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Abstract

Background: Photobiomodulation using low-level laser therapy (LLLT) has been tested as a new technique to optimize
recovery of patients with traumatic brain injury (TBI). The aim of this study is to evaluate inhibitory attentional control after
18 sessions of active LLLT and compare with the placebo group (sham LLLT). Our exploratory analysis will evaluate the
efficacy of the active LLLT on verbal and visuospatial episodic memory, executive functions (working memory, verbal and
visuospatial fluency, attentional processes), and anxiety and depressive symptoms compared to the sham group.

Methods/Design: A randomized double-blinded trial will be made in 36 patients with moderate and severe TBI. The
active LLLT will use an optical device composed of LEDs emitting 632 nm of radiation at the site with full potency of
830 mW. The cranial region with an area of 400 cm? will be irradiated for 30 min, giving a total dose per session of 3.
74 J/cm?. The sham LLLT group contains only an LED device with power < 1 mW, only serving to simulate the irradiation.
Each patient will be irradiated three times per week for six weeks, totaling 18 sessions. Neuropsychological assessments
will be held one week before the beginning of the sessions, after one week, and three months after the end of LLLT
sessions. Memory domain, attention, executive functioning, and visual construction will be evaluated, in addition to

symptoms of depression, anxiety, and social demographics.

Discussion: LLLT has been demonstrated as a safe and effective technique in significantly improving the memory,
attention, and mood performance in healthy and neurologic patients. We expect that our trial can complement
previous finds, as an effective low-cost therapy to improve cognitive sequel after TBI.

Trial registration: ClinicalTrials.gov, NCT02393079. Registered on 20 February 2015.
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Background

Epidemiology

Traumatic brain injury (TBI) is one of the main problems
in the public health system due to its magnitude and
clinical and social consequences [1]. It is the main cause
of disability in young adults, with an estimated 2 million
visits to emergency services in the United States in 2009
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[2]. In low-income countries, the rate of TBI, especially
due to motor vehicles, are >80% of all cases, leading to
higher costs and disabilities [3, 4]. In Brazil, the incidence
of TBI is 65.6/100,000 inhabitants per year; however, this
incidence appears to be underestimated due to the lack of
methodology or inadequate documentation of medical
records [5].

Clinical and functional problems due to TBI
TBI is an alteration in brain function, or other evidence
of brain pathology, caused by an external cause [6]. The
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trauma can result in long-lasting disability, even in
people with mild TBI [7].

Long-term neurological and cognitive deficits are
expected, including a variety of cognitive impairments, such
as in learning, executive function including working mem-
ory [8, 9] and verbal fluency [10], reaction time, perceptual
organization [11], attention, verbal and visual episodic mem-
ory [12, 13], depression, anxiety [8, 9, 14], fatigue, sleep dis-
orders, and attention deficit [15]. Those symptoms are
associated with loss of functionality,absence from work, and
personal and social privations [16, 17].

Rationale for the photobiomodulation using low-level laser
therapy (LLLT) in patients with TBI

Considerable evidence has shown that the brain has an
extensive ability of reorganization after damage [18]. Non-
invasive brain stimulation (NIBS) can modulate brain
plasticity after trauma through increasing synaptic strength,
modulating neurotransmitters, and modifying neural
networks [18-21]. LLLT is a technique of NIBS that the
irradiation of specific infrared wavelengths is able to
penetrate deeply into the brain [22]. These effects produce
many biological responses, such as affecting the forming of
adenosine triphosphate (ATP), increasing deoxyribonucleic
acid (DNA) and ribonucleic acid (RNA), releasing nitric
oxide (NO), cytochrome c oxidase (CCO), regulating react-
ive oxygen species (ROS), and modifying intracellular
organelle membrane activity particularly in mitochondria,
calcium flux, and stress proteins [23—25]. LLLT produces a
shift toward higher oxidation in the overall cell redox
potential [26] and briefly increases the level of ROS [27].
This change in the redox state of the mitochondria
regulates several transcription factors [28]. These include
redox factor-1 (Ref-1), cCAMP response element (CREB),
activator protein 1 (AP-1), p53, nuclear factor kappa B (NF-
jB), hypoxia-inducible factor (HIF-1), and HIF-like factor
[28]. The activation and regulation of redox-sensitive genes
and transcription factors are thought to be caused by ROS
induced from LLLT [27]. In turn, both ATP levels and
blood flow increase, improving oxygenation found in
damaged areas of the brain [28]. In animal models, LLLT
has been investigated as an alternative treatment for brain
injury, increasing neurogenesis after TBI [29] and showing
a protective effect for stroke [30] and benefits for acute
ischemic stroke, acute myocardial infarction, injured
peripheral nerves, and spinal cord injury [31-33]. Previous
studies showed the safety of photobiostimulation in
humans [34], including promising interventions for acute
stroke [34], TBI [17, 35-37], and dementia [38]. However,
to date, just one open-label clinical trial studies the effect of
LED therapy on improving cognitive function in patients
with TBI [37]. Likewise, no randomized controlled trial
studied the short-term and long-term effects of LLLT on
the cognition of closed TBI patients.
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Objective

