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Abstract

Background: Missing outcomes can seriously impair the ability to make correct inferences from randomized
controlled trials (RCTs). Complete case (CC) analysis is commonly used, but it reduces sample size and is perceived
to lead to reduced statistical efficiency of estimates while increasing the potential for bias. As multiple imputation
(MI) methods preserve sample size, they are generally viewed as the preferred analytical approach.
We examined this assumption, comparing the performance of CC and MI methods to determine risk difference (RD)
estimates in the presence of missing binary outcomes. We conducted simulation studies of 5000 simulated data
sets with 50 imputations of RCTs with one primary follow-up endpoint at different underlying levels of RD (3–25 %)
and missing outcomes (5–30 %).

Results: For missing at random (MAR) or missing completely at random (MCAR) outcomes, CC method estimates
generally remained unbiased and achieved precision similar to or better than MI methods, and high statistical
coverage. Missing not at random (MNAR) scenarios yielded invalid inferences with both methods. Effect size
estimate bias was reduced in MI methods by always including group membership even if this was unrelated to
missingness. Surprisingly, under MAR and MCAR conditions in the assessed scenarios, MI offered no statistical
advantage over CC methods.

Conclusion: While MI must inherently accompany CC methods for intention-to-treat analyses, these findings
endorse CC methods for per protocol risk difference analyses in these conditions. These findings provide an
argument for the use of the CC approach to always complement MI analyses, with the usual caveat that the validity
of the mechanism for missingness be thoroughly discussed. More importantly, researchers should strive to collect
as much data as possible.
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Background
The randomized controlled trial (RCT) is considered the
gold standard study design for evaluating the efficacy of
a treatment or intervention in clinical and epidemio-
logical research [1]. A well-designed and conducted
RCT provides an efficient and unbiased estimate of ef-
fect size when all observations required by the study
protocol have been obtained [1, 2], but difficulties can
arise if some observations are missing. Missing outcome
observations can create a specific and often considerable
challenge for the statistical analysis. Incorrectly handled,
they can result in biased and inefficient estimates of ef-
fect size, threatening the intrinsic strength of the RCT
design and compromising the ability to draw valid infer-
ences from the study findings [3].
Missing observations are least likely to occur at the

baseline assessment, as many of the observations col-
lected at this time are required not merely to provide a
reference against which to measure efficacy but also to
ensure that recruited participants meet the RCT inclu-
sion/exclusion criteria. Missing observations tend to
occur more frequently at follow-up assessments, when it
is not uncommon for the primary outcome measure to
be missing for some participants [4]. A considerable
number of statistical methods have been, and continue
to be, proposed for handling missing observations, but
as yet universally accepted robust methods for handling
missing data in RCTs do not exist [5].
Widely used analysis strategies include methods based

on multiple imputation (MI), inverse probability weight-
ing (IPW), doubly robust inverse probability weighting
(DR-IPW) and maximum likelihood estimation (MLE).
Despite the considerable body of literature on such
methods, many researchers continue to use the simplest
and most expedient approach of simply excluding from
the statistical analyses all participants for whom the out-
come measure is missing. This analytical method, com-
monly referred to as complete case (CC) analysis, is the
default approach in many statistical packages [2, 6, 7].
There is, however, well-documented evidence that a CC
analysis may yield biased and inefficient estimates of ef-
fect size, especially when the missing data levels are
high, irrespective of the type and/or pattern of missing-
ness [2, 8, 9].
The exact impact of a CC analysis on effect size esti-

mates in different situations is poorly understood and
has not been explored in detail [10]. This is a key gap in
our knowledge. The choice of the most appropriate ana-
lytical method for handling missing outcome data in any
RCT is ideally informed by the mathematical properties
of the different analysis methods available, the missing
observation pattern present and an understanding of the
mechanism(s) that led to the missing observations [11].
Furthermore, it cannot be assumed that increased

methodological complexity leads to less bias; there are
known situations in which MI methods produce identi-
cal bias levels to those of a CC analysis [7, 12].
Many RCTs use a binary outcome measure (survived/

died, outcome absent/present, treatment failure/success),
in which case effect size is estimated using an odds ratio
(OR), risk ratio (RR) or risk difference (RD) [13]. The RD
is becoming increasingly popular due to its ease of inter-
pretation. Several simulation studies have compared
methods for handling missing binary outcome observa-
tions when effect size is estimated using an OR [2, 12, 14],
but we are not aware of any publications on how missing
observation methods perform when effect size is esti-
mated using an RD. As OR and RD modelling use differ-
ent mathematical algorithms, the results from an OR
model cannot necessarily be extrapolated to an RD model.
In this paper, we use simulation methods to compare

the performance of CC and MI to estimate effect size
using the RD in RCTs with missing binary outcome ob-
servations and explore which method is preferable for
various missing observation patterns and effect size
levels.

