases the
chances of a serious adverse event. One potential strat-
egy to reduce the likelihood of false HTE detection is
to reduce the observed imbalance between treatment
and control groups when applying methods to detect
HTE [8].
Here, we propose a method for detecting and poten-

tially avoiding imbalance in observed characteristics in
trial data when constructing HTE models for precision
medicine applications. We specifically combine match-
ing (to control for treated vs. control covariate imbal-
ances) with classification and regression trees (to
identify subgroups with an easily visualized decision
tree), and demonstrate the virtues of this approach
compared to popular alternatives currently imple-
mented in the post-hoc trial analysis literature.

Methods
We simulated multiple trials in which the true HTEs
were known, to compare the rates of finding true and
false positive subgroups from: (i) the matching with
classification and regression trees approach (mCART),
(ii) a logistic regression (LR) model with interaction
terms between participant covariates and the treatment
arm, (iii) the common machine-learning approach of
RF analysis, and (iv) the newer machine-learning ap-
proach specifically designed for detecting HTEs, of gra-
dient forest analysis (sometimes referred to as causal
forest analysis, a term we intentionally avoid here [9]).
These methods are detailed further below. Statistical
code for replication is available at https://github.com/
joerigdon/HTE.

Simulated datasets
We simulated trial data to test the ability of comparator
methods to detect HTEs. We simulated randomized tri-
als in which each individual participant has a potential
adverse medical event when randomized to treatment,
Y1, or when randomized to placebo, Y0. In practice, only
one of Y1 or Y0 is revealed by the trial [10]. The out-
come variable is labeled 0 if no event occurs and 1 if an
event occurs. The unobservable true treatment effect

Table 1 Overview of study designs considered in simulations

Effect type Study setting

N = 200 phase II
oncology trial

N = 6000 phase III
CVD trial

ATE > 0, no HTE subgroups Simulation 1A Simulation 2A

ATE> 0, HTE subgroups exist Simulation 1B Simulation 2B

ATE = 0, HTE subgroups exist Simulation 2C

ATE average treatment effect, CVD cardiovascular disease, HTE heterogeneous
treatment effect
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for each individual in the trial, δ = Y1 – Y0, is the differ-
ence between the outcome for the treatment group and
the outcome for the control group. δ = −1 if the treat-
ment prevents the event (benefit), δ = 0 if the treatment
has no effect on the event, and δ = 1 if the treatment in-
duces the event (harm).
We considered two study settings (outlined in Table

1) representative of clinical trials often seen in practice:
(1) a smaller phase II oncology trial (N = 200) and (2) a
larger phase III trial of a cardiovascular disease (CVD)
treatment (N = 6000). In setting (1), we considered a
trial where researchers were interested in replicating
the finding that a combination of treatments was more
effective than a single treatment in increasing
progression-free survival among patients with ad-
vanced, estrogen receptor-positive, HER2-negative
breast cancer [11]. We designed the study to have 80%
power to detect a change from an event rate of 59/81
(about 73%) in the single treatment group (Y0) to an
event rate of 41/84 (about 49%) in the combination
group (Y1). Such a study design would require n = 64
per group [12], but given the high number of antici-
pated dropouts and conservative effect-size estimation
(73% rounded to 70% and 49% to 50%), we recruited
n = 100 per group in the hypothetical trial.
Let V ~ N(m, s) be shorthand for variable V is nor-

mally distributed with mean m and standard deviation
s. Let V ~ Bern(b) be shorthand for variable V is drawn
from a Bernoulli distribution with mean b, or Pr[V = 1]
= b, and let V ~ Multinom(pA, pB, …, pZ) be shorthand
for V is drawn from a multinomial distribution where V
can take on the values (A, B, …, Z) with corresponding
probabilities (pA, pB, …, pZ). For setting (1), the oncol-
ogy trial, we simulated n = 200 records of the following
six baseline covariates: age ~ N(65, 5), disease stage = 4
~ B(0.98), disease site = (visceral, bone only, other) ~
Multinom(0.5, 0.17, 0.33), previous treatment = (none,
chemo only, hormonal only, chemo + hormonal) ~
Multinom(0.5, 0.2, 0.2, 0.1), Eastern Cooperative
Oncology Group (ECOG) score ~ Bern(0.55), and
disease-free interval >12 months from adjuvant to re-
currence ~ Bern(0.35).
We simulated the treatment effects in two ways

for the oncology trial. In simulation 1A, we consid-
ered a setting where there were no HTE subgroups,
i.e., δ = (–1, 0, 1) ~ Multinom(0.5, 0.2, 0.3) for all
N = 200 individuals in the trial, independent of covariates
such that the average treatment effect was approximately
–0.2. For individuals with δ = −1, Y1 and Y0 immediately
follow as 0 and 1, respectively, and for individuals with
δ = 1, Y1 and Y0 immediately follow as 1 and 0, respect-
ively. For individuals with δ = 0, Y1 and Y0 were set to 1,
so that our sample means were approximately Y1 = 0.5
and Y0 = 0.7.

