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An imbalance in cluster sizes does not lead ®
to notable loss of power in cross-sectional,
stepped-wedge cluster randomised trials

with a continuous outcome
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Abstract

Background: The current methodology for sample size calculations for stepped-wedge cluster randomised trials
(SW-CRTs) is based on the assumption of equal cluster sizes. However, as is often the case in cluster randomised
trials (CRTs), the clusters in SW-CRTs are likely to vary in size, which in other designs of CRT leads to a reduction in
power. The effect of an imbalance in cluster size on the power of SW-CRTs has not previously been reported, nor
what an appropriate adjustment to the sample size calculation should be to allow for any imbalance. We aimed to
assess the impact of an imbalance in cluster size on the power of a cross-sectional SW-CRT and recommend a
method for calculating the sample size of a SW-CRT when there is an imbalance in cluster size.

Methods: The effect of varying degrees of imbalance in cluster size on the power of SW-CRTs was investigated
using simulations. The sample size was calculated using both the standard method and two proposed adjusted
design effects (DEs), based on those suggested for CRTs with unequal cluster sizes. The data were analysed using
generalised estimating equations with an exchangeable correlation matrix and robust standard errors.

Results: An imbalance in cluster size was not found to have a notable effect on the power of SW-CRTs. The two
proposed adjusted DEs resulted in trials that were generally considerably over-powered.
Conclusions: We recommend that the standard method of sample size calculation for SW-CRTs be used, provided

that the assumptions of the method hold. However, it would be beneficial to investigate, through simulation, what
effect the maximum likely amount of inequality in cluster sizes would be on the power of the trial and whether any

inflation of the sample size would be required.
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Background

The stepped-wedge trial (SWT) design, also known as
the ‘waiting list’ or ‘phased implementation’ design, is a
relatively new trial design which is increasing in popular-
ity [1]. A recent systematic review of SWTs published
between 2010 and 2014 identified a total of 37 studies
[2], whereas a previous review of SWTs published prior
to January 2010 identified only 25 studies [3], of which
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only two were published prior to the year 2000. SWTs
are, however, still a relatively rarely used design com-
pared with others.

SWTs are usually cluster randomised due to the nature
of the interventions that they are typically used to assess
[4]. The stepped-wedge cluster randomised trial (SW-
CRT) begins with no clusters in the intervention arm,
and all of the clusters in the control arm [5]. Clusters
are randomised to move to the intervention at prespeci-
fied times, known as steps, so that by the end of the trial
all clusters are receiving the intervention [5]. One or
more clusters may be randomised to switch at each time
point; however, it is usual for an identical number of
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Fig. 1 An example schematic of a stepped-wedge cluster randomised
trial design. Each cell represents a data collection point. Shaded
cells represent intervention periods and blank cells represent
control periods

clusters to switch each time [5]. Measurements are ob-
tained from each cluster between each step; they can be
obtained from the same individuals each time (cohort)
or from different individuals (cross-section) each time or
be a mix of the two [6]. Figure 1 gives a schematic for
an example SW-CRT.

There are several advantages to SW-CRTs which can
make them desirable for assessing the efficacy of certain
interventions. These advantages have been widely re-
ported [1, 7, 8] and include having each cluster acting as
their own control [1, 7], not withholding the interven-
tion from a group of participants [1, 7, 8], and being able
to experimentally assess the effectiveness of an interven-
tion that for practical, logistical or financial reasons it
may not be possible to assess using another design of
trial [7, 8]. There are even occasions when the SW-CRT
is more efficient than a parallel design, requiring a
smaller sample size and fewer clusters [7]. However,
there are disadvantages to SW-CRTs. Unlike a parallel
design, for example, the length of a SW-CRT cannot be
increased to meet recruitment targets, potentially result-
ing in under-powered trials. Furthermore, the analysis of
SW-CRTs is complex. Hussey and Hughes [8] suggest
that these studies should be analysed using generalised
linear mixed models, linear mixed models or generalised
estimating equations (GEEs); however, the performance
of these models depends on the number of clusters, as
well as whether the cluster sizes are equal or unequal
[8]. These trials face the same problems as other cluster
randomised trials (CRTs), with issues of unequal recruit-
ment to clusters and the potential for entire clusters to
drop out of the study. However, unlike other designs of
CRTs, where sample size calculations have been devel-
oped to adjust for unequal cluster sizes, no such calcula-
tions have been proposed for use in SW-CRTs with
unequal cluster sizes. In fact, the effect of an imbalance
in cluster sizes on the power of SW-CRTs has yet to be
reported.
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Sample size calculations for CRTs

The optimal sample size for a CRT is most often
found by inflating the sample size obtained for an in-
dividually randomised trial by a design effect (DE)
which accounts for the clustering [6]. For a CRT with
equal cluster sizes, this is given as a function of the
size of the clusters, m, and the intracluster correlation
coefficient (ICC), p [9]:

DECRT =1+ (Wl—l)p

The ICC is defined as the proportion of variance
accounted for by the variation between the clusters [9]
and characterises the correlation between individuals
from the same cluster [8]. The required sample size is
found by multiplying the sample size for an individually
randomised trial by the DE.