Methods
Simulated data sets were generated to compare the im-
pact of CC and MI analytical approaches on effect size
estimation in a two-group RCT with a binary outcome
measure when some outcome observations are miss-
ing, across a range of effect sizes and missing out-
come levels as detailed below. The parameters used
in each simulated data set were based on the results
of a malaria efficacy RCT conducted in Malawi be-
tween 2003 and 2006 [15].
For each effect size and missing outcome level com-

bination examined, 5000 data sets were simulated. To
reflect the parent malaria RCT, the sample size for each
data set was 200 participants, with 100 subjects random-
ized to the intervention and the control groups respect-
ively. The binary outcome was generated using a logit
model to achieve a range of effect sizes (treatment group
differences); a random process was then used to delete a
prespecified proportion of outcomes.
For each participant in both treatment groups, base-

line values were generated to represent their age, weight
(wt), hemoglobin (hb) level and malaria parasitaemia
count (para) using a multivariate normal distribution.
Haemoglobin level was generated untransformed, but as
body weight, age and parasitaemia counts had skewed
distributions in the parent RCT, these variables were
generated using a logarithmic scale, with their parameter
values (means, variances and covariance) estimated from
the log-transformed variable values in the parent RCT
[16]. These variables are generally expected to be related
to the outcome (adequate clinical and parasitological
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response). The matrices of parameters used to simulate
the baseline covariate observations were:

X ¼
loge Ageð Þ
hb
log Weightð Þ
log Parasitaemiað Þ

2
664

3
775;

μ¼
3:15
9:32
2:40
10:70

0
BB@

1
CCA σ ¼

0:42
1:66
0:18
1:50

0
BB@

1
CCA and ρ ¼

1:00 0:09 0:16 0:02
0:09 1:00 0:40 0:20
0:16 0:40 1:00 0:05
0:02 0:20 0:05 1:00

0
BB@

1
CCA

where:
X is a vector of the four covariates log(age), haemoglo-

bin (hb), log(body weight) and log(parasitaemia);
μ and σ are vectors of the mean and standard devi-

ation values respectively for each of log(age), haemoglo-
bin, log(body weight) and log(parasitaemia);
ρ is a matrix of the correlations between each pair

combination of the baseline covariates.
To maintain the skewness of these covariates found in

the parent RCT, the lognormal generated variables were
transformed (exponentiated) back into their original
form prior to analysis. The model estimated the (binary)
outcome as a function of treatment group, age and
haemoglobin.
The binary outcome was then simulated for each of

the two groups to achieve the desired efficacy (treatment
success) rates using a Bernoulli (πi) distribution, where
πi is the mean proportion of subjects with treatment
success (efficacy) in group i, for i = A, B. This resulted in
simulated binary outcome data with πi success rate (effi-
cacy) in group i.
The efficacies of treatments A and B respectively were

generated using Bernoulli distributions as follows (Y = 1
denotes treatment success and T = treatment):

for response rates of 85 % in treatment A versus 60 %
in treatment B

Y ¼ Bernoulli Pr Y ¼ 1 jT ¼ Að Þ ¼ 0:85½ �
¼ Bernoulli Pr Y ¼ 1 jT ¼ Bð Þ ¼ 0:60½ �

for response rates of 98 % in treatment A versus 95 %
in treatment B

Y ¼ Bernoulli Pr Y ¼ 1 jT ¼ Að Þ ¼ 0:98½ �
¼ Bernoulli Pr Y ¼ 1jT ¼ Bð Þ ¼ 0:95½ �

Four different imputation models were considered:

model 1: log(weight), haemoglobin, log(age) and
log(parasitaemia) were used to simulate the missing
outcome observations.
model 2: log(weight) was excluded leaving just
haemoglobin, log(age) and log(parasitaemia).
model 3: group membership was added to the
covariates used in model 2.

model 4: all of log(age), haemoglobin, log(age),
log(parasitaemia) and group membership were used.

Imputations were conducted using the chained equa-
tions procedure [17]. Both 10 and 50 imputations were
used in each multiple imputation procedure to provide
information on the potential impact of increasing imput-
ation rate.
All simulations and statistical summaries were per-

formed using the Stata for windows software (version
SE/11; StataCorp, College Station, TX, USA).

Choice of effect size settings
Two different effect size settings were simulated.