The aim of this study is to evaluate inhibitory attentional
control after 18 sessions of active LLLT and compare
with the placebo group (sham LLLT). Our exploratory
analysis will evaluate verbal and visuospatial episodic
memory, executive functions (working memory, verbal
and visuospatial fluency, attentional processes), and
anxiety and depressive symptoms.

Methods

Study design

This is a prospective, multicenter, randomized, parallel
placebo-controlled trial that will be conducted at the
Clinics Hospital, University of Sdo Paulo (HC-FMUSP)
and Salgado Institute, Londrina, Brazil. The protocol is
registered on clinicaltrials.org (number NCT02393079).
The trial will follow the CONSORT (Consolidated
Standards of Reporting Trials) guidelines as well as
SPIRIT (Standard Protocol Items: Recommendations for
Interventional Trials) guidelines (Fig. 1). Figure 2 pro-
vides all information about patient enrollment, interven-
tions, and follow-ups.

Eligible participants
Inclusion criteria

e Patients of both genders;

e Age range 18-60 years;

e Glasgow Coma Scale (GCS) < 12 at admission in the
emergency room;

e Computer tomography (CT) or magnetic resonance

imaging (MRI) consistent with closed TBI, including

intracranial hematoma, subdural hematoma,

epidural hematoma, diffuse axonal injury,

hemorrhagic contusion, and subarachnoid

hemorrhage;

Loss of consciousness > 30 min;

Post-traumatic amnesia of > 24 h;

Outpatients with > 6 months TBI;

Signed informed consent.

Exclusion criteria

Metal implant or device in the brain or scalp;
Uncontrolled epilepsy;

Non-consent sign;

Portuguese not their first language;
Non-comprehension and/or not able to follow
instructions.

Recruitment

The patients will be contacted and invited to participate
before or after their regular appointment at the Neuro-
trauma Outpatient Clinics at the HC-FMUSP or by a
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STUDY PERIOD
Enrolment asBs::::::n ¢ LLLT sessions Follow-up
TIMEPOINT Visit 1 Visit 2 - 19 Visit 20 Visit 21
ENROLMENT:
Eligibility screen X
Informed consent X
INTERVENTIONS: X
ASSESSMENTS:
BDI-I1 X X
BAI X X
TMT A and B X X
Stroop test X X
COWAT X X X
five-points X X X
SNL X X X
Digit Span X X X
DSST X X X
Rey Figure X X X
RAVLT X X X

Fig. 1 Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT): enrollment, assessment, interventions, and data collection. BDI-
Il: Beck Depression Inventory, 2™ edition; BAI: Beck Anxiety Inventory; TMT A and B: Test Trail Making form A and B; COWAT: Controlled Oral
Word Association Test; SNL: Sequence of Numbers and Letters; DSST: Digit Symbol Substitution Test; RAVLT: Rey Auditory Verbal Learning Test

contact list of provided by the acute Neurotrauma Inpatient
Section at the HC-FMUSP. The patients will give verbal
consent before attending their first consent visit.