Many variations on this DE have been suggested for
use in CRTs with unequal cluster sizes [10-12]. How-
ever, most of these methods require prior knowledge
of the actual cluster sizes, as well as the value of the
ICG; this information is usually not known until after
the trial has been conducted [9]. Assuming a cluster-
level analysis of a continuous outcome, Eldridge et al.
[9] presented a simple DE that does not require prior
knowledge of cluster sizes. This method is based on a
cluster weights adjusted DE, also given by Manatunga
et al. [11], and uses the mean cluster size, 7, and the
coefficient of variation in cluster size (CV), which is
the ratio of the standard deviation of cluster size to
the mean cluster size. The cluster weights adjusted
DE is given as:

DEcy =1+ {(CV*+1)m — 1}p.

The minimum variance weights adjusted DE given by
Kerry et al. [10] is not amenable to a simpler reduction
in terms of the CV, and therefore requires prior know-
ledge of the size of the clusters. It is given as:

ml
T i
Zi:l 1+(m;i-1)p

where I is the number of clusters and m1; is the size of
the it cluster.

DEyvw =

)

Sample size calculation for SW-CRTs

In 2013, Woertman et al. [7] derived a simple sample
size formula for SW-CRTs from the formulae provided
by Hussey and Hughes [8]. This formula assumes that
there is no cluster by time interaction or within-subject
correlation over time (i.e. cross-sectional design) and
that each cluster is of an equal size. The DE derived by
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Woertman et al. [7] for calculating the sample size for a
SW-CRT is:

1+ plktm + bm-1) 3(1-p)
1+ p(Lktm+ bm-1) 2t(k-1)’

DEsyw—crr =

where p is the ICC, k is the number of steps, ¢ is the
number of measurements taken after each step, m is the
number of subjects within a cluster, and b is the number
of measurements taken at baseline [7]. The required
sample size for the SW-CRT is then calculated by multi-
plying the sample size for an individually randomised
trial by the SW-CRT DE.

Although Hemming et al. [13] have recently published
analytical formulae of power calculations for several var-
iations on Hussey and Hughes’s formula [8], there is still
a dearth of literature on sample size and power calcula-
tions for SWTs when compared to other designs of
CRT. In particular, existing guidance focusses mainly on
the cross-sectional design and assumes equality of clus-
ter sizes, no intervention by time interaction, no cluster-
by-intervention effect and categorical time effects [6].

The objective of our research was to explore possible
adjustments to the DE to be used in calculating the sam-
ple size of SW-CRTs with unequal cluster sizes. We
propose two adjusted DEs based on those used in CRTs
and assess their appropriateness, as well as that of the
Woertman et al. DE [7], by determining whether they
give appropriate power under varying degrees of imbal-
ance in cluster size.

Methods

Proposed design effects for SW-CRTs with unequal cluster
sizes

By multiplying the sample size for an individually rando-
mised trial by the standard DE for CRTs, and assuming
equal cluster sizes, the sample size for an individually
randomised trial is adjusted for the effect of clustering.
The adjusted DEs make additional adjustments for the
effect of an imbalance in cluster sizes. A ‘correction
term’ can then be found by subtracting the standard DE
from each adjusted DE. This gives the component of the
DE that adjusts for the effect of an inequality in cluster
size. By adding these correction terms to the standard
DE for a SW-CRT, the sample size for an individually
randomised trial can be adjusted for the effect of an in-
equality in cluster size, in addition to the effects of the
clustering and stepped-wedge design:

Correction term = DEcgr — DEcgr
ﬁSW—CRT = DESW—CRT + Correction term

where l/)ECRT is an adjusted DE for a CRT and
DE'SW_CRT is an adjusted DE for a SW-CRT.
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Using the cluster and minimum variance adjusted
weights DEs, given previously, we propose two adjusted
DEs for SW-CRTs with unequal cluster sizes. One uses
the CV in cluster size, whereas for the other, the size of
each cluster must be specified. The number of subjects
in each cluster in the unadjusted DE is replaced by the
average cluster size, 7. The cluster weights adjusted DE
is:

3(1-p)

Vo
1+p(%ktﬁ1+br?1—1).2t(k—%)>+CV "

DECW =

_ (1+p(ktr?1+b771—1)

and the minimum variance weights adjusted DE is:

- 1+ptktm+bm—1) 3(1—p)
1+ p skt +bin—1) 2t (k—7)
ml _
A+ @m-1Dp) |

I
Zi=1 T4 (m; = Dp

where p is the ICC, k is the number of steps, ¢ is the
number of measurements taken after each step, 7 is the
average cluster size, b is the number of measurements
taken at baseline, CV is the coefficient of variation in
cluster size, I is the number of cluster and m; is the size
of the i™ cluster. The sample size for a SW-CRT with
unequal cluster sizes can then be found by multiplying
the required sample size for an individually randomised
trial by one of the adjusted DEs.