1. 85 % for the treatment of interest (group A) and 60
% for the control treatment (group B).
This scenario is not as unrealistic as it might appear.
Relatively large effect sizes of this or a greater
magnitude are not uncommon in malaria RCTs (see
e.g. Bell et al. (2008) [15]). Furthermore, resistance is
often underestimated when designing such trials, so
sample size calculations are based on smaller
differences than are actually observed. Consequently,
sample sizes can be over-estimated, producing statis-
tically significant findings even if the (binary) out-
come is missing for as much as 30 % of participants.
This setting was selected primarily, however, to
avoid the model convergence problems that can
occur when either group returns an effect rate close
to the boundary (either 0 % or 100 %).

2. 98 % for the treatment of interest (group A) and
95 % for the control treatment (group B).

For this second setting, both effect rates were deliber-
ately set close to the boundary value of 100 %, as this is
a common situation in malaria treatment trials compar-
ing highly efficacious artemisinin-based combination
therapies.

Choice of missing outcome settings
Consider an RCT with two treatment arms in which the
primary outcome Y is a binary variable measured once,
at the end of a fixed period of time of follow-up, for each
patient. Let X denote the complete (uni- or multi-
dimensional) covariate matrix, and let D be an indicator
variable such that D = 1 if Y is missing and D = 0 if Y is
observed.
Within this context, the following three missing data

mechanisms defined by Rubin [18] were considered.

Outcome missing at random (MAR)
An outcome observation was defined as MAR if the
probability (Pr) of it being missing was dependent on
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the observed covariates X but independent of the spe-
cific value that theoretically should have been observed
for that missing observation [18]. This is expressed
mathematically as follows:

Pr D ¼ 1 jY; Xð Þ ¼ Pr D ¼ 1 jXð Þ

Outcome missing completely at random (MCAR)
An outcome observation was defined as MCAR if the
probability of it being missing was independent of both
the observed covariates X and the specific value that
theoretically should have been observed for that missing
observation [18]. This is expressed mathematically as
follows:

Pr D ¼ 1 jY; Xð Þ ¼ Pr D ¼ 1ð Þ

Outcome missing not at random (MNAR)
An outcome observation was defined as MNAR if the
probability of it being missing was dependent on the ob-
served covariates X, the observed outcome values and
the unobserved outcome values [18]. This is expressed
mathematically as follows:

Pr D ¼ 1 jY; Xð Þ ¼ Pr D ¼ 1 jYobs; Ymis; X
� �

where Yobs and Ymis are the observed and missing out-
come values respectively.

Method used to simulate MAR, MCAR and MNAR
scenarios
Three missing level settings were considered for each
scenario: 5 %, 15 % and 30 %.
To generate binary outcome data that were MCAR, a

random number with a uniform [0,1] distribution was
generated for each participant in the simulated data set.
The p % of participants with the smallest random num-
bers were then coded as having their outcome observa-
tion missing, p taking the values 5 %, 15 % or 30 % as
appropriate.
The following logistic regression models were used to

generate missing outcomes with MAR levels of 5 %,
15 % and 30 % respectively and which were dependent on
group and weight:

logit πð Þ ¼ 0:872 � treatmentð Þ þ 0:099 � weightð Þ−4:666
logit πð Þ ¼ 0:299 � treatmentð Þ þ 0:043 � weightð Þ−2:409
logit πð Þ ¼ 0:148 � treatmentð Þ þ 0:022 � weightð Þ–1:18

where π is the probability of an outcome being missing.
The models used to generate missing outcomes with

MNAR levels of 5 %, 15 % and 30 % respectively were:

logit πð Þ ¼ 2:99 � outcome; logit πð Þ
¼ 1:89 � outcome; logit πð Þ ¼ 1:20 � outcome

The MAR and MNAR missing outcome indicators
were thus generated with distributions:

Bernoulli 1= 1þ exp1ð Þ½ � forMAR
Bernoulli 1= 1þ exp − b3 � outcomeð Þf gð Þ½ � forMNAR

where b1, b2 and b3 are (regression) coefficients outlined
in the missing outcome data logit models above and π is
the probability of an outcome being missing.
For MNAR, the models resulted in participants with a

successful (positive) outcome being more likely to have
their outcome missing, creating a greater proportion of
missing outcomes in the high efficacy group than in the
group with low efficacy, in turn resulting in differential
proportions of missing outcomes between the two study
groups. This is realistic in the context of malaria trials,
as successfully treated participants may have less incen-
tive to return for their final assessment, particularly if
doing so would be costly or time-consuming.
To minimize the problems of model non-convergence

when generated effect sizes are close to the boundary,
Cheung’s modified least squares method [19] was used
to estimate risk differences (RDs). This method, which
uses ordinary least squares (OLS) estimation together
with Huber-White (H-W) robust standard errors, is suit-
able if interest is confined to the estimation of RDs but
is not suitable theoretically if there is interest in predict-
ing probabilities for individual patients, as estimated
values can fall outside the probability range 0 to 1.

