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Abstract

Background: Cluster randomised trials (CRTs) are commonly analysed using mixed-effects models or generalised
estimating equations (GEEs). However, these analyses do not always perform well with the small number of clusters
typical of most CRTs. They can lead to increased risk of a type | error (finding a statistically significant treatment
effect when it does not exist) if appropriate corrections are not used.

Methods: We conducted a small simulation study to evaluate the impact of using small-sample corrections for
mixed-effects models or GEEs in CRTs with a small number of clusters. We then reanalysed data from TRIGGER, a
CRT with six clusters, to determine the effect of using an inappropriate analysis method in practice. Finally, we
reviewed 100 CRTs previously identified by a search on PubMed in order to assess whether trials were using
appropriate methods of analysis. Trials were classified as at risk of an increased type | error rate if they did not
report using an analysis method which accounted for clustering, or if they had fewer than 40 clusters and
performed an individual-level analysis without reporting the use of an appropriate small-sample correction.

Results: Our simulation study found that using mixed-effects models or GEEs without an appropriate correction led
to inflated type | error rates, even for as many as 70 clusters. Conversely, using small-sample corrections provided
correct type | error rates across all scenarios. Reanalysis of the TRIGGER trial found that inappropriate methods of
analysis gave much smaller P values (P < 0.01) than appropriate methods (P =0.04-0.15). In our review, of the 99
trials that reported the number of clusters, 64 (65 %) were at risk of an increased type | error rate; 14 trials did not
report using an analysis method which accounted for clustering, and 50 trials with fewer than 40 clusters
performed an individual-level analysis without reporting the use of an appropriate correction.

Conclusions: CRTs with a small or medium number of clusters are at risk of an inflated type | error rate unless
appropriate analysis methods are used. Investigators should consider using small-sample corrections with
mixed-effects models or GEEs to ensure valid results.
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Background

Cluster randomised trials (CRTs) involve randomising
groups of patients to different treatment arms. CRTs are
often used when it is difficult to apply the intervention
at the individual level, when there is a risk of contamin-
ation between treatment groups, or for logistical reasons.
Patient outcomes from the same cluster tend to be cor-
related, meaning that they are more similar to the other
patients in their cluster than they are to patients in other
clusters. This violates the standard statistical assumption
that all patients in a trial are independent of one another.
The clustering must therefore be taken into account in
the analysis. Failure to do so can lead to an increased risk
of a type I error (finding a statistically significant treat-
ment effect when no such effect exists) [1-7].

The most common methods of adjusting for clustering
in the analysis of CRTs are: (1) a cluster-level analysis, in
which a summary measure of the outcome is obtained
for each cluster, and these summary measures are ana-
lysed using a linear regression model [1-3], (2) a mixed-
effects model, in which individual patients are analysed
using a regression model which includes a random-
effect for cluster [1-3, 8], and (3) generalised estimating
equations (GEEs), in which individual patients are ana-
lysed using a regression model which allows for correl-
ation between patients in the same cluster [1-3, 9]. The
cluster-level analysis approach can control the type I
error rate even with a small number of clusters; however,
it can lead to reduced power compared to mixed-effects
models or GEEs; as such, these latter approaches are
much more commonly used in practice [10].

However, both mixed-effects models and GEEs are
based on asymptotic theory and, therefore, assume that
there is a large number of clusters. When these methods
are used without a large number of clusters they can
lead to an increased type I error rate [1-3, 11-20]. For
example, one simulation study examining the use of
GEEs in CRTs with a small number of clusters found
that the type I error rate was over 40 % with only four
clusters, and even when the number of clusters was in-
creased to 40, the type I error rate was still too high at
7 % [12]. It is difficult to know exactly how many clus-
ters are required to implement these methods safely, as
this can be influenced by factors such as the intraclass
correlation coefficient, the outcome type, or variation in
size between clusters. However, for CRTs, most sources
recommend that at minimum 30-40 clusters are re-
quired for mixed-effects models and 40-50 clusters are
required for GEEs [1, 2, 12, 19].