Estimating the CV in cluster size
An estimate of the CV in cluster size can be obtained by
several methods, as described by Eldridge et al. [9]. This
can include using previous studies, similar to the current
study, to estimate the CV; however, since SWTs are a
relatively new design this may be difficult. It may instead
be possible to investigate and model possible sources of
variation in cluster size by distinguishing between the
number of individual participants in each cluster and the
wider pool of individuals from which the participants
are drawn [9]. The possible sources of variation can in-
clude: the distribution of the pool of individuals for each
cluster; the strategies for recruiting a cluster from this
population and individuals from the clusters; the pat-
terns of response and dropout from clusters and individ-
uals; and the distribution of eligible individuals in each
cluster [9].

A more simple method of estimating the CV, when
other methods are not feasible, involves using an esti-
mate of the mean cluster size and the likely range of
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cluster size to give an approximation of the CV [9]. The
standard deviation of cluster size is approximated by div-
iding the likely range of the cluster sizes by 4 [9]. The
CV is then the ratio of the estimated standard deviation
in cluster size to the mean cluster size.

Simulation study

A Monte Carlo-type simulation study was conducted,
using 5000 simulation runs. The unadjusted DE given
by Woertman et al. [7], as well as our two proposed
adjusted DEs, were used to calculate the required sam-
ple sizes for SW-CRTs with fixed power, significance
level of test, effect size, ICC and number of measure-
ments taken at each time point. Various combinations
of degree of imbalance in cluster size, number of steps
and average cluster size were then imposed. Data were
simulated for each of these SW-CRTs using the model
given by Hussey and Hughes [8] (Additional file 1),
and the power to detect the true intervention effect
estimated. The values of the parameters used in the
simulations are given in Table 1. These values were
chosen as they are commonly used in simulation stud-
ies conducted in CRTs [14—16] and are, therefore, eas-
ily transferable to SW-CRTs. Between three and eight
steps were chosen after examining the results of a sys-
tematic review of SW-CRTs, which found that the ma-
jority of trials had this number of steps [3]. The
cluster sizes were chosen so that they covered the
range of median cluster sizes found in systematic re-
views of CRTs [17-19].

To provide a focussed study on the effect of a glo-
bal imbalance in cluster size on the power of SW-
CRTs, the investigation was limited to cross-sectional
SW-CRTs, with a continuous outcome, one measure-
ment taken during each time period, the same num-
ber of clusters switching at each step, and no fixed
time effect or delay in the effect of the intervention.
We focussed on SW-CRTs where the number of

Table 1 Parameters used during the simulation study and their

values

Simulation parameter Values

Type | error, a 0.05

Power, 1 -8 80%

ICC, p 0.05

Effect size 02

Average cluster size 10, 20, 30, 40
Number of steps 3,4,56,7,8

Number of measurements taken at 1
each time period

None, moderate, Poisson, Pareto 60:40,
Pareto 70:30, Pareto 80:20

Imbalance in cluster size
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individuals at each measurement period remained con-
stant within a cluster, but where a global imbalance in the
number of individuals between the clusters was intro-
duced. The cluster sizes given are the sizes of each cluster
during every measurement period. Without loss of gener-
ality, the grand mean of the response variable was set
equal to 0 and the pooled variance was fixed at 1, as was
used by Corrigan et al. [15] and Guittet et al. [14] in their
simulation studies on CRTs. The between-cluster and
within-cluster variances could then be written as p
and 1 - p respectively, where p is the ICC.

Six types of imbalance in cluster size were intro-
duced: none, moderate, Poisson, 60:40 Pareto, 70:30
Pareto and 80:20 Pareto [14]. These six methods gen-
erated varying degrees of imbalance in cluster size.
When there was no imbalance in cluster size, the
same number of individuals were allocated to each
cluster during every time period, resulting in a CV in
cluster size of 0. A moderate imbalance was intro-
duced by, for each individual, randomly selecting with
equiprobability the cluster to which they belonged at
baseline and allowing the cluster size to then remain
the same for the duration of the trial, creating a small
imbalance in cluster size [14].

A Poisson imbalance was introduced by randomly
selecting the size of each cluster from a Poisson dis-
tribution with parameter equal to the average cluster
size per measurement period [14]. Individuals were
then randomly allocated to a cluster [14]. If the sum
of the cluster sizes was greater or less than the re-
quired sample size then individuals were randomly re-
moved from, or added to, the clusters until the
desired sample size was reached. This introduced a
similar level of imbalance in cluster size to the mod-
erate type imbalance [14].

