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Abstract

Background: Analyses of multicenter studies often need to account for center clustering to ensure valid inference. For
binary outcomes, it is particularly challenging to properly adjust for center when the number of centers or total sample
size is small, or when there are few events per center. Our objective was to evaluate the performance of generalized
estimating equation (GEE) log-binomial and Poisson models, generalized linear mixed models (GLMMs) assuming
binomial and Poisson distributions, and a Bayesian binomial GLMM to account for center effect in these scenarios.

Methods: We conducted a simulation study with few centers (<30) and 50 or fewer subjects per center, using both a
randomized controlled trial and an observational study design to estimate relative risk. We compared the GEE and
GLMM models with a log-binomial model without adjustment for clustering in terms of bias, root mean square error
(RMSE), and coverage. For the Bayesian GLMM, we used informative neutral priors that are skeptical of large treatment
effects that are almost never observed in studies of medical interventions,

Results: All frequentist methods exhibited little bias, and the RMSE was very similar across the models. The binomial
GLMM had poor convergence rates, ranging from 27% to 85%, but performed well otherwise. The results show that
both GEE models need to use small sample corrections for robust SEs to achieve proper coverage of 95% Cls. The
Bayesian GLMM had similar convergence rates but resulted in slightly more biased estimates for the smallest sample
sizes. However, it had the smallest RMSE and good coverage across all scenarios. These results were very similar for

both study designs.

Conclusions: For the analyses of multicenter studies with a binary outcome and few centers, we recommmend adjustment
for center with either a GEE log-binomial or Poisson model with appropriate small sample corrections or a Bayesian binomial

GLMM with informative priors.

Keywords: Multicenter studies, Relative risk, Generalized linear mixed models, Generalized estimating equations, Correlated

binary data, Bayesian log binomial

Background

In multicenter studies, outcomes from the same center
cannot be assumed to be independent, and analyses
often need to account for center clustering. Neglecting
to account for center may lead to erroneous conclusions,
particularly when randomization is stratified by center
[1-4]. Yet, authors of a recent review of multicenter
studies published in four major medical journals (BMJ,
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New England Journal of Medicine, JAMA, and The
Lancet) found that only 22% of randomized controlled
trials (RCTs) with a binary outcome reported accounting
for a center effect, a rate similar to past reviews [5, 6].
This result may be due to the fact that it is challenging
to properly adjust for center when there are few centers,
total sample size is small, or there are few events per
center. Clear practical guidelines for the statistical
analyses and reporting of multicenter studies are needed
to assist investigators and data analysts in conducting
appropriate multicenter analyses.

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to

the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13063-017-2248-1&domain=pdf
http://orcid.org/0000-0003-4235-1282
mailto:claudia.pedroza@uth.tmc.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Pedroza and Truong Trials (2017) 18:512

The best-suited methods to adjust for center include
generalized estimating equations (GEEs) and generalized
linear mixed models (GLMMs; also referred to as
random effects, multilevel, or mixed effects models).
However, careful application of these methods is needed
for studies with few centers. For example, the robust SEs
typically reported for GEEs are downward-biased when
the number of centers is <50 [7]. For GLMMs, the
approximate Wald test and CIs may have inflated type I
error rates [8].

Our objective in this article is to review and evaluate
both frequentist and Bayesian state-of-the-art statistical
methods for estimating relative risk (RR) for multicenter
studies. We focus on RRs rather than ORs because RRs
are considered a more meaningful and interpretable
treatment measure [9, 10], and few studies have evalu-
ated methods for estimating adjusted RRs. We provide
recommendations and practical guidelines for analyzing
both RCTs and observational multicenter studies.

Methods

We review three methods for estimating RRs: log-
binomial regression, the widely used GEE method, and
GLMMs. Specifically, we evaluate a total of ten regres-
sion models:

Log binomial

GEE binomial

GEE binomial with small-sample correction of SEs
GEE Poisson

GEE Poisson with small-sample correction of SEs
GLMM binomial

GLMM binomial with bootstrapped SEs
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8. GLMM Poisson
9. GLMM Poisson with bootstrapped SEs
10.Bayesian GLMM binomial

We assume a study design with <30 centers, binary
outcome, binary treatment/exposure variable, and a
binary baseline covariate that could be a stratifying vari-
able or a potential confounder. We also assume the
center size variation is not very large (i.e., coefficient of
variation < 0.40). Table 1 provides a summary of all the
models and details of their specification evaluated in the
simulation study.

We do not investigate methods treating center as a
fixed effect, because problems with this approach (in-
cluding exclusion of patients or centers, biased treat-
ment effect estimate, and increased type I error) have
been noted before [2—4].