Study intervention

Standard care

All patients will keep their clinical follow-up at the
Neurotrauma Outpatient Clinics at HC-FMUSP or at
Salgado Institute, Brazil, independently of the study

group assignment or decision of dropping out. A trained
research nurse and a psychologist introduced the trial to
patients informing them of the principles, objectives,
and safety/harm. A trained physical therapist will also
conduct and follow the patients along the trial.

All information related to patients (i.e. data analysis,
anthropometrical measures, reports, and other relevant
information) will be stored in locked file cabinets in
areas with limited access. These files will be identified

Enrollment

Assessed for eligibility
Inclusion/ exclusion criteria)

l

Visit 1- Baseline
neuropsychological assessment

l

Randomized (n= 36) ‘

l

’ Visits 2 — 19 Active LLLT (n=18) ‘

Visit 20 - 1 week after the visit 19
2 Neuropsychological assessment

Visit 21 - 3 week after the visit 19
3M Neuropsychological assessment

Fig. 2 Flowchart of the LLLT study

1

v 1* Follow-Up

2™ Follow-Up

Visits 2 — 19 sham LLLT (n=18)

Visit 20 - 1 week after the visit 19
2™ Neuropsychological assessment

Visit 21 - 3 week after the visit 19
3M Neuropsychological assessment
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with a code ID and only researchers of this study will
have access to this information.

LLLT intervention

Two optical and identical devices (helmets) will be used
for the intervention (Fig. 3). For the active optical device,
a helmet configured with 13 sets of LEDs at a 632-nm
wavelength will distribute a total optical radiation of
830 mW over the skull surface. The skull area receiving
irradiation is approximately 400 cm? during 30 min, in
which the total expected dose per session is 3.74 J/cm?.
However, only 3.1% of this energy reaches the gray
matter [39].

The rationale follows: optimal wavelength penetration
within biological tissues, occurs with a wavelength range
of 600—-1000 nm [40]. The inactive helmet (sham) con-
tains only LEDs with power<1 mW, only serving to
simulate the irradiation of the patient. All the patients
will be submitted to 18 30-min LLLT sessions (active or
sham condition), three times per week over six weeks.
For safety, after the LLLT intervention, the patient will
be asked about side effects between sessions.

Neuropsychological assessment
Patients will be assessed at baseline, one week after the
end of the LLLT, and three months after the LLLT
sessions. Each patient will follow the participation period
as shown in Fig. 1.

Instruments:

e Beck Depression Inventory (BDI-II), used to assess
depressive symptoms, classified as minimal (0-11
scores), mild (12—19), moderate (20—35), and severe
(36-63) [41, 42];

e Beck Anxiety Inventory (BAI), used to assess anxiety
symptoms, classified as minimal (0-7 scores), mild
(8—15), moderate (16—25), and severe (26—63) [42];

Fig. 3 a Two identical helmets, active and sham stimulation. b The
inside view of the active LLLT helmet
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e Trail Making Test A and B (TMT A and TMT

B), used to measure attention, speed, and mental
flexibility. In TMT A, the patient is instructed to
draw a line from 1 to 2, 2 to 3, and so on. In
TMT B, the patient switches between numbers
and letters, drawing a line from 1 to A, A to 2, 2
to B, and so on. On both forms A and B, the
patients perform a sample before the real test.
The patient is instructed to perform as fast as he/
she can [43];

Stroop Test - Version Victoria, measuring cognitive
control with each person can maintain a goal in
mind and suppress a habitual response in favor of a
less familiar one. The interference effect is
determining by calculating the extra time required
to name colors (Card 3) in comparison to the time
required to name colors in the control task (Card 1)
[43, 44];

Controlled Oral Word Association Test (COWAT),
used to evaluate the spontaneous production of
words under restricted search conditions (verbal
association fluency). For the phonemic fluency task,
the patient must provide orally as many words as
possible beginning with the letters F, A, and S for

1 min for each letter. For the semantic fluency task,
the patient is asked to produce as many animals’
names as possible within 1 min. The total correct is
the sum of all admissible words for the semantic
category [43];

Five-point test, this test requires preproduction of
novel designs under time constraints (3 min). The
score is calculated including the total number of
unique designs and the number of repeated designs
(perseverations) [45];