The three Pareto type imbalances were introduced by
creating two strata, one of large clusters and the other of
small clusters [14]. Therefore, for an 80:20 Pareto imbal-
ance: 80% of the individuals were assigned to the large
cluster stratum, and the remaining 20% to the small
cluster stratum. Twenty percent of the clusters were
then assigned to the large cluster stratum, and the
remaining 80% to the small cluster stratum. Within each
stratum, individuals were randomly allocated to clusters
so that each cluster contained the same number of indi-
viduals [14]. The range of Pareto type imbalances used
in this investigation gave larger values of the CV than
the other types of imbalance, thus providing a range of
values of the CV in cluster size.

The CV in cluster size was estimated by running 1000
simulations for each combination of average cluster size
per measurement period, number of steps and type of
imbalance, and finding the mean cluster size per meas-
urement period and standard deviation of cluster size.
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The CV was then calculated as the ratio of the standard
deviation in cluster size to the mean cluster size per
measurement period.

The required sample sizes using the standard and
cluster weights DEs were calculated analytically using
the estimated value of the CV for each type of imbal-
ance in cluster size. The required sample size using
the minimum variance weights adjusted DE was
found by simulating a single dataset under each type
of imbalance in cluster size and combination of other
parameters and recording the size of each cluster at
each measurement period. These cluster sizes were
then used during the calculation of the DE. The CV
used to calculate the minimum variance weights sam-
ple size, therefore, differs slightly from the CV for the
other methods.

Analyses were conducted using GEEs with an ex-
changeable correlation matrix and robust standard er-
rors. The GEE model included the response variable,
treatment group and time period as covariates, and
allowed for the grouping of individuals within clusters.

To examine the effect of unequal cluster sizes on
the power of the SW-CRTs as the number of steps
changed, the average cluster size at each measure-
ment period was fixed at 20, whilst the number of
steps was varied. To examine the effect of unequal
cluster sizes on the power of the SW-CRTs as the
average cluster size changed, the number of steps was
fixed at four, whilst the average cluster size at each
measurement period was varied.

All simulations were conducted in Stata MP 12.1. The
programmes written for the simulation study are given
in Additional file 2.

Results

Sample size calculated using the unadjusted DE,
Woertman et al. [7]

Varying the number of steps

The Woertman et al. DE [7] was used to calculate
the required sample size for SW-CRTs with average
cluster size fixed at 20 and number of steps varying
between three and eight. The resulting sample sizes
are given in Table 2. In order to allow the same num-
ber of clusters to switch at each step, the sample size
was increased by between 4.1% and 34.5%, depending
on the number of steps. The actual power for these
trials was, therefore, greater than the nominal 80%
(Table 2). When there was no imbalance in cluster
size (CV =0), the power estimated by simulation for
each trial ranged from 79.3% to 87.3% (Table 2). The
actual powers, calculated by hand, are also given in
Table 2. The actual power varied from the simulated
power by up to 2.9 percentage points, but it has been
seen elsewhere that the simulated power for CRTs
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will vary slightly from the actual power, even when
10,000 iterations are used [20].

Varying degrees of imbalance in clusters size were im-
posed, resulting in values of the CV in cluster size ran-
ging from 0 to 1.689 (Table 2). Moderate and Poisson
type imbalances resulted in similar, small values of the
CV, which remained constant as the number of steps in-
creased. The Pareto imbalances gave increasing values of
the CV as the imbalance became more extreme and
these values remained fairly constant as the number of
steps increased.

The varying degrees of imbalance in cluster size in-
duced by the different types of imbalance in cluster
size did not have a notable effect on the power of the
SW-CRTs (Fig. 2), with the power not dropping below
the actual power by any more than 1.3 percentage
points. Even when the CV in cluster size was at its
greatest (1.689) the power did not drop below the ac-
tual power for each trial (Table 2) and the power was
often greater than the actual power. This indicated a
certain amount of noise around the estimates, as has
been seen elsewhere [20], and meant that a consistent
pattern could not be observed.

Varying average cluster size

The Woertman et al. DE [7] was then used to calculate
the required sample size for SW-CRTs with the number
of steps fixed at four and the average cluster size varying
between 10 and 40. The resulting sample sizes are given
in Table 2. In order for the same number of clusters to
switch at each step, the sample sizes were inflated by be-
tween 1.9% and 6.7% (Table 2). The powers estimated by
simulation for these trials were between 79.7% and
83.3% when there was no imbalance in cluster size
(Table 2). The actual powers, calculated by hand, varied
from the simulated powers by up to 1.1 percentage
points (Table 2).