Log-binomial regression
Binary regression models (i.e., logistic) without any ad-
justment for center correlation are the most often used
methods for analyzing multicenter studies. To estimate
RRs instead of ORs, we can use a log-binomial regres-
sion model (GLM-Bin) adjusting for covariates but with
no adjustment for center correlation. Letting y; be the
observed binary outcome (yes/no) for subject i in center
J, this model is specified as

tog (py) = Bo + Bixuy + By, (1)
where p;; is the probability of the outcome y;;, x;; is the
treatment/exposure indicator, and x,; is a binary

Table 1 Summary of details of ten regression models evaluated in the simulation study

Model SEs 95% Cl or posterior interval Other assumptions

GLM-Bin Model-based, unadjusted for Wald
center correlation

GEE binomial Robust sandwich t-based Exchangeable working correlation

GEE binomial KC-corrected® Robust sandwich with t-based Exchangeable working correlation
small-sample correction

GEE Poisson Robust sandwich t-based Exchangeable working correlation

GEE Poisson KC-corrected? Robust sandwich with t-based Exchangeable working correlation
small-sample correction

GLMM binomial Model-based Wald Adaptive quadrature with 10 points

GLMM binomial bootstrap® Parametric bootstrap

Parametric bootstrap,

Laplace for fitting bootstrap samples

quantile-based

GLMM Poisson Model-based Wald

GLMM Poisson bootstrap® Parametric bootstrap

Parametric bootstrap,

Adaptive quadrature with 10 points

Laplace for fitting bootstrap samples

quantile-based

Bayesian binomial GLMM Posterior SD

Quantile-based posterior
interval

Priors B ~ Normal(0,10%); B, B> ~ Normal(0,1);
o ~ half-Normal(0,1)

Abbreviations: GEE Generalized estimating equation, GLM-Bin Log-binomial regression model, GLMM Generalized linear mixed model, KC Kauermann and Carroll
“The small sample KC correction or bootstrap samples correct only the SEs and 95% Cls and do not affect the point estimates of the risk ratio
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baseline covariate. A Bernoulli distribution is assumed
for y;. The RR of the treatment/exposure is given by
exp(B1). Model-based SEs (obtained from the regression
model and unadjusted for center clustering) and Wald-
type 95% ClIs [ 1 £1.96 x SE(P ;)] are usually reported
for this model. In addition to ignoring within-center cor-
relation, this model also has the disadvantage of conver-
gence problems at the parameter boundary and can lead
to probability estimates > 1.

GEE models

The GEE log-binomial and log Poisson models take
the same form as model (1), assuming either a
binomial or Poisson distribution for y. However, the
SEs are corrected by using GEEs with an exchange-
able correlation matrix, which assumes that patient
outcomes from the same center are correlated but are
independent from patient outcomes in different centers.
GEE Poisson (also referred to as modified Poisson)
regression is widely used to estimate RRs because it pro-
vides consistent estimates of the RR and is more stable
than the GEE binomial model [9, 11]. Similarly to the
GLM-Bin, probability estimates from both of these GEE
models can be > 1.

Robust sandwich SEs for possible misspecification of
the covariance structure (and misspecification of the
distribution for Poisson regression) are typically used
with GEE methods [12]. When the number of centers is
small, a bias-corrected variance sandwich estimator is
needed to provide correct inference [13]. We use the
Kauermann and Carroll (KC) [14] correction of robust
SEs because it has been shown to perform well with
small numbers of centers [15].

Similarly, the Wald test and ClIs typically reported for
GEEs have been noted to have inflated type I errors with
few centers [15, 16]. An approximate ¢ statistic that
accounts for the large variation in the sandwich estima-
tor often present with small samples has been shown to
perform better than the Wald test in this setting [17].

For both the binomial and Poisson GEE models, we
assess the performance of (1) robust SEs coupled with ap-
proximate ¢-based 95% Cls [P + £y x SE opust(Pf1)] and (2)
KC-corrected robust SEs with ¢-based 95% Cls for the RR.

GLMMs

Random effects models account for within-center correl-
ation by including a random center intercept. Estimates
derived from GLMMs are interpreted as center-specific
(or conditional) as opposed to the marginal interpret-
ation of GEE estimates. However, we note that under a
log link, the estimated treatment/exposure effect is the
same for GEE and GLMMs [18]. Again letting y;; be the
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observed binary outcome for subject i in center j, a bino-
mial GLMM is specified as

Yij ~ Bernoulli (pij)
log (pij) =B+ lelij + BZX2ij Ty
uj~ Normal(O7 02) ,

(2)

where #; is the random center effect and x;;; and x;; are
the treatment/exposure indicator and baseline binary
covariate, respectively.

We fit GLMMs using adaptive Gauss-Hermite quadra-
ture with 10 quadrature points to provide a good
compromise between accuracy and computation time in
the simulation study [19]. We use two methods to com-
pute SEs and 95% Cls. First, we calculate Wald 95% ClIs
for the RR. Although ¢ statistics with various methods
for calculating the degrees of freedom have been pro-
posed as a better alternative to the Wald test, these are
still approximations in GLMMs and may not perform
well, particularly with few centers [8]. Hence, in the
second method, we use a parametric bootstrap to calcu-
late SEs and 95% ClIs, which is a better alternative for
computing Cls for GLMMs [20].

We also assess the performance of log Poisson GLMM
using model-based SEs coupled with Wald 95% ClIs and
compare them with those obtained from a parametric
bootstrap. We again note that probability estimates from
these GLMMs may be > 1.