In simulation 1B, we considered a setting where
there were HTE subgroups in the oncology trial in
two groups: women over 65 years old versus women
65 years and younger, each constituting about half of
the sample population of the trial. In particular, for
women aged ≤65, δ ~ Multinom(0.6, 0.2, 0.2), such
that the average treatment effect (ATE) was approxi-
mately −0.4 (Y1 = 0.4 and Y0 = 0.8), and for women
aged >65, δ ~ Multinom(0.4, 0.2, 0.4), such that the
ATE was approximately 0 (Y1 = 0.6 and Y0 = 0.6),
and such that the overall ATE was still approxi-
mately −0.2.
In setting (2), we considered a trial where researchers

were interested in testing the effect of a more intensive
blood pressure target of systolic pressure <20 mmHg
versus the standard target for systolic pressure
<140 mmHg for preventing a composite CVD outcome
[13]. We designed the study to have 80% power to de-
tect a change from an event rate of 6.8% in the standard
(Y0) to an event rate of 5.2% in the intensive target
group (Y1). Such a study design would require n = 3000
per group [12] to have 80% power to reject the null hy-
pothesis that standard and intensive are equal versus
the alternative specified above (6.8% standard versus
5.2% intensive).
For setting (2), the CVD trial, we simulated n = 6000

records of the following 10 baseline covariates: age ~
N(68, 10), black race ~ B(0.3), baseline systolic blood
pressure (mm Hg) ~ N(140, 15), baseline diastolic
blood pressure (mm Hg) ~ N(78, 12), serum creatinine
(mg/dl) ~ N(1.07, 0.34), estimated glomerular filtra-
tion rate (eGFR; ml/min/1.73 m2) ~ N(72, 20), statin
use ~ B(0.43), aspirin use ~ B(0.51), Framingham
10-year risk score for a CVD event ~ N(25, 12), and
smoking status = (never, former, current) ~ Multi-
nom(0.44, 0.42, 0.14).
In simulation 2A, we considered a setting where

there was an ATE of approximately D = −1.6%
(−0.016) in the CVD trial, but no HTE subgroups. In
particular, δ = (−1, 0, 1) ~ Multinom(0.068, 0.88,
0.052) for all N = 6000 individuals in the trial inde-
pendent of covariates, such that the ATE was ap-
proximately −0.016 (Y1 = 0.052 and Y0 = 0.068).
In setting 2B, we simulated HTEs by setting:

(i) For individuals taking aspirin with eGFR ≤ 72,
δ ~ Multinom(0.06, 0.88, 0.06) such that
Δ = 0 × D = 0.

(ii) For individuals taking aspirin with eGFR > 72,
δ ~ Multinom(0.012, 0.88, 0.108) such that
Δ = −6 × D = 0.096.

(iii)For individuals not taking aspirin with eGFR ≤ 72,
δ ~ Multinom(0.116, 0.88, 0.004) such that
Δ = 7 × D = −0.112.
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(iv) For individuals not taking aspirin with eGFR > 72,
δ ~ Multinom(0.084, 0.88, 0.036) such that
Δ = 3 × D = −0.048.

The overall ATE was approximately Δ =D × (0 – 6+ 7+ 3)
/ 4 =D=−0.016 (Y1 = 0.052 and Y0 = 0.068).
In simulation 2C, we consider the same N = 6000

CVD trial where ATE is 0 but there are HTE subgroups.
In particular:

(i) For individuals taking aspirin with eGFR ≤72,
δ ~ Multinom(0.036, 0.88, 0.084) such that
Δ = −3 × D = 0.048.

(ii) For individuals taking aspirin with eGFR > 72,
δ ~ Multinom(0.004, 0.88, 0.116) such that
Δ = −7 × D = 0.112.

(iii)For individuals not taking aspirin with eGFR ≤72,
δ ~ Multinom(0.116, 0.88, 0.004) such that
Δ = 7 × D = −0.112.

(iv) For individuals not taking aspirin with eGFR > 72,
δ ~ Multinom(0.084, 0.88, 0.036) such that
Δ = 3 × D = − 0.048.

The overall ATE was approximately Δ =D × (−3 – 10+7+3)
/ 4=0 ×D=0.

mCART methodological approach
To identify HTE subgroups that are balanced on the
covariates, we propose a novel algorithm using
rank-based Mahalanobis distance matrix matching
followed by classification trees for inference on the
HTEs. Henceforth, we term this method matching
plus classification and regression trees (mCART):

1. We select a set of K prognostic variables of
interest, P = (X1, …, XK), where practice or
literature suggests a potential effect modification
in δ, e.g., age, sex, race, medical history, etc.
These K variables are often selected beforehand
by research teams
(e.g., the demographic and risk factors displayed
in a typical Table 1) and can be continuous or
categorical.

2. For each participant i = 1, ..., N in the randomized
trial, the covariate vector
Pi = (xi1, …, xiK) is collected and stored.

3. Suppose there are C individuals randomized to
the control group and T to the treatment group
(such that C + T =N). Then, a rank-based
Mahalanobis distance matrix with T rows
(treated individuals) and C columns
(control individuals) is formed. If C >T the matrix is
transposed.

4. A pair-matching algorithm [14] is applied to the
matrix in step 3 to create G =min(C, T) pair
matches, each containing one treated individual
and one control individual.

5. For match g = 1, …, G, the covariate vectors
Pg

t (treated) and Pg
c (control) are compared.

If for match g, any of the categorical variables,
e.g., race or sex, in Pg

t are unequal to their
counterpart in Pg

t, then match g is discarded
from the set of G matches. After this step,
there are G2 ≤G matches remaining. We do not
anticipate losing an impactful number of matches
as mCART is designed for settings where there
are 10–15 prognostic variables of interest to be
balanced at baseline (shown in Table 1), of which
perhaps 7–10 are categorical.

6. We use the G2 matched pairs to create an
averaged data set as follows. For match
g = 1, …, G2, δg = Yg

t – Yg
c ∈{−1, 0, 1}, and the

vector of covariates Pg is equal to (Pg
t + Pg

c) / 2,
the average of the treated and control
participants in pair g.

7. We apply a single conditional inference tree
[15] to model δg as a function of Pg in the
averaged data set from step 6. This yields a
decision tree that estimates where there are
differences in the distribution of δg, i.e., where
there are heterogeneous treatment effects.
By virtue of the match, any identified subgroups
have an approximately equal distribution of
risk factors between the treated individuals
and controls. The tree will split important
categorical variables by level and continuous
variables by cut points.