Using the same six types of imbalance in cluster size,
the CV took similar values, ranging from 0 to 1.673
(Table 2). For the moderate and Poisson imbalances, the
CV in cluster size was seen to decrease as the average
cluster size increased, whereas for the Pareto imbalances
the CV was seen to increase as the average cluster size
increased.

The varying degrees of imbalances in cluster size in-
duced by the different types of imbalance in cluster size
did not have a notable effect on the power of the SW-
CRTs (Fig. 3). Even when the CV in cluster size was at
its greatest (1.673) the power did not drop below the ac-
tual power for each trial by more than 1.7 percentage
points (Table 2). Again, a certain amount of noise was
observed in the estimates, as has been seen elsewhere
[20], and meant that a clear pattern could not be
observed.
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Sample size calculated using the two proposed adjusted
DEs

When there was no imbalance in cluster size, CV =0,
both proposed adjusted DEs gave the same sample size
as when the standard, Woertman et al. DE [7] was used
(Table 2). This was the case for all combinations of
average cluster size and number of steps that were
investigated.

Varying the number of steps

The two proposed adjusted DEs were used to calculate
the sample sizes for SW-CRTs with average cluster size
fixed at 20 and number of steps varying between three
and eight (Table 2). When the CV in cluster size was
small (moderate or Poisson type imbalance), the sample
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sizes calculated using either of the proposed adjusted
DEs did not increase by more than one additional clus-
ter per step, compared to when the sample size was cal-
culated using the Woertman et al. DE [7]. In fact, the
total sample size required often remained unchanged
(Table 2).

As the imbalances in cluster size became more severe,
the sample sizes calculated by both of the proposed ad-
justed DEs varied more. Regardless of the number of
steps in the SW-CRTs, or the degree of imbalance in
cluster size, the minimum variance weights adjusted DE
consistently gave the smaller sample size of the two pro-
posed adjusted DEs (Table 2).

When the CV in cluster size was large, the cluster
weights adjusted DEs were between 2.0 and 8.2 times

Table 2 Design effects, sample sizes and powers for stepped-wedge cluster randomised trials (SW-CRTs) with varying average

cluster size, number of steps and cluster size inequality

Average cluster Number DE used Actual power  Type of imbalance
size of steps 9%) None (CV=0) Moderate Poisson
DE Sample Power (%) CV DE Sample  Power (%) CV DE Sample  Power (%)
size size size
10 4 Woertman etal. 818 0.535 440 81.9 0314 0535 440 80.1 0320 0535 440 81.9
Cluster weights - 0.535 440 - 0314 0584 480 85.5 0320 0586 480 84.2
Min. var. weights - 0.535 440 - 0317 0568 480 85.5 0313 0569 480 84.2
20 3 Woertman et al. 835 0.767 660 84.0 0222 0767 660 834 0223 0757 660 826
Cluster weights - 0.767 660 - 0222 0816 660 834 0223 0816 660 826
Min. var. weights - 0.767 660 - 0222 0790 660 834 0223 0793 660 826
4 Woertman et al. 82,5 0.572 480 833 0222 0572 480 82.5 0225 0572 480 823
Cluster weights - 0.572 480 - 0222 0622 560 879 0225 0623 560 87.1
Min. var. weights - 0572 480 - 0201 0592 480 82.5 0221 059 480 823
5 Woertman etal. 836 0464 400 820 0221 0464 400 84.3 0224 0464 400 84.0
Cluster weights - 0464 400 - 0221 0512 500 89.9 0224 0514 500 90.5
Min. var. weights - 0464 400 - 0.219 0488 400 843 0221 0488 400 84.0
6 Woertman etal. 858 0392 360 83.6 0221 0392 360 84.8 0222 0392 360 86.0
Cluster weights - 0392 360 - 0221 0441 360 84.8 0222 0442 360 86.0
Min. var. weights - 0392 360 - 0.244 0423 360 84.8 0229 0416 360 86.0
7 Woertman etal. 817 0341 280 793 0220 0341 280 81.5 0222 0341 280 813
Cluster weights - 0341 280 - 0220 0390 420 933 0222 0391 420 936
Min. var. weights - 0.341 280 - 0225 0365 420 933 0227 0366 420 936
8 Woertman et al.  90.2 0303 320 873 0219 0303 320 89.6 0223 0303 320 88.9
Cluster weights - 0303 320 - 0219 0351 320 89.6 0223 0352 320 88.9
Min. var. weights - 0303 320 - 0239 0328 320 89.6 0227 0327 320 889
30 4 Woertman etal. 814 0.589 480 818 0.180 0589 480 81.2 0.182 0589 480 818
Cluster weights - 0.589 480 - 0.180 0638 600 88.5 0.182 0639 600 89.0
Min. var. weights - 0.589 480 - 0.168 0605 480 81.2 0.196 0612 600 89.0
40 4 Woertman et al.  80.8 0.599 480 79.7 0.155 0599 480 81.7 0.156 0599 480 813
Cluster weights - 0.599 480 - 0.155 0647 640 90.3 0.156 0647 640 90.5
Min. var. weights - 0.599 480 - 0.141 0610 480 81.7 0.147 0612 640 90.5