Bayesian binomial GLMM
A Bayesian approach provides several advantages, in-
cluding the ability to give direct estimates of probability
of benefit or harm from an intervention or exposure
[21]. For the binomial GLMM, weakly informative prior
distributions help stabilize the parametric estimates and
hence address the convergence issues often seen with
the frequentist approach [10, 22—24]. Constraints on the
parameters are also easily implemented to avoid prob-
ability estimates>1 [22]. In contrast to frequentist
methods, Bayesian SEs and credible intervals (Crls) for
the RR account for all uncertainty in the model, includ-
ing the between-center variation. Another advantage is
that Bayesian inference does not rely on asymptotic
results, which is an important issue when the number of
centers is limited. A Bayesian approach also allows for
the inclusion of informative priors derived from external
information to exclude unrealistic RR values [25, 26].
We investigate the performance of a Bayesian GLMM
with the same form as that in model 2. For prior distri-
butions, we use neutral priors for all parameters to rep-
resent equipoise: a Normal(0,10%) for the intercept P,
Normal(0,1) for B; and B,, and half-Normal(0,1) for o.
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We use slightly informative priors on ; and f, with a
95% Crl of 0.14-7 in the RR scale to exclude unrealistic
RR values that are almost never observed in studies of
medical interventions. Similar priors skeptical of large
treatment effects have been studied and shown to have
good operating characteristics even with small sample
sizes [26]. The half-Normal prior for the SD of the
random center effect o is a weakly informative prior that
has been shown to perform well [27]. We constrain all p;;
<1 in the model (see Additional file 1 for sample code).

Simulation study

We conducted a simulation study assuming both a mul-
ticenter two-arm RCT and a multicenter observational
study design. For each scenario, we simulated 1000 data-
sets from model 2 with 4, 10, or 30 centers. The number
of subjects per center was sampled from a Poisson dis-
tribution with mean of 10, 20, and 50 to give average
(expected) total samples sizes ranging from 40 to 1500.
Under the RCT scenarios, randomization was stratified
by center using permuted blocks of size 4. The covariate
%2;; was generated from Bernoulli(0.3), and the random
center effect u; from Normal(0,0.4) to induce an
intracluster correlation coefficient (ICC) of 0.08, where
0* = ICCx(1-p)/p and P is the average probability in the
sample [28]. The ICC represents the degree of depend-
ence or correlation among observations from individuals
within the same cluster or center [27]. The ICC value
used in this simulation is within the range of values
previously reported in cluster clinical trials [29].

For all RCT scenarios, we assumed a control outcome
rate of 15% [i.e., exp(Bo) = 0.15]. The treatment and covari-
ate effects were both set to an RR of 1.5 [ie, f; =P =
log(1.5)]. Whenever the simulated p;; was > 1, a new value
of the random center effect #; was sampled until p;; < 1.

For the observational study scenarios, we assigned half
of the subjects to exposure and the other half to a nonex-
posure group. To induce confounding, we generated the
binary covariate x,; with prevalence of 0.4 in the exposure
group and 0.2 in the nonexposed group using a discretized
multivariate Normal method [30]. All other methods and
parameters were the same as under the RCT scenarios.

Each dataset was analyzed using all the methods listed
in Table 1. For the binomial and Poisson GLMMs, we
used 3000 bootstrap samples for each dataset to calculate
the bootstrap SEs and 95% ClIs (from the quantiles). To
speed up the calculation, we used Laplace approximation
when fitting the models to the bootstrap samples.

The Bayesian GLMM was fitted via Markov chain
Monte Carlo (MCMC) methods [31]. We used 3 MCMC
chains, each with 10,000 iterations using the first 2000
as burn-in. Starting values were sampled from the
estimated coefficients and SEs of the frequentist log
Poisson model. We visually inspected the trace plots of
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all estimated parameters for the first 50 datasets of each
scenario to monitor convergence of the chains. We
additionally calculated the convergence diagnostic R and
deemed any datasets with an R > 1.1 for any parameter
as exhibiting nonconvergence (see below) [32]. We cap-
tured the posterior median of all four parameters and
the 2.5% and 97.5% percentiles of B; to calculate cover-
age of the 95% posterior interval. As a sensitivity ana-
lysis, for scenarios with ten subjects per center, we also
fitted the Bayesian GLMM using vague Normal(0,10%)
priors for Bo, B1, and B, and half-Cauchy(0,1) [33] for o.

For all models, we calculated the bias (Bestimate — Ptrue)s
root mean square error (RMSE), coverage of the 95% CI
or posterior interval for the treatment/exposure effect
B1, and convergence rate. We defined convergence as
the percentage of simulated datasets where (1) the
model converged (i.e., no error messages); (2) the abso-
lute values of the point estimates for Bo, f1, and B, were
<5 (larger values would indicate unstable estimates);
and (3) for the Bayesian models, the R values for all
parameters were < 1.10. For each model and scenario, we
assessed bias, RMSE, and coverage only in datasets
where convergence was achieved.