8. We apply the model estimated in step 7 to
our N individual by K variable observed data
collected in the randomized trial to estimate
δi, Pr[δi = − 1], Pr[δi = 0], and Pr[δi = 1] for i = 1,
…, n. Within the terminal nodes identified
in step 7, we can estimate the ATE in the
original data set using methods for inference
on a risk difference.

Comparison methods
We compared our method to three strategies
commonly applied or proposed for identifying HTEs:
LR, RF, and gradient RF. Unless otherwise specified,
default settings for parameters in RF or gradient RF
were used.
In LR, all variables, treatments, and the interaction

of treatment with each of the individual variables
were entered into the model. The backwards Akaike
information criterion was used to select the most
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parsimonious model, as is typical in the literature
for HTE detection [16, 17]. After obtaining the final
model, a probability of the outcome for the treat-
ment group, p1, and a probability of the outcome for
the control group, p0, were estimated for each of the
6000 individuals. Treatment effects were estimated
for each individual as p1 – p0. Estimated treatment
effects were partitioned into subgroups using one
classification and regression tree (via the R package
‘party’) [15].
In the RF method, all variables and a treatment

dummy variable were entered into the model. The
RF method searches across all available variables to
find the first variable that explains the largest vari-
ance in the outcome, and it chooses a value of that
variable to split the population into subgroups.
Then, a second variable is chosen, then a third, pro-
ducing a tree where the branches identify subgroups.
The process is repeated hundreds of times with
bootstrapped samples of the data and covariates, to
produce a forest of these trees, and the predicted
outcome for an individual is taken as the average
prediction from among the trees in the forest [18].
We did not specifically enter any interaction terms
because the RF method searches for interactions by
construction. The RF algorithm was applied by tak-
ing 500 bootstrap samples with replacement of the
data. The best split at each node in each tree is
chosen among a randomly sampled group of the
square root of the total number of variables. The R
package ‘randomForest’ was used to for the modeling
[19]. A predicted outcome (equal to 0 or 1) was ob-
tained for each individual as the most common pre-
diction of 0 or 1 from the 500 trees, for both the
treatment group and the control group. The differ-
ence in predicted outcomes served as each individ-
ual’s treatment effect estimate. Estimated treatment
effects (−1, 0, or 1 for each individual) were again
partitioned into subgroups using one classification
and regression tree in the R package ‘party’.
In the gradient RF method, the RF is built to yield

an estimate in the interval [−1, 1] for δ for each in-
dividual. A key difference between the gradient RF
method and the RF method is the process known as
honest estimation, which means that the gradient RF
approach selects the variables defining each split
point/branch of the decision tree from one subset of
the data, then estimates the values of each variable
that define the split in a different subset, to reduce
the bias in treatment effect estimation and the influ-
ence of outliers [9]. Additionally, the gradient RF al-
gorithm applies a classification tree to each of 2000
bootstrap samples. It (i) finds terminal nodes of indi-
viduals with similar covariates (X) and (ii) computes

an effect estimate within each node as the proportion ex-
periencing the outcome in the treated group minus the
proportion experiencing the outcome in the control sub-
set of the trial. Using similar logic as the RF method, the
predicted treatment effects are averaged across the 2000
trees to yield an estimated causal effect for each individual
in the trial. Gradient RF was carried out using the R
package ‘grf ’ [20]. After building the risk model, estimates
of δ were again partitioned into subgroups using a
classification tree.
Simulations were performed in R [21], using the

simulation code posted at https://github.com/joerig-
don/HTE. In simulations 1A, 1B, 2A, 2B, and 2C, one
hypothetical trial was generated by assigning half of the
simulated participants to the treatment group (Z = 1)
and half to the control group (Z = 0), and the out-
come for each individual was calculated as Y = Z ×
Y1 + (1 – Z) × Y0. For all methods, after subgroup
identification, HTEs were computed within identified
subgroups along with treated minus control absolute
standardized differences (ASDs) for every covariate.
Subgroups were deemed to have acceptable balance if
all ASDs were below 0.2, a cutoff point chosen be-
cause it is of the same order as small effect sizes
[22]. Bias was also computed within each subgroup as
the estimated ATE for the subgroup. Bias is the dif-
ference in proportions of the outcome for treated in-
dividuals minus controls in the subgroup, minus the
true ATE for the subgroup (known as the average of
the true δ’s in the subgroup).

Results
Simulation 1A
The characteristics of the simulated trial population for
simulation 1A are displayed in Table 2. It shows that the
important covariates in the simulated trial were balanced
across the overall treated and control groups, indicating
successful randomization, and thus allowing average dif-
ferences in outcomes (Y) to be attributed to control or
treatment exposure without concerns due to confounding
arising from baseline covariates. The outcomes were: 46/
100 individuals in the combination group experienced the
event, while 70/100 individuals in the single agent arm ex-

perienced the event. The risk difference was Δ̂ = –0.24
[95% confidence interval (0.38, –0.01)], which is close
to the true value Δ = –0.2. The treatment was effect-
ive in the sense that the upper limit of the confidence
interval of the treatment effect was less than 0, indi-
cating a decrease in the number of deaths for the
combination treatment group.
In subgroup analyses of the data shown in Table 2,

mCART did not find any subgroups (no false
positives), whereas LR found 2, RF 5, and gradient
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RF also 5 (all false positives). Tables 4, 5 and 6 in
the appendix show the balance statistics for the
discovered subgroups for LR, RF, and gradient RF,
respectively. Figure 1 displays a plot of the max-
imum ASD within subgroup versus the bias for each
of the methods.