Design effects (DE) and sample sizes calculated, and power estimated, for SW-CRTs with an average cluster size of 10, 20, 30 or 40, the number of steps ranging
from three to eight and increasing imbalance in cluster size, using the Woertman et al. [7] and two proposed adjusted DEs. The type | error, power, intracluster
correlation coefficient (ICC) and effect size were 0.05, 80%, 0.05 and 0.2, respectively. CV, coefficient of variation in cluster size
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Table 2 Design effects, sample sizes and powers for stepped-wedge cluster randomised trials (SW-CRTs) with varying average

cluster size, number of steps and cluster size inequality (Continued)

Average cluster Number DE used Actual power Type of imbalance
size of steps ) Pareto 60:40 Pareto 70:30 Pareto 80:20
(@Y DE Sample Power (%) CV DE Sample Power (%) CV DE Sample Power (%)
size size size
10 4 Woertman et al.  81.8 0428 0535 440 81.7 0909 0.538 440 80.3 1603 0538 440 820
Cluster weights - 0428 0627 520 87.7 0.909 0.948 760 95.8 1603 1.820 1440 99.9
Min. var. weights - 0420 0593 480 849 0889 0.787 640 922 1622 1362 1080 99.3
20 3 Woertman et al.  83.5 0446 0.767 660 82.8 0911 0767 660 836 1.594 0.767 660 835
Cluster weights - 0446 0966 780 88.6 0911 1597 1260 97.7 1.594 3308 2640 100.0
Min. var. weights - 0405 0844 720 87.6 0999 1232 1020 95.0 1624 1970 1560 99.2
4 Woertman et al. 825 0445 0572 480 826 0957 0572 480 824 1647 0572 480 84.2
Cluster weights - 0445 0770 640 91.2 0957 1488 1200 99.5 1647 3285 2640 100.0
Min. var. weights - 0450 0670 560 88.2 0933 0979 800 953 1.557 1789 1440 99.8
5 Woertman et al. 836 0444 0464 400 835 0939 0464 400 84.0 1689 0464 400 84.5
Cluster weights - 0444 0661 600 944 0939 1345 1100 99.8 1689 3316 2700 100.0
Min. var. weights - 0435 0552 500 90.0 0866 0.848 700 96.9 1.803 1739 1400 100.0
6 Woertman et al.  85.8 0449 0392 360 852 0.994 0392 360 85.2 1682 0392 360 86.8
Cluster weights - 0449 0.594 480 93.1 0.994 1380 1200 100.0 1682 3221 2640 100.0
Min. var. weights - 0516 0516 480 93.1 0977 0823 720 100.0 1.742 1691 1440 100.0
7 Woertman et al.  81.7 0492 0341 280 81.1 0971 0341 280 824 1631 0341 280 834
Cluster weights - 0492 0583 560 979 0971 1284 1120 100.0 1631 3001 2380 100.0
Min. var. weights - 0498 0451 420 92.8 1.002 0819 700 994 1.527 1468 1260 100.0
8 Woertman et al.  90.2 0471 0303 320 89.6 0.997 0303 320 89.3 1672 0303 320 90.4
Cluster weights - 0471 0524 480 96.9 0.997 1297 1120 100.0 1672 3.098 2560 100.0
Min. var. weights - 0482 0411 480 96.9 1.037 0.733 640 994 1646 1536 1280 100.0
30 4 Woertman et al. 814 0468 0.589 480 81.8 0963 0589 480 82.0 1673 0589 480 83.7
Cluster weights - 0468 0918 840 96.0 0963 1980 1560 99.9 1673 4788 3840 100.0
Min. var. weights - 0467 0.706 600 88.1 0905 1.053 840 95.8 1676 2158 1800 100.0
40 4 Woertman et al.  80.8 0499 0.599 480 804 1.021 0599 480 804 1574 0599 480 836
Cluster weights - 0499 1.097 960 97.8 1.021 2684 2240 100.0 1574 5554 4480 100.0
Min. var. weights - 0416 0.703 640 89.8 1.066 1.213 960 97.5 1763 2249 1920 100.0

greater than the Woertman et al. [7] DE, leading to total
sample sizes between 1.9 and 8.5 times greater (Table 2).
This resulted in severely over-powered trials (Table 2).
When the most extreme imbalance in cluster size was
introduced, the power of these trials reached in excess of
99%, regardless of which of the proposed adjusted DEs
were used (Table 2).