All simulations and analyses were conducted in R [34].
For the fitting of GEE models, we used the geepack [35]
and geesmv [36] packages to calculate the degrees of
freedom for the ¢ statistic and the KC-corrected robust
SEs. For GLMMs, we used the Ime4 package [37] for the
frequentist models and Stan [38] through the R interface
rstan [39] to fit the Bayesian models. We provide sample
code in Additional file 1.

Results

Convergence

For the Bayesian models, trace plots of the parameters
showed the three chains mixing well after burn-in, except
for a small percentage of the datasets, where one of the
MCMC chains of o failed to converge near 0 for a portion
of the chain. (Other parameters also did not converge; an
example of an RCT dataset is shown in Additional file 1:
Figure S1.) These convergence issues were also detected
by the R diagnostic (>1.1), and these datasets were ex-
cluded from the results. Convergence rates for Bayesian
models ranged from 92% for the RCT scenario with 4 cen-
ters and 10 subjects per center to 100% for some scenarios
with 10 or 30 centers. Convergence rates for all scenarios
are shown in Additional file 1: Table S1.

All frequentist models exhibit convergence problems
for the smallest sample size for both designs, with con-
vergence rates ranging from 45% for the binomial
GLMM to 86% for the GEE Poisson model. For all other
scenarios, convergence was not an issue, except for the
binomial GLMM, which had poor convergence rates for
all scenarios. Its lowest convergence rate was 27% for
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the scenario with 30 centers with 10 subjects/center
(Additional file 1: Table S1).

Bias and RMSE

The bias was generally small for all frequentist models.
It was larger for the smallest sample sizes and dimin-
ished as the number of centers and total sample size in-
creased. The Bayesian estimates were more biased in the
smallest sample sizes. The negative bias indicates that
the posterior medians of the treatment effect are shrunk
toward O because of the influence of the informative
priors. The effect of the prior on the posterior estimates
and the resulting bias from the Bayesian GLMM dimin-
ishes as the sample size increases and is smaller than the
bias from frequentist models for some scenarios (Fig. 1).
The Bayesian models have the smallest RMSE for
scenarios with four or ten centers. All models give very
similar RMSEs with 30 centers (Fig. 2). The bias and
RMSE were very similar for both study designs.

Coverage

Figure 3 shows coverage of the 95% Cls and posterior
interval for ;. The unadjusted GLM-Bin exhibits cover-
age above the nominal range (93.6-96.4% using 1000
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datasets) with 4 or 10 centers and 10 or 20 subjects/cen-
ter, but it has good coverage for all other scenarios. GEE
CIs without the KC correction also have poor coverage
with 4 centers (85-87%) and 10 centers with 50 subjects
(~92%). KC-corrected GEE CIs have good coverage
across the majority of scenarios, with the GEE Poisson
having coverage closer to nominal than the GEE bino-
mial. The binomial GLMM has coverage above the nom-
inal value for scenarios with the three smallest total
sample sizes; the coverage of the bootstrap Cls is more
conservative than the Wald CIs for some scenarios.
However, the GLMM Poisson model results in coverage
well above the nominal value in all scenarios with both
Wald-type and bootstrap ClIs. The Bayesian model has
conservative coverage for scenarios with total sample
size < 200; for all other scenarios, coverage is close to the
nominal value. The study design had little effect on
coverage.

Sensitivity results

Under both study designs with four centers, Bayesian
GLMMs with vague priors had a lower convergence rate,
smaller bias, larger RMSE, and less conservative cover-
age than informative priors. For scenarios with 10 or 30
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Fig. 1 Bias of the estimates of 3, (calculated as Bestimate — Buue) for different scenarios under a multicenter randomized controlled trial study
design (a-c) and an observational study design (d—f) based on 1000 simulations for each scenario. All scenarios used a 3, of log(1.5), a control
outcome rate of 15%, and an intracluster correlation coefficient of 0.08. GEE Generalized estimating equation, GLM-Bin Log-binomial regression
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centers, vague priors resulted in similar convergence
rate, bias, RMSE, and coverage compared with inform-
ative priors for both designs. In all scenarios, the esti-
mates of the between-center SD were very similar under
both vague and informative priors.

Examples

Infection treatment multicenter trial

We analyzed the data presented by Beitler and Landis
[40] arising from an eight-center RCT investigating the
efficacy of an active drug compared with control for
treatment of an infection. The primary outcome was fa-
vorable response to the drug. In the eight centers, the
rate of success in the active drug group (n =130) varied
from 9% to 80%, whereas the control group (n=143)
had a rate of success ranging from 0 to 86%. We used
the same methods as described for the simulation study
(excluding Poisson GLMM, which did not perform well
in the simulation study). Table 2 shows the estimated
RRs derived from the different methods. The binomial
GLMM model did not converge. The RR estimates differ
across the models, with the binomial GEE resulting in
the largest RR of 1.43 and the Bayesian GLMM resulting
in the smallest RR of 1.27. The 95% ClIs from the GEE
models without the KC correction do not include 1.0. In

comparison, the 95% CI from the unadjusted GLM and
KC-corrected GEE models include 1.0. The Bayesian
95% Crl is the narrowest, despite properly accounting
for center variation (estimated as 0.81) and might lead
to a conclusion that the active drug is effective.