This requirement is problematic for CRTs, as most
have fewer than 40 clusters [21-23]. Therefore, standard
implementations of GEEs or mixed-effects models in
these scenarios may lead to an increased type I error
rate. However, a number of small-sample corrections
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have been proposed for these analytical methods to im-
prove their performance with a small or medium number
of clusters [11, 13-18, 20]. These small-sample correc-
tions usually work by either increasing the estimated
standard error of the treatment effect, or by changing the
degrees-of-freedom used to calculate confidence intervals
or P values for the treatment effect. They do not typically
affect the estimated treatment effect directly (that is, the
same treatment effect is estimated with or without the use
of these small-sample corrections).

A number of these small-sample corrections have been
evaluated in the context of CRTs [13, 16, 17]. Simulation
studies have found that these corrections can improve
the type I error rate, although not all corrections work
well across all scenarios, and so the best correction to
use may depend on the specific scenario. Furthermore,
there has thus far been little evaluation with a very small
number of clusters (e.g. fewer than 10), and there is little
consensus on which methods work best in these scenar-
ios. Although further research is required to determine
the optimal methods of correction in various scenarios,
it is clear that using a small-sample correction with a
small number of clusters is an improvement upon stand-
ard, uncorrected methods [11, 13-20].

However, despite the benefits of these small-sample
corrections, it is unclear whether those conducting CRTs
with a small number of clusters routinely use analysis
techniques which adequately account for the small num-
ber of clusters. A previous review of articles published
between 1998 and 2002 in two specific journals found
that many trials were not analysed using appropriate
methods [10]. A more recent review of CRTs using GEEs
found that only one out of 28 trials used a small-sample
correction [12]. However, there is little current informa-
tion available on the use of small-sample corrections for
mixed-effects models, or what overall percentage of
CRTs are using adequate analysis methods with a small
number of clusters. The aims of this study were, there-
fore, to (1) conduct a simulation study to assess the ben-
efits of using a small-sample correction in a CRT with a
small number of clusters, (2) reanalyse a published CRT
with only six clusters to compare the effects of small-
sample corrections in practice, and (3) to conduct a
review of published CRTs to estimate how many were at
risk of an increased type I error rate due to an inappro-
priate method of analysis.

Methods

Simulation study

We conducted a simulation study to assess the benefits
of using small-sample corrections in CRTs with a small
number of clusters. The simulations were based on a
two-arm, parallel group CRT with a continuous outcome
and an equal number of patients in each cluster. We
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considered both small and large cluster sizes, where the
small cluster size was based on a family (n =5 per cluster)
and the large cluster size was based on a hospital (z = 100
per cluster). For the small cluster size we used an intra-
class correlation coefficient (ICC) of 0.15, and for the large
cluster size we used an ICC of 0.01.

We generated continuous outcomes for each participant
within a dataset using the formula:

Yz’jl =7 + &iji,

where Yj; is the outcome from the " (=1,..,m) patient
in cluster j (j = L...,k) in arm i (i = 1,2), y;; is the cluster-
specific random effect for cluster j in arm i, and g is
the individual residual error. y; and g; were generated
independently from the normal distributions N(0, p) and
N(0, 1-p), respectively. It follows that Yj; . N(0, 1), with
an ICC of p. Clusters were randomly divided into two
equal-sized groups, one assigned to the intervention and
the other to the control. This data generation method
implies a treatment effect of 0 (i.e. that the treatment is
not effective). We generated 50,000 datasets for each
simulation scenario.

We evaluated two methods of analysis that were in-
appropriate with a small number of clusters, and three
methods of analysis that were appropriate. Inappropriate
methods of analysis were those that performed the ana-
lysis at the individual level without an appropriate small-
sample correction. This included a mixed-effects linear
regression model with no correction, and GEEs with no
correction. Appropriate methods of analysis were those
performed at the cluster level, and those performed at
the individual level using an appropriate small-sample
correction. This included a cluster-level analysis (with
cluster-level summaries being based upon the mean
outcome across all patients in a cluster), a mixed-
effects linear regression model using a Satterthwaite
degree-of-freedom correction, and GEEs using the small-
sample correction proposed by Fay and Graubard [11].