Varying the average cluster size

The two proposed adjusted DEs were then used to
calculate the sample sizes for SW-CRTs with the number
of steps fixed at four and the average cluster size ranging
from 10 to 40 (Table 2). When the CV in cluster size was
small, the sample sizes calculated using the two proposed
adjusted DEs were close to those calculated using the
Woertman et al. DE [7]. Only one additional cluster was
needed per step when the average cluster size was greater

than 10, and two additional clusters per step were needed
when the average cluster size was 10 (Table 2).

As the CV in cluster size increased, the minimum vari-
ance weights adjusted DE consistently gave sample sizes
that lay between those given by the cluster weights DE
and the Woertman et al. DE [7] (Table 2).

When the CV in cluster size was large, the sample
sizes calculated using either the equal or cluster weights
adjusted DEs were between 1.7 and 9.3 times greater
than the sample sizes calculated using the Woertman et
al. DE [7] (Table 2). In contrast, the minimum variance
weights adjusted DE gave sample sizes that were only up
to four times greater (Table 2). As the imbalances in
cluster size became more extreme, both of the proposed
adjusted DEs resulted in severely over-powered trials,
with some attaining over 99% power for the most severe
imbalances in cluster size (Table 2).
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Discussion

Sample size calculations for SW-CRTs continue to be
one of the most poorly reported aspects of this trial de-
sign [2]. In those trials that do adequately describe their
method of sample size calculation, there is great dispar-
ity in the methods that are being employed [2, 3]. In a
recent systematic review, it was found that in some cases

even the clustering of the trial had been ignored [2], and
that even in those trials that did allow for clustering and
the stepped-wedge design, some aspects of the design
were still not taken into account [6]. For example, there
is not a simple analytical calculation for determining the
sample size of a cohort SW-CRTs. The sample size is,
therefore, often based on a cross-sectional design, for
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increases. The simulated power, relative to the analytical power, of SW-CRTs with increasing variability in cluster size, average cluster size ranging
from 10 to 40, number of steps fixed at four and sample size calculated using the Woertman et al. design effect (DE) [7]. The type | error, power,
intracluster correlation coefficient (ICC) and effect size were 0.05, 80%, 0.05 and 0.2, respectively
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which simple analytical sample size calculations do exist
[7], which is likely to overestimate the required sample
size [6].

In most SW-CRTs cluster sizes will vary to some de-
gree and this cannot always be predicted [9]. However,
there are examples of SW-CRTs where the cluster sizes
were known to vary considerably prior to the trial being
conducted, yet an assumption of equal cluster sizes was
made when calculating the sample size [21, 22]. It is well
documented that unequal cluster sizes reduce the power
of CRTs [5, 9, 14, 16], yet the effect of this in SW-CRTs
has not previously been reported. A loss of power can
result in an under-powered study being conducted, that
is likely to be unable to detect the true effect of the
intervention, and would therefore be ethically dubious.
Equally it is important not to run trials that are unneces-
sarily large. Several methods have been suggested for
accounting for an inequality in cluster size when calcu-
lating the sample size for CRTs [9-11]; however, none
have been suggested for use with SW-CRTs. This is the
first time that the effect of unequal cluster sizes on the
power of SW-CRTs has been reported and suggestions
made for how to account for this when calculating the
sample size.

We focussed our investigation on the effect of unequal
cluster sizes on the power of a specific type of SW-CRT.
The SW-CRTs that were investigated were cross-
sectional, with the same number of clusters switching at
each step, and assuming that there was no delay in inter-
vention effect or effect of time. These assumptions cor-
respond with those made by Woertman et al. [7] for
their DE. Our trials had a continuous outcome and were
analysed using GEEs. The results of this study are, there-
fore, limited to SW-CRTs of this design. A delay in inter-
vention effect would cause the intervention effect for the
groups that switch from control to intervention late in
the trial to be less than for those which switch earlier.
This causes a reduction in power [8]. This, as well as an
imbalance in cluster size, could cause these trials to be-
come under-powered. A similar effect would be induced
by including a time effect.

We also focussed our investigation on a global im-
balance in cluster sizes, where the number of individ-
uals included in each cluster varied, but where the
same number of individuals were included at each
measurement period within a cluster. Another type of
imbalance that may have an impact on the power of
the SW-CRT would be if the number of included in-
dividuals between the different measurement periods
also varied. This would be of interest for future
research.

A topic that would also be of interest for future re-
search would be to extend our research to investigate
the effect of unequal cluster sizes for different values of

Page 9 of 11

the ICC and effect sizes. Although we focussed our in-
vestigation on SW-CRTs with an effect size of 0.2 and
an ICC of 0.05, Guittet et al. [14] have shown that for
parallel CRTs power decreases as the ICC increases, and
although they found consistent patterns as the effect size
was varied there is an impact on the power of making
this change.