Pediatric appendicitis observational study

In this study, we compared cohorts of children before and
after implementation of a clinical practice guideline for treat-
ment of perforated appendicitis in children [41]. The study
was conducted in a children’s hospital with 11 surgeons pro-
viding care. The primary outcome was the occurrence of any
adverse event, such as readmission or surgical site infection.
Totals of 191 and 122 patients were included in the pre- and
postimplementation cohorts, respectively. We compared the
analytical methods including identification of intra-abdominal
abscess as a covariate, with surgeon as the clustering variable.
Estimated RRs and 95% ClIs are shown in Table 3. Compared
with the other models, the RR estimates from both GEE
models are closer to 1 and their CIs without the KC bias cor-
rection are narrower than all other intervals. However, the
main conclusion of the intervention being associated with re-
duced adverse outcomes (although not statistically significant)
would not differ on the basis of the analytical method chosen.



Pedroza and Truong Trials (2017) 18:512

Page 7 of 10

30 centers

10 centers C

A 4 centers B

-+
(- g T

81z T 8
®

8 =9 8

<
5 <
o o

92
92

0
0

98

96

94

92

90

96
96

90 92 94
1 1
9 92 94

8
>
8

_A\ o _| o _{
. .4 o o
o | AN _--7_..9 o | o |
_ < s AT - o o
®) “-o-
O\O T T T T T T T T T
g 10 20 50 10 20 50 10 20 50
k]
g D E F
@©
@ © © ©
> o I3 >
Q
(@)

96

88 90 92 94

86

~. -4
\\\ _-="_..0
@© Ty AT -7 © 7
-o-
T T T T
10 20 50 10
—&- GLM-Bin -©- GEE-Pois
—&-- GEE-Bin &
GEE-Bin-KC -X-  GLMM-Bin

mixed model, KC Kauermann and Carroll, BS Bootstrap

Number of subjects per center
GEE-Pois-KC ~ —+- GLMM-Pois

Fig. 3 Coverage of 95% Cl and posterior interval of (3; for scenarios under randomized controlled trial study designs (a-c) and observational
study designs (d-f) based on 1000 simulations for each scenario. All scenarios used a (3; of log(1.5), control outcome rate of 15%, and an
intracluster correlation coefficient of 0.08. GEE Generalized estimating equation, GLM-Bin Log-binomial regression model, GLMM Generalized linear

T T T T T
20 50 10 20 50

—e-- GLMM-Bin-BS —v— Bayes-GLMM

-  GLMM-Pois-BS

Discussion

For multicenter studies, it is important to adjust for pos-
sible center correlation when computing treatment effects,
particularly when the proportion of center variability over
total variability is large or when randomization is stratified

Table 2 Estimated relative risk and 95% Cl or credible interval
for multicenter randomized controlled trial example

Model® RR 95% Cl or Crl
GLM-Bin 1.29 0.95-1.75
GEE binomial 143 1.01-2.02
GEE binomial, KC-corrected 0.96-2.14
GEE Poisson 142 1.01-2.01
GEE Poisson, KC-corrected 0.95-2.12
GLMM binomial® - -

Bayesian binomial GLMM 1.27 1.00-1.65

Abbreviations: Crl Credible interval, GEE Generalized estimating equation,
GLM-Bin Log-binomial regression model, GLMM Generalized linear mixed
model, KC Kauermann and Carroll, RR Relative risk

Except for the GLM-Bin model, all models are adjusted for center correlation.
The KC bias correction in the GEE models adjusts the robust SE for the small
number of centers (estimate of RR does not change)

#GLMM Poisson models are excluded because of their poor performance in
the simulation study

PModel did not converge

by center to ensure correct SEs and Cls [1, 4]. However, no
clear guidelines exist for the appropriate analyses, and it
can be challenging for data analysts to perform a properly
adjusted analysis when the outcome is binary and there are
few centers. In this paper, we have reviewed and evaluated
methods available for analyses of multicenter studies.

Table 3 Results for pediatric appendicitis study

Model RR 95% Cl or Crl
GLM-Bin 0.76 051-1.11
GEE binomial 0.79 0.56-1.13
GEE binomial, KC-corrected 053-1.19
GEE Poisson 0.80 0.56-1.14
GEE Poisson, KC-corrected 0.53-1.21
GLMM binomial 0.76 051-1.11
GLMM binomial bootstrap 0.51-1.10
Bayesian binomial GLMM 0.73 0.49-1.07

Abbreviations: Crl Credible interval, GEE Generalized estimating equation,
GLM-Bin Log-binomial regression model, GLMM Generalized linear mixed
model, KC Kauermann and Carroll, RR Relative risk

The KC bias correction in the GEE models adjusts the robust SE for the small
number of centers (estimate of RR does not change)
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Summary of simulation results

For all but the smallest sample size, convergence rates
were > 96% for all models except the binomial GLMM.
This model had convergence problems in all scenarios
investigated, and its use may be limited. All frequentist
estimates of the treatment effect had small and very
similar bias. The Bayesian estimates were more biased in
the smallest sample sizes. Although the binomial GLM
with unadjusted SEs had very little bias, it had conserva-
tive coverage for the smallest sample sizes in both the
RCT and observational designs.