Simulation 1B
Table 7 in the appendix shows the data at baseline
for simulation 1B. Data are balanced across the single
agent and combination groups with the minor excep-
tion of previous treatment equals none (ASD = 0.22;
note that ASD < 0.2 is the rule of thumb for small
effect-size differences or an acceptable balance [22]).
The trial is a success as the combination group (29/
100) is shown to have a lower event rate than the
single-agent group (56/100) with a risk difference of
−0.27 (−0.41, −0.13).
Simulation 1B contained two subgroups with HTEs:

women ≤65 years of age and women >65. In the sub-
group analyses, mCART did not find any subgroups
(two false negatives), whereas LR found 4, RF 6, and
gradient RF also 10 (all false positives). Fig. 4 in the
appendix is a plot of the maximum ASD within
subgroup versus the bias for each of the methods.

Table 2 Data at randomization for simulation 1A

Single agent Combination ASD

n = 100 n = 100

Age (years) 65.0 (±5.8) 64.9 (±5.0) 0.01

Stage 4

No 4 (4.0%) 1 (1.0%) 0.19

Yes 96 (96.0%) 99 (99.0%) 0.19

Site

Visceral 53 (53.0%) 49 (49.0%) 0.08

Bone only 13 (13.0%) 13 (13.0%) 0

Other 34 (34.0%) 38 (38.0%) 0.08

Previous treatment

None 56 (56.0%) 52 (52.0%) 0.08

Chemo only 17 (17.0%) 19 (19.0%) 0.05

Hormonal only 16 (16.0%) 19 (19.0%) 0.08

Chemo + hormonal 11 (11.0%) 10 (10.0%) 0.03

ECOG score

0 45 (45.0%) 37 (37.0%) 0.16

1 55 (55.0%) 63 (63.0%) 0.16

Disease free > 12 months adjuvant to recurrence

No 65 (65.0%) 62 (62.0%) 0.06

Yes 35 (35.0%) 38 (38.0%) 0.06

ASD absolute standardized difference, ECOG Eastern Cooperative Oncology Group

Fig. 1 Plot of maximum absolute standardized difference (ASD) within node for each method (x-axis) versus absolute bias (absolute value of
estimated treatment effect minus true treatment effect) in each identified node for LR, RF, gradient RF, and mCART in simulation 1A. All identified
subgroups to the left of the vertical dashed line of 0.2 have an acceptable balance. ASD absolute standardized difference, LR logistic regression,
mCART matching plus classification and regression trees, RF random forest
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Simulation 2A
Table 3 shows the data at baseline for simulation
2A. Data are balanced across the treatment and
placebo groups with all ASDs < 0.2. The trial is a
success as the treatment group (157/3000) is shown
to have a lower event rate than the control group
(203/3000) with a risk difference of −0.015 (−0.028,
−0.0030).
Simulation 2A contained no subgroups with HTEs.

In subgroup analyses, mCART did not find any sub-
groups, whereas LR found 448, RF 2, and gradient RF
also 24 (all false positives). Fig. 5 in the appendix is a
plot of the maximum ASD within subgroup versus
the bias for each of the methods.

Simulation 2B
Table 8 in the appendix shows the data at baseline
for simulation 2B. Data are balanced across the treat-
ment and placebo groups with all ASDs< 0.2. The
trial is a success as the treatment group (160/3000) is
shown to have a lower event rate than the control
group (203/3000) with a risk difference of −0.014
(−0.027, −0.0019).
Simulation 2B contained four subgroups with HTEs

as outlined in ‘Methods’: individuals taking aspirin

with eGFR ≤ 72, individuals taking aspirin with eGFR
> 72, individuals not taking aspirin with eGFR ≤ 72,
and individuals not taking aspirin with eGFR > 72. In
the subgroup analyses, mCART found four subgroups
(see Fig. 2), whereas LR found 436, RF 3, and gradi-
ent RF 37 (all false positives). The four subgroups
found by mCART approximately equaled the four
true subgroups: individuals taking aspirin with eGFR
≤ 76.649 (versus 72), individuals taking aspirin with
eGFR > 76.649 (versus 72), individuals not taking
aspirin with eGFR ≤ 72.743 (versus 72), and
individuals not taking aspirin with eGFR > 72.743
(versus 72). Figure 3 is a plot of the maximum ASD
within subgroup versus the bias for each of the
methods. Notably, all the subgroups discovered by
mCART had maximum ASDs < 0.2 and bias never
exceeding 0.016.

Simulation 2C
Simulation 2C had no ATE but the same four HTE
subgroups as in simulation 2B: individuals taking
aspirin with eGFR ≤ 72, individuals taking aspirin with
eGFR > 72, individuals not taking aspirin with eGFR
≤ 72, and individuals not taking aspirin with eGFR
> 72. Table 9 in the appendix displays the study
characteristics at baseline. The trial has a null result
as the treatment group (193 / 3000) is shown to
have the same event rate as the control group (190 / 3000)
with a risk difference of 0.001 (−0.012, 0.014).
In the subgroup analyses, mCART found four sub-

groups (Fig. 6 in the appendix), whereas LR found
442, RF 3, and gradient RF 46 (all false positives).
The four subgroups found by mCART approximately
equaled the four true subgroups: individuals taking
aspirin with eGFR ≤ 72.057 (versus 72), individuals
taking aspirin with eGFR > 72.057 (versus 72),
individuals not taking aspirin with eGFR ≤ 72.796
(versus 72), and individuals not taking aspirin with
eGFR > 72.796 (versus 72). Fig. 7 in the appendix is
a plot of the maximum ASD within subgroup versus
the bias for each of the methods. Notably, all the
subgroups discovered by mCART had maximum
ASDs < 0.2 and bias never exceeding 0.008.