Data model and model assessment criteria
The outcome of interest was modelled as a function of
age, hb and group using the following logistic regression
model:

logit P Y ¼ 1jT ¼ t; hb; ageð Þ½ �
¼ b0 þ b1 � Tþ b2 � hbþ b3 � age;

where:
t = A or B;
b0, b1, b2, b3 are estimates of intercept, treatment ef-

fect, hb effect and age effect respectively.
Data model specification was identical for all scenar-

ios; only the methods of handling cases that had missing
outcomes were varied. For complete case analysis, all
cases with missing outcomes were excluded from the
statistical analyses.
The performance of the data models from the different

approaches of missing data at each level of missing data
were compared against three criteria: bias, statistical
coverage and root-mean-squared error (RMSE).
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Results
Consistent with the findings of Schafer and Rubin
[20, 21], the results obtained using 10 and 50 imputa-
tions were virtually identical, so only the results using
50 imputations are presented.

Missing outcome observations MAR, MCAR and MNAR: 60 %
versus 85 % efficacy
When the missing outcome setting was MAR, effect size
estimates became increasingly inefficient as the propor-
tion of missing outcome observations increased. The
RMSE values observed indicated that inefficiency levels
were identical for both CC and MI methods. See Fig. 1.
Using CC methods, effect size estimates were un-

biased for all assessed missing value levels. Using MI
methods, when group membership was included in
the imputation model, only a small degree of bias
was observed in the effect size estimates. When group
membership was excluded from the model, however,
estimates were consistently negatively biased (i.e.
effect size was consistently under-estimated), and the
degree of bias increased as the proportion of missing
outcome values increased.
Coverage was generally high for all models when

missing value levels were small or moderate, but when
the proportion of missing outcomes was extended to 30
%, coverage for the mis-specified MI models fell to
around 88 % (detailed in Appendices 1, 2 and 3). In this

context, imputation models not containing both of
the variables weight and group membership were
technically mis-specified, as it was these two vari-
ables that determined missingness. MI models con-
taining both weight and group performed well for all
missing outcome configurations, providing estimates
that were only fractionally biased with good coverage
of around 95 %, as did MI models that included
group but excluded weight. MI models that included
weight but excluded group, however, performed as
badly as those MI models that included neither
weight nor group.
With MCAR, the pattern of results was very similar to

that for MAR. Coverage was generally high, remaining
close to 95 % for all models at all missing value levels,
except when the proportion of missing outcomes
reached 30 %. At this point, as for MAR, coverage fell to
around 88 % for mis-specified MI models, and increased
levels of (negative) bias were observed.
Under the MNAR condition, RD estimates contained

some degree of (usually but not exclusively positive) bias
with both CC and MI methods, the degree of bias rising
as the proportion of missing outcome observations in-
creased. Coverage levels tended to be good, but with
some deterioration at high missingness levels.
Detailed results for this scenario are provided in

Appendices 1, 2 and 3 for MAR, MCAR and MNAR
respectively.

Fig. 1 Estimated efficacy risk differences (60 % versus 85 %) MAR, MCAR, MNAR
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Missing outcome observations MAR, MCAR and MNAR: 95 %
versus 98 % efficacy
See Fig. 2. When both efficacy levels were close to the 100
% boundary, coverage was poorest when there was no
missing data (0.939 compared to the set nominal level of
0.950). All complete case (CC) analyses converged
(Appendix 4, 5 and 6), but a small proportion of imputed
analyses failed to converge or produce output in Stata.
Non-convergence occurred more frequently with increas-
ing proportions of missing outcome values (Appendix 4).
With these efficacy levels, all CC analyses converged

while a small number of MI analyses failed to converge for
all three missing data mechanisms (MAR, MCAR and
MNAR). Non-convergence in MI analyses occurred more
frequently with increasing proportions of missing outcome
values. As the proportion of missing data increased, the
standard errors of the effect size estimates increased and
the efficiency of all analyses decreased in both CC and MI
analyses, though this was less marked with the CC analyses.
The estimates of effect size were unbiased for all miss-

ing value levels using CC methods, and only small levels
of bias were detected for those imputation models that
included group membership for both MAR and MCAR
missing data scenarios. For the MAR and MCAR miss-
ing data mechanisms, the bias in the effect size estimates

was markedly greater using imputation models that did
not incorporate group membership.
In the MNAR missing data mechanisms, for the 5 %

missing level, all the models were generally unbiased with
generally good coverage of around 95 %, but as missing
levels increased, all models led to invalid inference of
treatment effect. The level of bias increased with increas-
ing missing levels for the CC models and the MI models,
even for those that included group membership. The mis-
specified models had unbiased estimates but provided in-
valid inference because the coverage was conservatively
too high (close to 100 %) instead of the nominal 95 %.
Detailed results for this scenario are provided in

Appendices 4, 5 and 6 for MAR, MCAR and MNAR
respectively.