The GEE models without a small sample correction
for the sandwich SEs had very poor coverage with four
or ten centers, even when coupled with approximate ¢-
based CIs. This poor performance of sandwich SEs has
been noted before in estimating ORs [3]. Using the KC
bias correction greatly improved the performance of
these models across all scenarios. These results are simi-
lar to those obtained by Yelland et al. [9] and Zou and
Donner [11], although they used different corrections
for the variance estimates.

When the binomial GLMM achieved convergence, it
had good overall performance except for sample sizes <
100, where it had conservative coverage. Across all
scenarios, the Poisson GLMM also had coverage above
the nominal value even with bootstrapped Cls, which
would lead to diminished power.

The Bayesian GLMM had good coverage across all
scenarios, and the bias exhibited in the smallest sample
sizes was only slightly larger than the other models
evaluated. Its higher convergence rate for the smallest
sample size is due to the use of informative priors that
help stabilize the estimates, particularly in cases of
complete separation [24, 26].

Although we do not report the estimate of the SD of
the random effects (or ICC), the Bayesian GLMM out-
performed the frequentist models with estimates that
were very close to the true parameter value. In contrast,
the frequentist models consistently underestimated this
parameter even in the larger sample sizes. This down-
ward bias of estimates of the variance components in
GLMMs is well known [19, 42]. Here the Bayesian
approach has a clear advantage over frequentist methods
because it provides less biased variance estimates and
automatically produces Cls for these parameters. More
importantly, the point estimates and Cls of the treat-
ment/exposure effect appropriately account for the un-
certainty in the variance parameter.

The sensitivity analysis for the Bayesian GLMM
using vague priors produced results very similar to
those under the informative priors. However, the
range of effect sizes supported by the vague priors is
unrealistic, and we strongly recommend against using
these priors.
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Recommendations

On the basis of our simulation results and other studies
[3, 43], we recommend that both RCT and observational
multicenter studies adjust for center in the analysis.
Although adjusting for center when the ICC is small
may not provide a great advantage, it also does not
adversely affect the point estimates, SEs, and type I error
rates. Furthermore, methods that properly adjust for
center clustering are easy to implement in most statis-
tical software.

We do not recommend the use of a Poisson GLMM
to estimate adjusted RR. We do recommend use of a bi-
nomial GLMM, except when the number of centers is <
5 or the total sample size is < 100, although convergence
may be a problem. The most robust frequentist methods
appear to be either a GEE log-binomial model or a Pois-
son model with an exchangeable correlation. When the
number of centers or clusters is <50, a sandwich vari-
ance estimator needs to include a small sample correc-
tion such as the KC correction used here. Kahan et al.
[3] reported that model-based SEs may be another op-
tion for GEE models, but we did not evaluate them here.

A Bayesian GLMM is a robust alternative. This
method performed the best in terms of all measures of
convergence, bias, RMSE, and coverage. Another advan-
tage of a Bayesian approach is that exterior information
about treatment/exposure effect can be formally incor-
porated into the prior distributions. As we did here, the
priors can explicitly exclude large effects, which are un-
likely in clinical studies. Probabilities of benefit or harm
are easily obtained and can be more informative for
investigators than the traditional p value. Although our
focus was not on the estimation of the between-center
variance, the Bayesian model outperformed all other
methods in estimating this parameter. Implementation
of the Bayesian model can be done in OpenBUGS or in
Stan through R as was done here.

Limitations

Our simulation study was limited to one treatment/ex-
posure effect size and control rate. However, others have
noted similar performance when the effect size or con-
trol outcome rate was varied [3, 9, 11, 15]. We also did
not investigate fixed effects models, because their limita-
tions have been noted before [2—-4]. However, these
methods could be an alternative method of analysis for
studies with three or fewer centers. We also note
computational limitations faced in most simulation stud-
ies. In particular, results from the Bayesian models
would have benefited from running longer chains.
Increasing the number of bootstrap samples for the
GLMMs could also potentially improve their perform-
ance. Our simulation study did not include scenarios
with an ICC of 0. However, others have found that the
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methods recommended here perform well even in cases
where the ICC is very close to 0 [8, 15, 43]. We investi-
gated the performance of only an exchangeable correl-
ation matrix for the GEE models, which is a plausible
assumption for multicenter data. However, other correl-
ation structures can be used, and the performance of
GEE models has been shown to be robust to the choice
of the correlation structure [11].

We chose to focus on binary outcome because it is the
most common type of outcome reported in medical
research, but it would be important to investigate
methods for other types of outcomes (i.e., time-to-event
data). Last, we did not investigate treatment by center
interactions, and this is an important issue that needs to
be investigated in future studies.