Discussion
Precision medicine requires the detection of HTEs
from randomized trial data to provide personalized ef-
fect estimates—that is, to determine if a particular pa-
tient is likely to experience benefits, no effects, or
harms from therapy. This contextualizes the ATE in a
trial for the individual patient.
Here, we found that while common standard re-

gression and alternative machine-learning methods

Table 3 Data at randomization for simulation 2A

Placebo Treatment ASD

n = 3000 n = 3000

Age (years) 68.1 (±10.1) 68.1 (±10.0) 0

Black race

No 2133 (71.1%) 2075 (69.2%) 0.04

Yes 867 (28.9%) 925 (30.8%) 0.04

Systolic blood pressure (mm Hg) 140.8 (±15.1) 140.1 (±15.1) 0.05

Diastolic blood pressure (mm Hg) 78.1 (±11.8) 77.7 (±11.9) 0.04

Serum creatinine (mg/dl) 1.1 (±0.3) 1.1 (±0.3) 0.06

Estimated GFR (ml/min/1.73 m2) 72.2 (±19.6) 72.0 (±20.0) 0.01

Statin use

No 1706 (56.9%) 1745 (58.2%) 0.03

Yes 1294 (43.1%) 1255 (41.8%) 0.03

Aspirin use

No 1446 (48.2%) 1410 (47.0%) 0.02

Yes 1554 (51.8%) 1590 (53.0%) 0.02

Framingham risk score 25.2 (±12.2) 25.2 (±11.9) 0

Smoking status

Never 1350 (45.0%) 1348 (44.9%) 0

Former 1244 (41.5%) 1220 (40.7%) 0.02

Current 406 (13.5%) 432 (14.4%) 0.03

ASD absolute standardized difference, GFR glomerular filtration rate
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Fig. 3 Plot of maximum absolute standardized difference (ASD) within node for each method (x-axis) versus absolute bias (absolute value of
estimated treatment effect minus true treatment effect) in each identified node for LR, RF, gradient RF, and mCART in simulation 2B. All identified
subgroups falling to the left of the vertical dashed line of 0.2 have an acceptable balance. ASD absolute standardized difference, LR logistic
regression, mCART matching plus classification and regression trees, RF random forest
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Fig. 2 mCART results from simulation 2B. eGFR estimated glomerular filtration rate, mCART matching plus classification and regression trees
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can identify HTE subgroups, they may also yield im-
balances between the study arms within identified
subgroups, such that differences in outcomes are
falsely attributed to differences in treatment effect,
but are in fact due to imbalances in covariates. We
strongly recommend that researchers report the bal-
ance between study arms in identified subgroups to
reduce the risk of false HTE reporting. Guidelines
already recommend that studies estimating causal ef-
fects have a detailed discussion of the covariate bal-
ance of the groups under discussion [23, 24].
We also tested the method of matching followed

by CART analysis and found it may reduce the
imbalance in observable covariates and thereby pre-
vent false HTE detection. The method yielded sub-
groups with a balance in observable characteristics,
suggesting that differences in outcomes in identified
subgroups were attributable to treatment or unob-
served covariates. The method also produced an in-
terpretable decision tree that may be more
transparent to clinicians than alternative machine
learning methods.
A limitation of our study is that we considered a

handful of simple data-generating processes that we
believe to be representative of trials hypothetically
seen in clinical practice, with the intention of
demonstrating a situation where an imbalance in
subgroups can cause confounding. We do not know
how often this will occur in practice, as this re-
quires a further systematic review of the literature.
Importantly, a second limitation is that real data
could have unmeasured confounders that we cannot
control for.
In future work, we hope to study how the choice

of different matching algorithms impacts the per-
formance of the mCART algorithm. Other avenues of
future research include applying mCART to
non-binary outcomes (e.g., continuous or survival
outcomes), considering methods of inference for
smaller sample sizes within identified subgroups
(e.g., [25]), and further optimizing mCART for
smaller trials (as it did not detect the two sub-
groups in the N = 200 oncology trial).

Conclusions
mCART could be an interpretable and rigorous tool
for identifying HTE subgroups after the conclusion
of a clinical trial, and may help identify subgroups
balanced on potential prognostic baseline variables
that also differ in treatment effects. Perhaps most
importantly, mCART may help prevent the wasteful
false discovery of HTE subgroups in secondary ana-
lyses of randomized trials.

Appendix

Table 4 Simulation 1A subgroup discovery using logistic regression
(two subgroups found)

Single agent Combination ASD

Group 1: disease free >12 months adjuvant to recurrence
Δ̂ ¼ −0:05ð−0:30; 0:20Þ

n = 35 n = 38

Age (years) 64.6 (±5.6) 65.0 (±5.1) 0.08

Stage 4

No 1 (2.9%) 0 (0.0%) 0.24

Yes 34 (97.1%) 38 (100.0%) 0.24

Site

Viscereal 19 (54.3%) 15 (39.5%) 0.3

Bone only 5 (14.3%) 6 (15.8%) 0.04

Other 11 (31.4%) 17 (44.7%) 0.28

Previous treatment

None 24 (68.6%) 19 (50.0%) 0.38

Chemo only 6 (17.1%) 8 (21.1%) 0.1

Hormonal only 3 (8.6%) 4 (10.5%) 0.07

Chemo + hormonal 2 (5.7%) 7 (18.4%) 0.4

ECOG score

0 15 (42.9%) 14 (36.8%) 0.12

1 20 (57.1%) 24 (63.2%) 0.12

Disease free >12 months adjuvant to recurrence

Yes 35 (100.0%) 38 (100.0%) 0

Group 2: not disease free >12 months adjuvant to recurrence
Δ̂ ¼ −0:35ð−0:53; 0:17Þ