For each scenario (5 patients per cluster and ICC =
0.15; 100 patients per cluster and ICC 0.01), we varied
the number of clusters from 6, 10, 20, 30, 40, 50, 60, 70,
80, 90, and 100. We estimated the type I error rate for
each setting by calculating the proportion of datasets
with a statistically significant treatment effect at the 5 %
level. Simulations were performed using R software ver-
sion 3.2.0.

Reanalysis of TRIGGER

We reanalysed data from the Trial in Gastrointestinal
Transfusion (TRIGGER) [24—-26] to assess the impact of
an inappropriate method of analysis in practice. TRIG-
GER was a feasibility CRT that compared a liberal red
blood cell transfusion strategy with a restrictive strategy
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for patients with acute upper gastrointestinal bleeding.
TRIGGER recruited 936 patients from six clusters, with
three clusters in each treatment group [25].

One of the main feasibility outcomes in TRIGGER was
the number of red blood cell units transfused. We reana-
lysed the data using appropriate and inappropriate
methods of analysis, and compared the results. Inappro-
priate methods of analysis were those that did not adjust
for clustering, or performed the analysis at the individual
level without an appropriate small-sample correction.
The methods tested were a linear regression model that
did not account for clustering, a mixed-effects linear re-
gression model without a degree-of-freedom correction,
and a linear regression model using GEEs that did not
include a small-sample correction.

Appropriate methods of analysis were those performed
at the cluster level, and those performed at the individual
level using an appropriate small-sample correction. The
methods tested were a mixed-effects linear regression
model using a Satterthwaite degree-of-freedom correction,
GEEs using a small-sample correction [11], and a cluster-
level summary method of analysis. The cluster-level sum-
mary technique was originally used in TRIGGER. For this
approach, the mean number of units of blood transfused
in each cluster was calculated and included as an outcome
in a linear regression model [26].

We included clusters in the model as a random inter-
cept for mixed-effects models. We specified an exchange-
able correlation structure within clusters for GEEs.

Review of published CRTs

This review used a set of CRTs previously identified
using a published electronic search strategy [27]. CRTs
were eligible for inclusion if they were published in
English in 2011. They were excluded if they were
quasi-experimental; were pilot, feasibility, or prelimin-
ary studies; did not collect any data at the individual
level; only assessed cost-effectiveness; or were not the
primary report of the trial findings. Trials were identified
from PubMed using a pre-specified search strategy [27].
We randomly selected 100 of the 132 eligible trials for in-
clusion in this current review using randomly generated
numbers in the statistical software package Stata.

Data were extracted independently by pairs of re-
viewers. Any disagreements were resolved by a commit-
tee of three members through majority consensus (BK,
GE and CL). We extracted data related to the analysis of
the primary outcome, including the number of clusters
and participants included in the analysis, whether the
clusters were accounted for in the analysis, and which
method of analysis was used. We used the following
strategy to identify the primary outcome: (1) if only one
outcome was listed as being primary, we used this, (2) if
either no outcomes or multiple outcomes were listed as
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being primary, we used the outcome that the sample size
calculation was based on, and (3) if no sample size cal-
culation was performed, we used the first outcome listed
in the results section of the abstract.