Conclusions

For the analysis of multicenter studies with a binary out-
come, we recommend adjustment for center with either
a GEE log-binomial or Poisson model or a Bayesian bi-
nomial GLMM with informative priors. The GEE models
should include a small sample variance correction for
sandwich estimators when the number of center is < 30.
The Bayesian model with informative priors provides
stable estimates, greater flexibility, and good perform-
ance even with very small sample sizes.

Additional file

Additional file 1: Figure S1. Trace plots of parameters for an example
dataset exhibiting convergence issues. Table S1. Convergence rates for
regression models based on 1000 simulated datasets. Sample R code for
fitting models used in the simulation study. (PDF 431 kb)

Abbreviations

Crl: Credible interval; GEE: Generalized estimating equation; GLM-Bin: Log-
binomial regression model; GLMM: Generalized linear mixed model;

ICC: Intracluster correlation coefficient; KC: Kauermann and Carroll;
MCMC: Markov chain Monte Carlo; RCT: Randomized controlled trial;
RMSE: Root mean squared error; RR: Relative risk

Acknowledgements
The authors thank Dr. Martin Blakely for providing access to the pediatric
appendicitis study data.

Funding
This research was supported by no specific grant from any funding agency
in the public, commercial, or not-for-profit sectors.

Availability of data and materials

R code for implementing all regression models is given in the supplemental
material (Additional file 1). The multicenter trial data from the second
example are available from the authors upon reasonable request and with
permission of Dr. Martin Blakely.

Authors’ contributions

CP conceived the research question, initiated the simulation code, and
supervised the implementation of the simulation study. VTTT helped develop
and implement the code. Both authors drafted the manuscript and critically
reviewed it. Both authors read and approved the final manuscript.

Page 9 of 10

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 10 April 2017 Accepted: 6 October 2017
Published online: 02 November 2017

References

1. Parzen M, Lipsitz SR, Dear KBG. Does clustering affect the usual test statistics of
no treatment effect in a randomized clinical trial? Biom J. 1998;40:385-402.

2. Agresti A, Hartzel J. Strategies for comparing treatments on a binary
response with multi-centre data. Stat Med. 2000;19:1115-39.

3. Kahan BC. Accounting for centre-effects in multicentre trials with a binary
outcome - when, why, and how? BMC Med Res Methodol. 2014;14:20.

4. Kahan BC, Morris TP. Improper analysis of trials randomised using stratified
blocks or minimisation. Stat Med. 2012;31:328-40.

5. Kahan BC, Harhay MO. Many multicenter trials had few events per center,
requiring analysis via random-effects models or GEEs. J Clin Epidemiol.
2015,68:1504-11.

6. Tangri N, Kitsios GD, Su SH, Kent DM. Accounting for center effects in
multicenter trials. Epidemiology. 2010,21:912-3.

7. Mancl LA, DeRouen TA. A covariance estimator for GEE with improved
small-sample properties. Biometrics. 2001;57:126-34.

8. Li P, Redden DT. Comparing denominator degrees of freedom
approximations for the generalized linear mixed model in analyzing binary
outcome in small sample cluster-randomized trials. BMC Med Res Methodol.
2015;15:38.

9. Yelland LN, Salter AB, Ryan P. Performance of the modified Poisson
regression approach for estimating relative risks from clustered prospective
data. Am J Epidemiol. 2011;174:984-92.

10. Chu H, Cole SR. Estimation of risk ratios in cohort studies with common
outcomes: a Bayesian approach. Epidemiology. 2010;21:855-62.

11. Zou GY, Donner A. Extension of the modified Poisson regression model to
prospective studies with correlated binary data. Stat Methods Med Res.
2013,22:661-70.

12.  Liang KY, Zeger SL. Longitudinal data analysis using generalized linear
models. Biometrika. 1986;73:13-22.

13. Lu B, Preisser JS, Qaqish BF, Suchindran C, Bangdiwala SI, Wolfson M. A
comparison of two bias-corrected covariance estimators for generalized
estimating equations. Biometrics. 2007;63:935-41.

14.  Kauermann G, Carroll RJ. A note on the efficiency of sandwich covariance
matrix estimation. J Am Stat Assoc. 2001,96:1387-96.

15. Li P, Redden DT. Small sample performance of bias-corrected sandwich
estimators for cluster-randomized trials with binary outcomes. Stat Med.
2015;34:281-96.

16. Wang M, Long Q. Modified robust variance estimator for generalized
estimating equations with improved small-sample performance. Stat Med.
2011;30:1278-91.

17. Wang M, Kong L, Li Z, Zhang L. Covariance estimators for generalized
estimating equations (GEE) in longitudinal analysis with small samples. Stat
Med. 2016;35:1706-21.

18. Ritz J, Spiegelman D. Equivalence of conditional and marginal regression
models for clustered and longitudinal data. Stat Methods Med Res. 2004;13:
309-23.