Discussion
When binary outcome observations are missing that can
be assumed to be MAR or MCAR, CC analysis methods
were found to perform as well as, and often better than,
MI methods, consistently producing unbiased RD esti-
mates. This finding is consistent with those reported by
Groenwold [14], who examined missing binary outcomes
in an RCT setting using odds ratio as the effect size esti-
mate of interest. The efficient estimates obtained from

Fig. 2 Estimated efficacy risk differences (95 % versus 98 %) MAR, MCAR, MNAR
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CC compared to MI are a counter-intuitive and surpris-
ing finding.
The loss of statistical efficiency in CC analyses is at-

tributed directly to the reduction in the effective sample
size that occurs with this method, as has been reported
previously [8]. A surprising and unexpected finding,
however, was that the loss in efficiency using CC analysis
methods was consistently no worse than, and often bet-
ter than, that observed using MI methods. Theoretically,
MI methods are expected to yield unbiased standard er-
rors, because sample size is maintained and the uncer-
tainty in the imputed values is fully accounted for [8].
A plausible explanation for this unexpected efficiency

finding is that the MI procedures also increase the vari-
ability in the outcome values that inflates the standard
error of the effect size estimate. This increase in variability
is likely caused by the random component that is added to
missing outcome values during the imputation process.
No convergence problems were experienced using CC

analyses when missing binary outcomes could be as-
sumed to be MAR or MCAR, although some problems
were experienced when missingness was MNAR. In con-
trast, convergence problems occurred under both the
MAR and MCAR conditions when imputation models
were used, particularly when both efficacy rates were
close to the parameter boundaries. This was caused by
all imputed values being occasionally allocated to the
same outcome value across all imputations when efficacy
levels in both groups are close to the boundary, which
results in zero standard errors for the effect size esti-
mate, a phenomenon referred to as ’perfect prediction’
[17]. Perfect prediction can arise in any generalized lin-
ear model that has a categorical outcome [22]. The usual
reason for perfect prediction in an MI analysis is that all
imputed values take the same value for all participants
across the imputations, resulting in zero between-
imputation variance. In this situation the calculation of
degrees of freedom would involve division by zero,
which may result in non-convergence. White et al. have
suggested that perfect prediction problems can be a re-
sult of the flat likelihood [22].
This problem of perfect prediction can be drastically

reduced in Stata by using the command option ’aug-
ment’, which causes an augmented regression to be per-
formed [22].
Another striking finding under the MAR and MCAR

conditions was that the inclusion of treatment group
membership in the imputation process played a crucial
role in improving its performance. Excluding this vari-
able from the imputation process produced biased esti-
mates of the adjusted efficacy RD. If missingness is
related to some covariates, the absence of those covari-
ates in the imputation model appeared to have little im-
pact on bias levels for the effect size estimate, provided

group was included in the imputation calculations. Less
predictably, including treatment group membership
would also appear to be paramount over all other fac-
tors, even when this is not related to missingness.
Under the MNAR condition, when missingness is re-

lated to treatment group membership and outcome,
both CC and MI analyses produce biased estimates of ef-
fect size. Furthermore, the inclusion of group in a mul-
tiple imputation analysis will tend to lead to positive bias
away from the null hypothesis. Thus, MNAR binary out-
comes appear generally to over-estimate effect size, with
the possible exception of mis-specified MI models, a
counter-intuitive finding that requires further research.
The results from the two mis-specified imputation
models are presented in this paper to emphasize that,
when assuming MI, care must be taken when selecting
the imputation model, as using a poor imputation model
can bias the effect size estimates.
This study has demonstrated that in the presence of

missing binary outcome observations in an RCT with a
single follow-up endpoint of interest, CC and MI analysis
methods performed very similarly under the three miss-
ingness assumptions examined, except when an inappro-
priate imputation model was adopted, in which case the
MI RD estimates obtained were generally inferior to those
generated by a CC analysis. These findings indicate that
MI methods offered no advantages over the much easier
to apply CC method in the scenarios considered.
There are, however, other factors to be considered