A strength of our investigation is our choice to simu-
late the values of the CV in cluster size, rather than esti-
mating the CV analytically. For the Poisson imbalance
the cluster sizes followed a Poisson distribution, with
parameter the average cluster size, the CV could easily
be calculated analytically by dividing the square root of
the average cluster size by the average cluster size. How-
ever, in order to preserve the required sample size some
individuals were added or removed from clusters during
our simulations. This was done at random, with the
intention of maintaining the distribution of the cluster
sizes. Our simulated CVs were found to differ by no
more than 0.004 from the analytical CV, demonstrating
that we succeeded in preserving the correct distribution
of the cluster sizes, whilst maintaining the correct sam-
ple size. The analytical calculation of the CV for the
Pareto type imbalances was less straightforward. Within
each strata individuals were allocated to a cluster with
equiprobability. This introduced a moderate type imbal-
ance into each strata, increasing the variability of the
cluster sizes. If it were assumed that all of the clusters
within a strata were of equal sizes, then the CV could
easily be calculated analytically. However, this leads to
an underestimation of the CV. We therefore chose to
calculate the CV using simulation methods. The analyt-
ical method was found to underestimate the CV by as
much as 0.189. To maintain consistency across the dif-
ferent types of imbalance, and to ensure that all inequal-
ity in cluster sizes was taken into account, we simulated
the CV for each type of imbalance in cluster sizes and
used these values in the calculation of the DE. Our re-
sults are thus truly representative of the performance of
each sample size calculation method under the actual
level of inequality in cluster sizes.

We have demonstrated that for the SW-CRTs investi-
gated in this study, the sample size calculated using the
Woertman et al. DE [7] provides adequate power, even
when there is a large global imbalance in cluster size,
with only a small loss of power (<2%) being observed.
However, there was a certain degree of noise surround-
ing the estimated powers from the simulations and so it
was difficult to distinguish a clear trend. We also stipu-
lated that the same number of clusters must switch at
each step, and therefore the sample sizes used in our in-
vestigation were typically larger than those which are
often used in practice. Woertman et al. [7] state that
‘when the number of clusters that should switch at each
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step is not an integer, it suffices to distribute the clusters
as evenly as possible over the steps’ [7]. This would lead
to a smaller total sample size being required, a reduction
in power, and trials that might be more sensitive to an
imbalance in cluster size. The way in which the clusters
are distributed over the steps may also have an effect on
the power of the SW-CRT, especially if there is an im-
balance in cluster size.

Further studies are needed to investigate the effect of
different variations of the standard SW-CRT, on the
power of these trials. Appropriate methods for sample
size calculation then need to be developed to ensure that
these SW-CRTs are appropriately powered, especially
those using a cohort rather than cross-sectional design.
In the meantime, provided that the assumptions of the
method hold, the sample size calculated using the
Woertman et al. DE [7] should produce an appropriately
powered trial, as long as the sample size is inflated to
allow the same number of clusters to switch at each
step. For SW-CRTs of a nonstandard design, and when
there is expected to be a substantial imbalance in cluster
size, simulation methods can be used to investigate the
effect of this on the power of the trial and to find the re-
quired sample size. This is in line with the recommenda-
tions made in other papers [6]. Both of our proposed
DEs produced trials that were unnecessarily large and
over-powered, even when there was a moderate imbal-
ance in cluster size. We do not recommend that these
DEs be used.

Conclusion
For SW-CRTs with the same number of clusters switch-
ing at each step, a continuous outcome and analysis con-
ducted using GEEs, even large imbalances in cluster size
do not cause a notable loss of power. This is in contrast
to other designs of CRT, where an imbalance in cluster
size causes a significant loss of power [9, 10, 14, 16]. The
standard method of sample size calculation, using the
Woertman et al. DE [7] (which does not allow for un-
equal cluster sizes), produces trials that are appropriately
powered, even when the imbalance in cluster size is
large, provided that the same number of clusters switch
at each step. We therefore recommend that the
Woertman et al. DE [7] can be used for calculating the
sample size for SW-CRT of a similar design to that
which we have used during our investigation. However,
it may be beneficial to researchers to consider the max-
imal amount of inequality in cluster size that can realis-
tically be expected in their trial and use simulation
methods to investigate the potential impact on the
power and whether the sample size will need to be
inflated.

For more complex designs, where the assumptions
made for the Woertman et al. DE [7] do not hold, it has
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been recommended that simulations be used to deter-
mine the sample size required to correctly power the
trial [6]. Further to this, we recommend that an inequal-
ity in cluster sizes also be considered during this
process.

The implication of these findings is that many SW-
CRTs that have been conducted, which assumed equal
cluster sizes when calculating the sample size, may be
appropriately powered, assuming that they used an ap-
propriate method of sample size calculation, taking into
account both the clustering and stepped-wedge aspects
of the design. As the SW-CRT becomes more popular,
further research needs to be conducted into the method-
ology to ensure that these trials are appropriately pow-
ered and analysed.
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