19.  Pinheiro JC, Chao EC. Efficient Laplacian and adaptive Gaussian quadrature
algorithms for multilevel generalized linear mixed models. J Comput Graph
Stat. 2006;15:58-81.

20. Faraway JJ. Extending the linear model with R: generalized linear, mixed

effects and nonparametric regression models. Boca Raton, FL: Chapman &

Hall/CRC; 2006.

Spiegelhalter DJ, Abrams KR, Myles JP. Bayesian approaches to clinical trials

and health care evaluation. Chichester, UK: John Wiley & Sons, Ltd; 2004.

N


dx.doi.org/10.1186/s13063-017-2248-1

Pedroza and Truong Trials (2017) 18:512

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32,

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Warn DE, Thompson SG, Spiegelhalter DJ. Bayesian random effects meta-
analysis of trials with binary outcomes: methods for the absolute risk
difference and relative risk scales. Stat Med. 2002,21:1601-23.

Torman VB, Camey SA. Bayesian models as a unified approach to estimate
relative risk (or prevalence ratio) in binary and polytomous outcomes.
Emerg Themes Epidemiol. 2015;12:8.

Gelman A, Jakulin A, Pittau MG, Su YS. A weakly informative default prior
distribution for logistic and other regression models. Ann Appl Stat.
2008;2:1360-83.

Greenland S. Putting background information about relative risks into
conjugate prior distributions. Biometrics. 2001;57:663-70.

Pedroza C, Han W, Truong VT, Green C, Tyson JE. Performance of
informative priors skeptical of large treatment effects in clinical trials: A
simulation study. Stat Methods Med Res. 2015:0962280215620828. Epub
ahead of print.

Lambert PC, Sutton AJ, Burton PR, Abrams KR, Jones DR. How vague is
vague? A simulation study of the impact of the use of vague prior
distributions in MCMC using WinBUGS. Stat Med. 2005,24:2401-28.
Thompson SG, Warn DE, Turner RM. Bayesian methods for analysis of binary
outcome data in cluster randomized trials on the absolute risk scale. Stat
Med. 2004;23:389-410.

Eldridge SM, Ashby D, Feder GS, Rudnicka AR, Ukoumunne OC. Lessons for
cluster randomized trials in the twenty-first century: a systematic review of
trials in primary care. Clin Trials. 2004;1:80-90.

Emrich LJ, Piedmonte MR. A method for generating high-dimensional
multivariate binary variates. Am Stat. 1991;45:302—4.

Zeger SL, Karim MR. Generalized linear models with random effects; a Gibbs
sampling approach. J Am Stat Assoc. 1991,86:79-86.

Brooks SP, Gelman A. General methods for monitoring convergence of
iterative simulations. J Comput Graph Stat. 1998;7:434-55.

Gelman A. Prior distributions for variance parameters in hierarchical models
(comment on article by Browne and Draper). Bayesian Anal. 2006;1:515-34.
R Core Team. R: a language and environment for statistical computing

[Internet]. Vienna: R Foundation for Statistical Computing; 2015. http://www.

R-project.org/.

Halekoh U, Hejsgaard S, Yan J. The R package geepack for generalized
estimating equations. J Stat Softw. 2006;15(2):1-11.

Wang M. geesmv: Modified variance estimators for generalized estimating
equations [Internet]. R package version 1.3; 2015. http://cran.r-project.org/
package=geesmv/.

Bates D, Machler M, Bolker B, Walker S. Fitting linear mixed-effects models
using Ime4. J Stat Softw. 2015,67:1-48.

Carpenter B, Gelman A, Hoffman M, Lee D, Goodrich B, Betancourt M, et al.
Stan: a probabilistic programming language. J Stat Softw. 2016. In Press.
Stan Development Team. RStan: the R interface to Stan [Internet]. Version 2.
9.0. http//mc-stan.org/.

Beitler PJ, Landis JR. A mixed-effects model for categorical data. Biometrics.
1985;41:991-1000.

Willis ZI, Duggan EM, Bucher BT, Pietsch JB, Milovancev M, Wharton W, et al.

Effect of a clinical practice guideline for pediatric complicated appendicitis.
JAMA Surg. 2016;151:2160194.

Breslow NE, Clayton DG. Approximate inference in generalized linear mixed
models. J Am Stat Assoc. 1993;88:9-25.

Kahan BC, Morris TP. Analysis of multicentre trials with continuous
outcomes: when and how should we account for centre effects? Stat Med.
2013;32:1136-49.

Page 10 of 10

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central



http://www.r-project.org/
http://www.r-project.org/
http://cran.r-project.org/package=geesmv/
http://cran.r-project.org/package=geesmv/
http://mc-stan.org/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Log-binomial regression
	GEE models
	GLMMs
	Bayesian binomial GLMM
	Simulation study

	Results
	Convergence
	Bias and RMSE
	Coverage
	Sensitivity results

	Examples
	Infection treatment multicenter trial
	Pediatric appendicitis observational study

	Discussion
	Summary of simulation results
	Recommendations
	Limitations

	Conclusions
	Additional file
	Abbreviations
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