when analysing the findings of an RCT. The intention-
to-treat principle (ITT) is now the standard procedure
for the primary evaluation of an RCT. Under this
principle, the use of MI methods may be preferable on
the grounds that they retain all patients in the statistical
evaluation, whereas the CC methods exclude all patients
for whom the outcome measure could not be recorded.
A reasonable compromise might be to perform an MI

analysis as the primary ITT analysis, following a rigorous
exploration of the likely underlying reasons for the miss-
ingness in the outcome measure. Inappropriate imput-
ation models can lead to RD estimates that are inferior to
those from a CC analysis, so a ’non-parsimonious’
approach to this MI analysis is essential (i.e. as many co-
variates as possible must be included in the imputation
process). In addition, group membership must be included
in the imputation model; otherwise, there is an increased
risk of bias, even when missingness is not in fact related
to group membership. A secondary CC analysis could
then be performed as part of the per protocol analyses.
MI methods have no place in a per protocol risk differ-

ence analysis. CC methods yield unbiased effect size esti-
mates and are less prone to the problem of perfect
prediction when effect sizes stray close to a boundary. MI
methods are more suitable when the missingness is MNAR
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and thus have an important role both in sensitivity analyses
and when the outcome of interest is collected at several
points during a study. Unfortunately, the importance of
sensitivity analyses is frequently under-valued [23].
From a reporting perspective, the general research

community is likely to be skeptical of a statistical evalu-
ation of an RCT that presents only a CC analysis in
which 15–30 % of outcome measures are missing. The
findings would most likely be perceived as potentially
biased even when the mechanism of missingness is
clearly MCAR, as in sample processing errors, a point
that has been highlighted in these simulations.
Of course, for an RCT with efficacy levels away from

the boundary, participants for whom the (binary) outcome
measure is missing contribute nothing more than a collec-
tion of baseline characteristics; imputing the missing out-
comes does not provide any empirical information about
the relation between the exposure and the outcome.
While these findings appear to strengthen the argument

in favour of CC analyses, as has been suggested by
Liublinska and Rubin [24], they do not prove that CC
methods are necessarily appropriate in all situations. This
paper considers just the case of an RCT with a single bin-
ary outcome measurement and RD estimation (a common
practical scenario in malaria studies of efficacy); in more
complex study designs (for example, longitudinal or clus-
ter randomized studies), and particularly when there are
missing observations across many variables, MI methods
remain superior to CC methodologies.

Conclusions
MI analyses must be the primary analyses for the
intention-to-treat analyses. These findings provide an ar-
gument for the use of the CC approach to always comple-
ment MI analyses, with the usual caveat that the validity
of the mechanism for missingness be thoroughly dis-
cussed. The study also endorses CC methods for per
protocol risk difference analyses under these conditions.
Pragmatically, while the evidence favours the adoption of
a CC analysis when (binary) outcome measures are miss-
ing, the reality is that the compromise approach suggested
above of a carefully considered primary MI analysis
followed by a secondary (essentially sensitivity) CC ana-
lysis may be most sensible in terms of getting the findings
of such a RCT accepted, even in those situations in which
the missing outcomes are ’clearly’ MCAR or MAR.
More importantly, researchers should strive to collect

as much data as possible.

Limitations
Different coefficients were used for the treatment group
and weight variables to generate different percentages of
missing data. Some confounding is thus possible

between the impact of including/not including both
group membership and weight in the MI analyses and
the effect of increasing the percentage of missing data. A
better approach might have been to fix the effects of
treatment group and weight on the missing outcome
and then only to allow β0 to vary to achieve different
percentages of missing data. This was an oversight at the
study design stage, and we are grateful to a reviewer for
pointing out this potential interpretation issue. In
addition, the effect size used for weight was small com-
pared to that used for treatment group; it is possible that
this may explain in part why including/excluding treat-
ment effect from the imputation had a considerably
greater impact than including/excluding weight.
We also acknowledge that the inflated RMSEs with MI

analyses may well be due to the discrepancy between the
imputation and analysis models. That fact that logistic re-
gression was used to impute missing outcomes while the
OLS regression was used to analyse binary outcome data
might impact the size of the RMSEs in the MI analyses.

Appendices
Appendix 1
MAR and efficacy rate 85 % versus 60 % (RD 0.250).
The estimated efficacy differences, coverage and bias for
5 %, 15 % and 30 % averages of 5000 simulated data sets
with 50 imputations are shown.