n = 65 n = 62

Age (years) 65.2 (±5.9) 64.9 (±5.0) 0.06

Stage 4

No 3 (4.6%) 1 (1.6%) 0.17

Yes 62 (95.4%) 61 (98.4%) 0.17

Site

Visceral 34 (52.3%) 34 (54.8%) 0.05

Bone only 8 (12.3%) 7 (11.3%) 0.03

Other 23 (35.4%) 21 (33.9%) 0.03

Previous treatment

None 32 (49.2%) 33 (53.2%) 0.08

Chemo only 11 (16.9%) 11 (17.7%) 0.02

Hormonal only 13 (20.0%) 15 (24.2%) 0.1

Chemo + hormonal 9 (13.8%) 3 (4.8%) 0.31

ECOG score

0 30 (46.2%) 23 (37.1%) 0.18

1 35 (53.8%) 39 (62.9%) 0.18

Disease free >12 months adjuvant to recurrence

No 65 (100.0%) 62 (100.0%) 0

ASD absolute standardized difference, ECOG Eastern Cooperative
Oncology Group
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Table 5 Simulation 1A subgroup discovery using random forest
(five subgroups found)

Single agent Combination ASD

Group 1: disease free >12 months adjuvant to recurrence
Δ̂ ¼ −0:05ð−0:30; 0:20Þ

n = 35 n = 38

Age (years) 64.6 (±5.6) 65.0 (±5.1) 0.08

Stage 4

No 1 (2.9%) 0 (0.0%) 0.24

Yes 34 (97.1%) 38 (100.0%) 0.24

Site

Visceral 19 (54.3%) 15 (39.5%) 0.3

Bone only 5 (14.3%) 6 (15.8%) 0.04

Other 11 (31.4%) 17 (44.7%) 0.28

Previous treatment

None 24 (68.6%) 19 (50.0%) 0.38

Chemo only 6 (17.1%) 8 (21.1%) 0.1

Hormonal only 3 (8.6%) 4 (10.5%) 0.07

Chemo + hormonal 2 (5.7%) 7 (18.4%) 0.4

ECOG score

0 15 (42.9%) 14 (36.8%) 0.12

1 20 (57.1%) 24 (63.2%) 0.12

Disease free >12 months adjuvant to recurrence

Yes 35 (100.0%) 38 (100.0%) 0

Group 2: not disease free >12 months adjuvant to recurrence, previous
treatment hormonal or chemo + hormonal, site bone only or other
Δ̂ ¼ 0:06ð−0:40; 0:53Þ

n = 11 n = 10

Age (years) 63.9 (±4.9) 63.6 (±3.4) 0.07

Stage 4

Yes 11 (100.0%) 10 (100.0%) NaN

Site

Bone only 2 (18.2%) 0 (0.0%) 0.67

Other 9 (81.8%) 10 (100.0%) 0.67

Previous treatment

Hormonal only 6 (54.5%) 9 (90.0%) 0.86

Chemo + hormonal 5 (45.5%) 1 (10.0%) 0.86

ECOG score

0 4 (36.4%) 5 (50.0%) 0.28

1 7 (63.6%) 5 (50.0%) 0.28

Disease free >12 months adjuvant to recurrence

No 11 (100.0%) 10 (100.0%) 0

Group 3: not disease free >12 months adjuvant to recurrence, previous
treatment hormonal or chemo + hormonal, site visceral
Δ̂ ¼ −0:57ð−1:00;−0:08Þ

n = 11 n = 8

Age (years) 67.3 (±5.2) 64.2 (±4.8) 0.62

Table 5 Simulation 1A subgroup discovery using random forest
(five subgroups found) (Continued)

Single agent Combination ASD

Stage 4

No 2 (18.2%) 0 (0.0%) 0.67

Yes 9 (81.8%) 8 (100.0%) 0.67

Site

Visceral 11 (100.0%) 8 (100.0%) NaN

Previous treatment

Hormonal only 7 (63.6%) 6 (75.0%) 0.25

Chemo + hormonal 4 (36.4%) 2 (25.0%) 0.25

ECOG score

0 6 (54.5%) 2 (25.0%) 0.63

1 5 (45.5%) 6 (75.0%) 0.63

Disease free >12 months adjuvant to recurrence

No 11 (100.0%) 8 (100.0%) 0

Group 4: not disease free >12 months adjuvant to recurrence, previous
treatment none or chemo only, ECOG = 0
Δ̂ ¼ −0:10ð−0:48; 0:28Þ

n = 20 n = 16

Age (years) 63.7 (±6.4) 63.1 (±5.7) 0.1

Stage 4

No 1 (5.0%) 0 (0.0%) 0.32

Yes 19 (95.0%) 16 (100.0%) 0.32

Site

Visceral 11 (55.0%) 10 (62.5%) 0.15

Bone only 4 (20.0%) 2 (12.5%) 0.2

Other 5 (25.0%) 4 (25.0%) 0

Previous treatment

None 15 (75.0%) 8 (50.0%) 0.53

Chemo only 5 (25.0%) 8 (50.0%) 0.53

ECOG score

0 20 (100.0%) 16 (100.0%) 0

Disease free >12 months adjuvant to recurrence

No 20 (100.0%) 16 (100.0%) 0

Group 5: not disease free >12 months adjuvant to recurrence, previous
treatment none or chemo only, ECOG = 1
Δ̂ ¼ −0:62ð−0:87;−0:37Þ

n = 23 n = 28

Age (years) 66.1 (±6.2) 66.5 (±4.8) 0.07

Stage 4

No 0 (0.0%) 1 (3.6%) 0.27

Yes 23 (100.0%) 27 (96.4%) 0.27

Site

Visceral 12 (52.2%) 16 (57.1%) 0.1

Bone only 2 (8.7%) 5 (17.9%) 0.27

Other 9 (39.1%) 7 (25.0%) 0.31
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Table 5 Simulation 1A subgroup discovery using random forest
(five subgroups found) (Continued)