We classified trials as at risk of an increased type I error
rate if they used an ‘inappropriate’ method of analysis that
did not control the error rate, or not being at risk if they
used an ‘appropriate’ method of analysis that did control
the error rate. Trials were classified as using an inappropri-
ate method of analysis if the authors did not report adjust-
ing for clustering in the analysis, or if they performed the
analysis at the individual level (i.e. based on individual pa-
tient data) without reporting the use of an appropriate
small-sample correction when there were fewer than 40
clusters. Small-sample corrections included any degree-of-
freedom correction for mixed-effects models (such as
Kenward-Roger or Satterthwaite) [15, 16] and any small-
sample correction for GEEs [11, 14, 17, 18, 20].
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Trials were classified as using an appropriate method
of analysis if the authors performed the analysis at the
cluster level (i.e. where patient data were aggregated at
the level of the cluster), if they used an appropriate
small-sample correction when performing the analysis at
the individual level with fewer than 40 clusters, or if they
performed the analysis at the individual level with 40 or
more clusters.

We chose 40 clusters as the cut-off for a sufficient
number of clusters to conduct an analysis at the individual
level without using an appropriate correction as this is the
number commonly recommended [1, 2, 10, 12, 19].

Results

Simulation study

Results are shown in Fig. 1. Using a mixed-effects model
or GEEs without a small-sample correction led to in-
flated type I error rates when the number of clusters was
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small. With six clusters, mixed-effects models led to type
I error rates of 8.4 % and 8.6 % for small and large clus-
ter sizes, respectively, and GEEs led to an error rate of
18.5 % for both small and large clusters. Even with as
many as 70 clusters, the type I error rates were still
slightly too high; mixed-effects models led to error rates
of 5.6 % and 5.5 % for small and large clusters, respect-
ively, and GEEs led to error rates of 6.0 % and 5.8 %.

Conversely, using a cluster-level analysis, or a mixed-
effects model or GEEs with a small-sample correction
provided correct type I error rates across all scenarios,
even with as few as six clusters (the type I error rate was
below 5.2 % for all analyses across all simulation
scenarios).

Reanalysis of TRIGGER

The results of the reanalysis of TRIGGER are shown in
Table 1. The estimated ICC was 0.01. All of the tested
methods of analysis gave the same treatment effect. On
average, 0.7 fewer red blood cell units were transfused in
the restrictive group than in the liberal group.

However, the results based on an inappropriate
method of analysis (either ignoring clustering or per-
forming an individual-level analysis without a small-
sample correction) led to substantially smaller P values
and narrower confidence intervals (ClIs) than the results
based on an appropriate method of analysis (performing
a cluster-level analysis or using a small-sample cor-
rection in an individual-level analysis). The P values
from the three inappropriate methods of analysis were
all 0.01 or less. In contrast, the P values from the
three appropriate methods of analysis were between
0.04 and 0.15.

Similarly, the 95 % ClIs for the inappropriate tech-
niques were all consistent with at least a small benefit
for the restrictive group, as the upper bounds of the
95 % Cls across the three methods ranged between -0.4
and -0.2. In comparison, the upper bounds of the 95 %
ClIs from the three appropriate techniques were all con-
sistent with little to no benefit, ranging from 0.0 to 0.4.
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Using an inappropriate method of analysis in this trial
with a small number of clusters thus overstated the evi-
dence. Strong evidence of a reduction in the number of
red blood cell units transfused in the restrictive arm was
found, when in reality there was only borderline evi-
dence of an effect.

Review of published CRTs

Trial characteristics are shown in Table 2. The median
number of clusters was 25 (IQR 15 to 44), 37 % of the
trials had fewer than 20 clusters, and 69 % had fewer
than 40 clusters. The primary outcome measure for most
of the trials was either binary (53 %) or continuous (40 %).

Methods of adjusting for clustering

The majority of the trials (86 %) accounted for clustering
in the analysis, 10 % did not adjust for clustering, and 4 %
did not report sufficient information to judge whether the
analysis accounted for clustering or not (Table 2). Of the
trials that did adjust for clustering, most (1 =77/86, 90 %)
performed an individual-level analysis (Table 3) using ei-
ther mixed-effects models (n = 46/77, 60 %) or GEEs (1 =
21/77, 27 %). None of the trials that used mixed-effects
models or GEEs reported using a small-sample correction.
The number of clusters in the trial did not appear to influ-
ence the choice of analysis method.