Table 1 MAR and efficacy rate 85 % versus 60 % (RD 0.250):
estimated efficacy differences, coverage and bias for 5 %, 15 %
and 30 % averages of 5000 simulated data sets, 50 imputations

Model RD (RMSE) Coverage Bias

All outcomes recorded: 0.250 (0.061) 0.950 0.000

5 % of outcomes missing:

CC 0.250 (0.063) 0.946 0.000

MI: wt, hb, age, para 0.237 (0.063) 0.958 -0.013

MI: hb, age, para 0.238 (0.063) 0.961 -0.012

MI: hb, age, para, group 0.249 (0.062) 0.949 -0.001

MI: wt, hb, age, para, group 0.248 (0.062) 0.945 -0.002

15 % of outcomes missing

CC 0.250 (0.066) 0.945 0.000

MI: wt, hb, age, para 0.212 (0.066) 0.944 -0.038

MI: hb, age, para 0.214 (0.066) 0.947 -0.036

MI: hb, age, para, group 0.249 (0.066) 0.948 -0.001

MI: wt, hb, age, para, group 0.247 (0.066) 0.949 0.003

30 % of outcomes missing

CC 0.250 (0.073) 0.948 0.000

MI: wt, hb, age, para 0.175 (0.071) 0.887 -0.075

MI: hb, age, para 0.174 (0.071) 0.879 -0.076

MI: hb, age, para, group 0.248 (0.072) 0.946 -0.002

MI: wt, hb, age, para, group 0.249 (0.072) 0.946 -0.001
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Appendix 2
MCAR and efficacy rate 85 % versus 60 % (RD 0.250).
The estimated efficacy differences, coverage and bias for
5 %, 15 % and 30 % averages of 5000 simulated data sets
with 50 imputations are shown.

Appendix 3
MNAR and efficacy rate 85 % versus 60 % (RD 0.250).
The estimated efficacy differences, coverage and bias for
5 %, 15 % and 30 % averages of 5000 simulated data sets
with 50 imputations are shown.

Table 2 MCAR and efficacy rate 85 % versus 60 % (RD 0.250):
estimated efficacy differences, coverage and bias for 5 %, 15 %
and 30 % averages of 5000 simulated data sets, 50 imputations

Model RD (RMSE) Coverage Bias

All outcomes recorded: 0.250 (0.061) 0.950 0.000

5 % of outcomes missing

CC 0.250 (0.062) 0.946 0.000

MI: wt, hb, age, para 0.237 (0.063) 0.957 -0.013

MI: hb, age, para 0.237 (0.063) 0.957 -0.013

MI: hb, age, para, group 0.249 (0.063) 0.950 -0.001

MI: wt, hb, age, para, group 0.249 (0.062) 0.944 -0.001

15 % of outcomes missing

CC 0.250 (0.066) 0.946 0.000

MI: wt, hb, age, para 0.211 (0.066) 0.946 -0.039

MI: hb, age, para 0.212 (0.066) 0.944 -0.038

MI: hb, age, para, group 0.249 (0.066) 0.950 -0.001

MI: wt, hb, age, para, group 0.249 (0.066) 0.941 -0.001

30 % of outcomes missing

CC 0.250 (0.073) 0.946 0.000

MI: wt, hb, age, para 0.173 (0.071) 0.880 -0.077

MI: hb, age, para 0.174 (0.071) 0.891 -0.076

MI: hb, age, para, group 0.247 (0.072) 0.944 -0.003

MI: wt, hb, age, para, group 0.248 (0.072) 0.948 -0.002

Table 3 MNAR and efficacy rate 85 % versus 60 % (RD 0.250):
estimated efficacy differences, coverage and bias for 5 %, 15 %
and 30 % averages of 5000 simulated data sets, 50 imputations

Model RD (RMSE) Coverage Bias

All outcomes recorded: 0.250 (0.061) 0.950 0.000

5 % of outcomes missing

CC 0.258 (0.063) 0.942 +0.008

MI: wt, hb, age, para 0.244 (0.064) 0.962 -0.006

MI: hb, age, para 0.245 (0.064) 0.958 -0.005

MI: hb, age, para, group 0.257 (0.063) 0.946 +0.007

MI: wt, hb, age, para, group 0.256 (0.063) 0.946 +0.006

15 % of outcomes missing

CC 0.274 (0.068) 0.932 +0.024

MI: wt, hb, age, para 0.231 (0.069) 0.975 -0.019

MI: hb, age, para 0.232 (0.069) 0.975 -0.018

MI: hb, age, para, group 0.272 (0.068) 0.931 +0.028

MI: wt, hb, age, para, group 0.273 (0.068) 0.928 +0.023

30 % of outcomes missing

CC 0.298 (0.078) 0.895 +0.048

MI: wt, hb, age, para 0.206 (0.077) 0.974 -0.044

MI: hb, age, para 0.206 (0.077) 0.974 -0.044

MI: hb, age, para, group 0.295 (0.078) 0.901 +0.045

MI: wt, hb, age, para, group 0.296 (0.077) 0.898 +0.046
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Appendix 4
MAR and efficacy rate 98 % versus 95 % (RD 0.030).
The estimated efficacy differences, coverage and bias for
5 %, 15 % and 30 % averages of number of simulated
data sets that converged of the 5000 data sets, with 50
imputations, are shown.