Single agent Combination ASD

Previous treatment

None 17 (73.9%) 25 (89.3%) 0.4

Chemo only 6 (26.1%) 3 (10.7%) 0.4

ECOG score

1 23 (100.0%) 28 (100.0%) 0

Disease free >12 months adjuvant to recurrence

No 23 (100.0%) 28 (100.0%) 0

ASD absolute standardized difference, ECOG Eastern Cooperative Oncology Group

Table 6 Simulation 1A subgroup discovery using gradient
random forest (five subgroups found)

Single agent Combination ASD

Group 1: not disease free >12 months adjuvant to recurrence
Δ̂ ¼ −0:05ð−0:30; 0:20Þ

n = 35 n = 38

Age (years) 64.6 (±5.6) 65.0 (±5.1) 0.08

Stage 4

No 1 (2.9%) 0 (0.0%) 0.24

Yes 34 (97.1%) 38 (100.0%) 0.24

Site

Visceral 19 (54.3%) 15 (39.5%) 0.3

Bone only 5 (14.3%) 6 (15.8%) 0.04

Other 11 (31.4%) 17 (44.7%) 0.28

Previous treatment

None 24 (68.6%) 19 (50.0%) 0.38

Chemo only 6 (17.1%) 8 (21.1%) 0.1

Hormonal only 3 (8.6%) 4 (10.5%) 0.07

Chemo + hormonal 2 (5.7%) 7 (18.4%) 0.4

ECOG score

0 15 (42.9%) 14 (36.8%) 0.12

1 20 (57.1%) 24 (63.2%) 0.12

Disease free >12 months adjuvant to recurrence

Yes 35 (100.0%) 38 (100.0%) 0

Group 2: not disease free >12 months adjuvant to recurrence
Δ̂ ¼ −0:01ð−0:42; 0:39Þ

n = 11 n = 15

Age (years) 63.9 (±4.9) 64.2 (±4.1) 0.06

Stage 4

Yes 11 (100.0%) 15 (100.0%) 0

Site

Other 11 (100.0%) 15 (100.0%) 0

Previous treatment

Chemo only 2 (18.2%) 5 (33.3%) 0.35

Table 6 Simulation 1A subgroup discovery using gradient
random forest (five subgroups found) (Continued)

Single agent Combination ASD

Hormonal only 5 (45.5%) 9 (60.0%) 0.29

Chemo + hormonal 4 (36.4%) 1 (6.7%) 0.78

ECOG score

0 3 (27.3%) 8 (53.3%) 0.55

1 8 (72.7%) 7 (46.7%) 0.55

Disease free >12 months adjuvant to recurrence

No 11 (100.0%) 15 (100.0%) 0

Group 3: not disease free >12 months adjuvant to recurrence
Δ̂ ¼ −0:33ð−0:92; 0:25Þ

n = 12 n = 6

Age (years) 65.7 (±7.6) 65.0 (±4.4) 0.12

Stage 4

Yes 12 (100.0%) 6 (100.0%) 0

Site

Other 12 (100.0%) 6 (100.0%) 0

Previous treatment

None 12 (100.0%) 6 (100.0%) 0

ECOG score

0 5 (41.7%) 1 (16.7%) 0.57

1 7 (58.3%) 5 (83.3%) 0.57

Disease free >12 months adjuvant to recurrence

No 12 (100.0%) 6 (100.0%) 0

Group 4: not disease free >12 months adjuvant to recurrence
Δ̂ ¼ −0:23ð−0:61; 0:15Þ

n = 22 n = 14

Age (years) 63.7 (±6.2) 62.3 (±5.1) 0.24

Stage 4

No 1 (4.5%) 0 (0.0%) 0.31

Yes 21 (95.5%) 14 (100.0%) 0.31

Site

Visceral 17 (77.3%) 12 (85.7%) 0.22

Bone only 5 (22.7%) 2 (14.3%) 0.22

Previous treatment

None 10 (45.5%) 7 (50.0%) 0.09

Chemo only 5 (22.7%) 5 (35.7%) 0.29

Hormonal only 4 (18.2%) 1 (7.1%) 0.34

Chemo + hormonal 3 (13.6%) 1 (7.1%) 0.21

ECOG score

0 22 (100.0%) 14 (100.0%) 0

Disease free >12 months adjuvant to recurrence

No 22 (100.0%) 14 (100.0%) 0
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Table 7 Data at randomization for simulation 1B