Symbol Digit Modalities Test (SDMT) oral version,
the test is used to assess divided attention, visual
scanning, tracking, and speed. The examiner records
the numbers that correspond with symbols. The
number of correct substitutions within the 90-s
interval is the score of the task [46, 47];

Rey Auditory Verbal Learning Test (RAVLT),
measures immediate episodic memory, learning,
susceptibility to interference, and recognition
memory. A list of 15 nouns (list A) is read aloud to
the patient, for five consecutive trials, each
followed by a free-recall test. An interference list of
15 words (list B) is presented, followed by a free-
recall test of that list. Immediately after this,
delayed recall of list A is tested (Trial 6), and after
20 min (Trial 7), without further presentation of
those words. The recognition is performed by
presenting 50 words containing words from lists A,
B, and new words, and the patient needs to identity
the words from list A [43, 48];
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e Sequence Numbers and Letters (Wechsler subscale -
WAIS-III), used to evaluate working memory,
random numbers, and letters is presented orally to
the patient and must be mentally organized and
immediately reported to the examiner with the
following rule: first the crescent numbers then the
letters (in alphabetical order). In test difficulty increases
the patients correctly perform the task [49];

e Digit Span (DS) Forward and Backwards (WAIS-III),
the DS assesses working memory. For the DS
forward, the patient hears carefully a sequence of
numbers and must repeat it immediately in the
same sequence as previously presented. For the DS
backwards, the patient must repeat the sequence
inversely. In both conditions the number of numbers
presented increases as the patient hits two corrects
scores from the same span [49];

e Rey-Osterrieth Complex Figure Test (ROCF), the
purpose is to assess visual—spatial constructional
ability and visual memory. The patient is required to
copy the ROCEF, and after 3 and 30 min, a white
sheet is given to the patient, and asked to draw the
amount of information retained over time [50, 51].

Primary outcome

e Inhibitory attentional control (time score) measured
by Stroop test. The Stroop test is known to be an
accurate assessment of executive function in mild to
moderate TBI [52].

Secondary outcomes

e Verbal and visuospatial episodic memory;

e Executive functions (working memory, verbal and
visuospatial fluency, attentional processes);

e Anxiety and depressive symptoms.

Sample size

Based on the previous pilot study [37] that analyzed the
cognitive function of patients with TBI after repetitive
sessions of RED/Near-infrared LED treatment. Consider-
ing the improvement on Stroop test of 1 standard devi-
ation (SD) related to the baseline, the level of
significance of 0.05 and the power of 80%, 16 patients
per group was estimated. Considering the rate of 15% of
drop-outs, we added two participants per group, ending
with a total sample of 36.

Randomization

All eligible recruited patients will be randomly divided into
two groups with a 1:1 ratio and blocks of four and six per-
formed by the co-investigator through the randomization
list (randomization.com). The randomization list will be
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kept in safe storage with the co-investigator responsible for
the stimulation sessions. She will provide the allocation
concealment assignment for the patients. No information
about the assigned group will be given for the patient or to
the research assessor.

Blinding and allocation concealment
Both helmets, the active and the sham, are identical in
size, color, and weight. The active helmet activates the
red light when plugged; however, the sham helmet
cannot provide visible light. The patient is not able to
see the light and there is no hit during the active stimu-
lation that can suggest the type of intervention. The
unblinded investigator is the person in charge of
performing the stimulation. Both assessor researcher
and patient will be blind for the type of intervention.
During the study, telephone contact can be used to
maintain patient adherence to the trial. This study
involves the participation of a research committee not
directly related to the allocation of the patients. They
can remove the blinding if any relevant situation may
rise involving any clinical condition, adverse event, or
even abandonment of the patient.

Safety considerations and adverse events

Phase 1 trials and animal studies showed evidence
related to the safety of the LLLT [24, 26, 53]. Although
there are few studies in clinical patients, no side effects
were reported using photostimulation and LLLT [17, 22,
37, 38, 54—57]. For safety, the LLLT will be applied by a
registered nurse or a trained clinician.

Ethical approval and consent to participate

The protocol was approved by CONEP Resolution 466/
2012, which regulates scientific research involving hu-
man beings in Brazil. It follows the ethical principles of
Declaration of Helsinki for medical research involving
human subjects.