Appendix 5
MCAR and efficacy rate 98 % versus 95 % (RD 0.030).
The estimated efficacy differences, coverage and bias for
5 %, 15 % and 30 % averages of number of simulated
data sets that converged of 5000 data sets, with 50 im-
putations, are shown.

Table 4 MAR and efficacy rate 98 % versus 95 % (RD 0.030):
estimated efficacy differences, coverage and bias for 5 %, 15 %
and 30 % averages of number of simulated data sets that
converged of the 5000 data sets, 50 imputations

Model No. of
data sets*

RD (RMSE) Coverage Bias

All outcomes recorded: 5,000 0.030
(0.026)

0.939 0.000

5 % of outcomes missing

CC 5,000 0.030
(0.026)

0.940 0.000

MI: wt, hb, age, para 4,982 0.027
(0.027)

0.951 -0.003

MI: hb, age, para 4,988 0.027
(0.027)

0.955 -0.003

MI: hb, age, para, group 4,989 0.029
(0.027)

0.946 -0.001

MI: wt, hb, age, para,
group

4,986 0.029
(0.027)

0.947 -0.001

15 % of outcomes missing

CC 5000 0.030
(0.028)

0.942 0.000

MI: wt, hb, age, para 4969 0.025
(0.029)

0.970 -0.005

MI: hb, age, para 4983 0.025
(0.029)

0.963 -0.005

MI: hb, age, para, group 4981 0.030
(0.030)

0.965 0.000

MI: wt, hb, age, para,
group

4982 0.030
(0.030)

0.965 0.000

30 % of outcomes missing

CC 5,000 0.030
(0.030)

0.937 0.000

MI: wt, hb, age, para 4,893 0.020
(0.033)

0.970 -0.010

MI: hb, age, para 4,949 0.021
(0.033)

0.98 -0.009

MI: hb, age, para, group 4,945 0.030
(0.037)

0.967 0.000

MI: wt, hb, age,
para, group

4,938 0.031
(0.037)

0.971 +0.001

*Number of data sets for which convergent analysis was achieved

Table 5 MCAR and efficacy rate 98 % versus 95 % (RD 0.030):
estimated efficacy differences, coverage and bias for 5 %, 15 %
and 30 % averages of number of simulated data sets that
converged of 5000 data sets, 50 imputations

Model No. of data
sets*

RD (RMSE) Coverage Bias

All outcomes recorded: 5,000 0.030
(0.026)

0.939 0.000

5 % of outcomes
missing

CC 5,000 0.030
(0.026)

0.940 0.000

MI: wt, hb, age, para 4,977 0.028
(0.027)

0.948 -0.002

MI: hb, age, para 4,982 0.028
(0.027)

0.957 -0.002

MI: hb, age, para, group 4,992 0.030
(0.027)

0.953 0.000

MI: wt, hb, age, para,
group

4,988 0.030
(0.027)

0.951 0.000

15 % of outcomes
missing

CC 5,000 0.030
(0.028)

0.944 0.000

MI: wt, hb, age, para 4,962 0.026
(0.029)

0.970 -0.004

MI: hb, age, para 4,969 0.025
(0.029)

0.970 -0.005

MI: hb, age, para, group 4,984 0.031
(0.030)

0.957 +0.001

MI: wt, hb, age, para,
group

4,972 0.031
(0.030)

0.961 +0.001

30 % of outcomes
missing

CC 5,000 0.030
(0.030)

0.940 0.000

MI: wt, hb, age, para 4,896 0.021
(0.033)

0.969 -0.009

MI: hb, age, para 4,937 0.021
(0.033)

0.978 -0.009

MI: hb, age, para, group 4,948 0.031
(0.037)

0.971 +0.001

MI: wt, hb, age, para,
group

4933 0.031
(0.038)

0.967 +0.001

*Number of data sets for which convergent analysis was achieved
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Appendix 6
MNAR and efficacy rate 98 % versus 95 % (RD 0.030).
The estimated efficacy differences, coverage and bias for
5 %, 15 % and 30 % averages of number of simulated
data sets that converged of the 5000 data sets, with 50
imputations, are shown.
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