Single agent Combination ASD

n = 100 n = 100

Age (years) 63.8 (±5.0) 64.3 (±5.5) 0.1

Stage 4

No 1 (1.0%) 0 (0.0%) 0.14

Yes 99 (99.0%) 100 (100.0%) 0.14

Site

Visceral 42 (42.0%) 46 (46.0%) 0.08

Bone only 18 (18.0%) 15 (15.0%) 0.08

Other 40 (40.0%) 39 (39.0%) 0.02

Previous treatment

None 55 (55.0%) 44 (44.0%) 0.22

Chemo only 18 (18.0%) 18 (18.0%) 0

Hormonal only 19 (19.0%) 24 (24.0%) 0.12

Chemo + hormonal 8 (8.0%) 14 (14.0%) 0.19

ECOG score

0 46 (46.0%) 44 (44.0%) 0.04

1 54 (54.0%) 56 (56.0%) 0.04

Disease free >12 months adjuvant to recurrence

No 73 (73.0%) 71 (71.0%) 0.04

Yes 27 (27.0%) 29 (29.0%) 0.04

ASD absolute standardized difference, ECOG Eastern Cooperative Oncology Group

Table 8 Data at randomization for simulation 2B

Placebo Treatment ASD

n = 3000 n = 3000

Age (years) 68.1 (±10.1) 68.1 (±10.0) 0.01

Black race

No 2,090 (69.7%) 2,154 (71.8%) 0.05

Yes 910 (30.3%) 846 (28.2%) 0.05

Systolic blood pressure (mm Hg) 140.3 (±15.1) 140.1 (±14.7) 0.01

Diastolic blood pressure (mm Hg) 78.2 (±12.1) 77.6 (±12.1) 0.05

Serum creatinine (mg/dl) 1.1 (±0.3) 1.1 (±0.3) 0

eGFR (ml min–1 1.73 m–2) 71.6 (±20.3) 71.6 (±19.7) 0

Statin use

No 1,748 (58.3%) 1,718 (57.3%) 0.02

Yes 1,252 (41.7%) 1,282 (42.7%) 0.02

Aspirin use

No 1,512 (50.4%) 1,439 (48.0%) 0.05

Yes 1,488 (49.6%) 1,561 (52.0%) 0.05

Framingham risk score 25.2 (±11.9) 25.0 (±11.9) 0.02

Smoking status

Never 1,303 (43.4%) 1,324 (44.1%) 0.01

Former 1,301 (43.4%) 1,242 (41.4%) 0.04

Current 396 (13.2%) 434 (14.5%) 0.04

ASD absolute standardized difference, eGFR estimated glomerular filtration rate

Table 6 Simulation 1A subgroup discovery using gradient
random forest (five subgroups found) (Continued)

Single agent Combination ASD

Group 5: not disease free >12 months adjuvant to recurrence
Δ̂ ¼ −0:64ð−0:90;−0:39Þ

n = 20 n = 27

Age (years) 67.3 (±4.5) 66.5 (±5.1) 0.15

Stage 4

No 2 (10.0%) 1 (3.7%) 0.25

Yes 18 (90.0%) 26 (96.3%) 0.25

Site

Visceral 17 (85.0%) 22 (81.5%) 0.09

Bone only 3 (15.0%) 5 (18.5%) 0.09

Previous treatment

None 10 (50.0%) 20 (74.1%) 0.51

Chemo only 4 (20.0%) 1 (3.7%) 0.52

Hormonal only 4 (20.0%) 5 (18.5%) 0.04

Chemo + hormonal 2 (10.0%) 1 (3.7%) 0.25

ECOG score

1 20 (100.0%) 27 (100.0%) 0

Disease free >12 months adjuvant to recurrence

No 20 (100.0%) 27 (100.0%) 0

ASD absolute standardized difference, ECOG Eastern Cooperative Oncology Group

Table 9 Data at randomization for simulation 2C

Placebo Treatment ASD

n = 3000 n = 3000

Age (years) 68.0 (±9.8) 67.8 (±10.1) 0.03

Black race

No 2,096 (69.9%) 2,089 (69.6%) 0.01

Yes 904 (30.1%) 911 (30.4%) 0.01

Systolic blood pressure (mm Hg) 140.0 (±15.1) 139.2 (±14.9) 0.05

Diastolic blood pressure (mm Hg) 78.4 (±12.0) 77.4 (±11.9) 0.08

Serum creatinine (mg/dl) 1.1 (±0.3) 1.1 (±0.3) 0.01

eGFR (ml min–1 1.73 m–2) 71.7 (±19.6) 72.2 (±20.2) 0.02

Statin use

No 1,692 (56.4%) 1,678 (55.9%) 0.01

Yes 1,308 (43.6%) 1,322 (44.1%) 0.01

Aspirin use

No 1,518 (50.6%) 1,467 (48.9%) 0.03

Yes 1,482 (49.4%) 1,533 (51.1%) 0.03

Framingham risk score 24.7 (±11.9) 25.1 (±11.6) 0.04

Smoking status

Never 1,334 (44.5%) 1,312 (43.7%) 0.01

Former 1,254 (41.8%) 1,256 (41.9%) 0

Current 412 (13.7%) 432 (14.4%) 0.02

ASD absolute standardized difference, eGFR glomerular filtration rate
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Fig. 4 Plot of maximum absolute standardized difference (ASD) within node for each method (x-axis) versus absolute bias (absolute value of
estimated treatment effect minus true treatment effect) in each identified node for LR, RF, gradient RF, and mCART in simulation 1B. All identified
subgroups falling to the left of the vertical dashed line of 0.2 have an acceptable balance. ASD absolute standardized difference, LR logistic
regression, mCART matching plus classification and regression trees, RF random forest

Fig. 5 Plot of maximum absolute standardized difference (ASD) within node for each method (x-axis) versus absolute bias (absolute value of
estimated treatment effect minus true treatment effect) in each identified node for LR, RF, gradient RF, and mCART in simulation 2A. All identified
subgroups falling to the left of the vertical dashed line of 0.2 have an acceptable balance. ASD absolute standardized difference, LR logistic
regression, mCART matching plus classification and regression trees, RF random forest
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Fig. 6 mCART results from simulation 2C. mCART matching plus classification and regression trees

Fig. 7 Plot of maximum absolute standardized difference (ASD) within node for each method (x-axis) versus absolute bias (absolute value of
estimated treatment effect minus true treatment effect) in each identified node for LR, RF, gradient RF, and mCART in simulation 2C. All identified
subgroups falling to the left of the vertical dashed line of 0.2 have an acceptable balance. ASD absolute standardized difference, LR logistic
regression, mCART matching plus classification and regression trees, RF random forest
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