Statistical analysis

Intention-to-treat and per-protocol analyses will be
performed for the primary and secondary outcomes.
Missing data will be analyzed with regression imput-
ation, considering the confounders (months of the
trauma, years of age, schooling years, and depressive
symptoms). Patients that did not receive 60% of the total
stimulation will be considered non-adherent and analyzed
as per-protocol.

Means and standard deviation will be used to represent
data with normal distribution and medians and quartiles
to describe non-normally distributed data. Two-way
ANOVA (2 groups x 3 times) with repeated measures (for
parametric variables) or the Kruskal-Wallis test (for non-
parametric variables) will be used for the analysis of the
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TLT effects obtained in the three timelines: baseline, one
week, and three weeks after the intervention. The Bonfer-
roni correction for multiple comparisons will be employed
as a post-hoc test. The effect size will be calculated based
on the difference between means of the pre-intervention
and post-intervention evaluations and will be expressed
with respective 95% confidence intervals. Parametric
Student’s t-test or a Mann—Whitney U test for non-
parametric data will be employed to assess between-group
(active and sham helmet) differences in age, height,
weight, and body mass index (BMI), time of TBI injury,
level of education, and Glasgow Coma Scale at admission
on the emergency room. For all effects, a p value < 0.05
will be considered indicative of statistical significance. The
data will be organized and tabulated using the Statistical
Package for the Social Sciences (SPSSv.19.0).

Discussion

The present study is designed to evaluate the effects of
18 sessions of LLLT over cognition, in patients with
chronic moderate and severe TBL. Our primary hypoth-
esis is that the sessions of active LLLT will improve
attention (at least 1 SD) measured by Stroop test
compared to the placebo group (sham LLLT). Our
secondary hypothesis is that the active group will
improve in all domains assessed by the neuropsycho-
logical battery, including cognition and mood, compared
to placebo group.

LLLT can modulate many biological effects penetrating
the scalp into the brain [25], playing a role improving
the outcome of the patients in two different ways,
depending on the stage of the trauma. In the acute phase
after TBI, the initial neuronal injury occurs instantly and
oftentimes causes irreversible damage to the central
nervous system, due to impairment of neuronal cell
functions, including mitochondria, and glia cells [18, 58].
The disruption of neuronal circuitry causes loss of
connectivity between different areas of the brain and can
negatively impact neural regeneration, leading to
dysfunctional interactions. In the secondary stage after
the trauma, other changes may occur, including release
of neurotransmitters, decreased glucose utilization, lactic
acid accumulation, reduced activity of ATP-reliant ion
pumps, increased release of glutamate, Ca2 + —induced
depolarization, and excitotoxicity [21, 58].

Previous studies showed improvement on cognition in-
cluding attentional process and episodic memory after re-
petitive sessions of LLLT in patients with TBI [17, 37]. It
seems that the LLLT decreases the inflammatory response,
helping the neuroprotection after TBI. This process leads
to increases on the ATP, cellular energy, and blood flow, de-
creasing the metabolic process. In summary, the LLLT
seems to increase the intercellular synapses, acting as a pos-
sible treatment after acute and chronic TBI [37, 59-61].
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Other studies reported the effects of the LLLT in
another sample. Lampl et al. [34] used the LLLT in
patients with ischemic stroke and showed that infrared
wavelength therapy was safe and effective in the experi-
mental group compared to the control groups when
treatment was started 24 h after the onset of stroke.
Another study with psychiatric patients showed that
seven (out of ten) patients with severe cases of depres-
sion and anxiety presented symptom remission after two
weeks elapsed with four LLLT applications in the
prefrontal region, which did not occur with the control
group [62]. Likewise, LLLT has been demonstrated as a
safe and effective technique in significantly improving
the memory, attention, and mood performance of
healthy people [63]. Overall, we expect that our trial can
complement previous findings, as an effective low-cost
therapy to improve cognitive sequel in patients with
chronic TBIL.

Trial status

The randomization of patients was started on January
2015. The inclusion of participants is ongoing, with 12
patients completing the assessment, four patients in
the second assessment and two patients in the first
assessment. We expect to conclude the study by 5
October 2018.
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