Risk of inflated type | error rate

One trial did not report the number of clusters involved,
so was excluded from the analysis. Table 4 shows that
65 % of the CRTs (1 = 64/99) were at risk of an inflated
type I error rate. These trials either used an individual-
level analysis without reporting an appropriate correc-
tion despite having fewer than 40 clusters (50/64 cases,
78 %) or did not report using an analysis method which
accounted for clustering (14/64 cases, 22 %). The
remaining 35 trials were not classified as being at risk of
an increased type I error rate because they used a
cluster-level analysis (8/35 cases, 23 %) or because they
used an individual-level analysis with 40 or more clus-
ters (27/35 cases, 77 %).

Table 1 Reanalysis of the number of units of red blood transfused in the Trial in Gastrointestinal Transfusion (TRIGGER) trial

Analysis method Is the analysis method appropriate for use with a small Difference in means® (95 % Cl) P value
or medium number of clusters?
Unadjusted for clustering No -0.7 (-1.1 to —04) <0.001
GEE (no correction) No -0.7 (<12 t0 =0.2) 0.01
Mixed-effects model (no correction) No -0.7 (<12 to -0.2) 0.01
GEE (with correction) Yes —0.7 (1.8 10 04) 0.15
Mixed-effects model (with correction) Yes -0.7 (<14 to0 0.0) 0.04
Cluster-level analysis Yes -0.7 (=16 to 0.3) 0.12

*The difference in means is presented as the restrictive transfusion policy minus the liberal transfusion policy

Cl confidence interval, GEE generalised estimating equation
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Table 2 Characteristics of the included trials

Trials (n=100)

Number of clusters® — median (IQR) 25 (15 to 44)

Number of clusters® — number (%)

4-9 14.(14)
10-19 23 (23)
20-29 18 (18)
30-39 13 (13)
40-49 11011)
50-79 7(7)
80-99 4(4)
100 or more 9 (9)
Patients per cluster® — median (IQR) 31 (14 to 94)
Primary outcome — number (%)
Continuous 40 (40)
Binary 53 (53)
Count 7 (7)
Accounted for clustering in analysis — number (%)
Yes 86 (86)
No 10 (10)
Unclear 44

Includes data from 99 trial reports, as one trial report did not state the
number of clusters involved
IQR interquartile range
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Discussion

CRTs are commonly used in health care research and
often include a small or medium number of clusters.
This can make analysis of such trials challenging, as
common methods of analysis such as mixed-effects
models or GEEs can lead to inflated type I error rates in
these situations. In our simulation study, we found that
these methods, when used without an appropriate small-
sample correction, led to inflated type I error rates, even
for as many as 70 clusters. Conversely, using a cluster-
level analysis, or a mixed-effects model or GEE with a
small-sample correction led to valid type I error rates
across all scenarios.

Our reanalysis of the TRIGGER trial found that the
choice of analysis method had a large impact on conclu-
sions about treatment efficacy. Mixed-effects models and
GEEs without a correction led to very narrow confidence
intervals and small P values, which overstated the
strength of the evidence, indicating strong evidence of a
treatment effect. Conversely, a cluster-level analysis, or a
mixed-effects model or GEE with a small-sample correc-
tion led to much wider confidence intervals and larger P
values, which more appropriately reflected the uncer-
tainty around the size of the treatment effect estimate.

In our review of published CRTs, we found that most
had fewer than 40 clusters (69 %). However, very few of
these trials reported using an appropriate method of
analysis. Overall, 65 % of the CRTs studied may have
been at risk of an increased type I error rate. We note

Table 3 Number (%) of trials using different methods of analysis to account for clustering

All trials Trials with <40 clusters® Trials with 40+ clusters®
(n=86) (n=56) (n=29)
Cluster-level or individual-level analysis (if adjusted for clusters)
Cluster-level 8 (9) 6 (11) 2(7)
Individual-level 77 (90) 50 (89) 26 (90)
Unclear 1(1) 0 (0) 103
Analysis type if at individual level
Mixed-effects model 46/77 (60) 31/50 (62) 15/26 (58)
GEE 21/77 (27) 14/50 (28) 6/26 (23)
Other 2/77 (3) 2/50 (4) 0/26 (0)
Unclear 8/77 (10) 3/50 (6) 5/26 (19)
Used a degree-of-freedom correction for mixed-effects model
Yes 0/46 (0) 0/31 (0) 0/15 (0)
No 0746 (0) 0/31 (0) 0/15 (0)
Unclear 46/46 (100) 31/31 (100) 15/15 (100)
Used a small-sample correction for GEEs — number (%)
Yes 0/21 (0) 0/14 (0) 0/6 (0)
No 0721 (0) 0/14 (0) 0/6 (0)
Unclear 21/21 (100) 14/14 (100) 6/6 (100)

?One trial was excluded as the number of clusters was not reported
GEE generalised estimating equation
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Table 4 Number (%) of trials at risk of an inflated type | error rate
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Trials (n =997

Assuming a minimum of 40 clusters is required for individual-level analysis with no correction (primary analysis)

At risk of an inflated type | error rate — number (%)
Yes
No
Reason for being at risk — number (%)
Did not report adjustment for clustering in analysis
Individual-level analysis on <40 clusters without correction
Reason for not being at risk — number (%)
Cluster-level analysis

Individual-level analysis with a large number of clusters (40+)

64 (65)
35 (35)

14/64 (22)
50/64 (78)

8/35 (23)
27/35 (77)

?One trial was excluded as the number of clusters was not reported

that the justification of 40 clusters being sufficient to use
individual-level analyses without correction is more of
an approximate guideline or rule-of-thumb rather than
an absolute, and in some situations more clusters may
be required; this is likely to depend on the specific trial
characteristics (e.g. outcome type, ICC, variation in clus-
ter size, etc.). In our simulation study we found that type
I error rates were slightly inflated for as many as 70 or
so clusters, indicating that perhaps small-sample correc-
tions should be used for trials with even more than 40
clusters.

Our study had several limitations. In our simulation
study, we considered only a small number of scenarios,
and assessed only a small number of small-sample cor-
rections. Therefore, on the basis of this study, we can
recommend that trialists should adopt a small-sample
correction when they have a small or medium number
of clusters. However, we have not determined which
methods of correction are the best for any particular
situation. Other studies have explored a wider range of
corrections, and should be used as the basis for choosing
which specific correction to use [13, 16, 17]. However,
we note that this area of research is ongoing, and in
some cases the best correction to use may be unknown.

Secondly, although it is clear that using a small-sample
correction performs better than not using a correction,
there has been relatively little research into these correc-
tions with a very small number of clusters (e.g. fewer
than 10). There may, therefore, be some scenarios with a
very small number of clusters in which small-sample
corrections are not adequate to control the type I error
rate. Including only a very small number of clusters also
has other implications for the studys validity [28].
Therefore, enrolling a larger number of clusters is pref-
erable when feasible.

There were also some limitations to our review. It is
possible that some investigators may actually have used
a small-sample correction but did not report it, which

would have affected our estimate of the proportion of
trials using an inappropriate analysis method. This high-
lights the importance of clear reporting [29]. To allow
readers to appropriately judge the validity of trial results,
it is important for investigators to clearly state the
method of analysis, including details on whether or not
a small-sample correction was used. Secondly, we
reviewed articles published in 2011; it is possible that
small-sample corrections may have become more com-
mon since then.

Conclusion

Small-sample corrections for mixed-effects models and
GEEs are beneficial for CRTs; however, they are not
often used in practice. Investigators should routinely use
a small-sample correction when using mixed-effects
models or GEEs with small or medium numbers of clus-
ters, and should more clearly report whether or not
these methods were used.
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