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Abstract

Background: For studies that compare the diagnostic accuracy of two screening tests, the sample size depends on
the prevalence of disease in the study population, and on the variance of the outcome. Both parameters may be
unknown during the design stage, which makes finding an accurate sample size difficult.

Methods: To solve this problem, we propose adapting an internal pilot design. In this adapted design, researchers
will accrue some percentage of the planned sample size, then estimate both the disease prevalence and the
variances of the screening tests. The updated estimates of the disease prevalence and variance are used to
conduct a more accurate power and sample size calculation.

Results: We demonstrate that in large samples, the adapted internal pilot design produces no Type I inflation. For
small samples (N less than 50), we introduce a novel adjustment of the critical value to control the Type I error rate.
We apply the method to two proposed prospective cancer screening studies: 1) a small oral cancer screening
study in individuals with Fanconi anemia and 2) a large oral cancer screening trial.

Conclusion: Conducting an internal pilot study without adjusting the critical value can cause Type I error rate
inflation in small samples, but not in large samples. An internal pilot approach usually achieves goal power
and, for most studies with sample size greater than 50, requires no Type I error correction. Further, we have
provided a flexible and accurate approach to bound Type I error below a goal level for studies with small
sample size.

Keywords: Cancer screening, Internal pilot area under the curve, Type I error, Power, Receiver operating
characteristic analysis

Background
Lingen et al. [1] proposed a study to compare the diagnos-
tic accuracy of two screening modalities for the detection
of oral pre-malignant and malignant lesions. During the
planning phase of the trial, Lingen et al. considered a
paired design with the full area under the receiver operat-
ing characteristic curve (AUC) as the outcome.
In a paired cancer screening trial, each participant is

given two screening tests [1–4]. The participants are
typically volunteers drawn from a standard screening
population. Thus, the trial includes both participants
with disease and participants without disease. At entry,
the disease status of the participants is unknown.

Presumably, the disease status of the participants in the
trial mirrors the prevalence in the population.
The sample size for the trial proposed by Lingen et

al. depended on the prevalence of disease in the popu-
lation. The reported prevalence of oral malignant and
pre-malignant lesions varied by as much as 16.5 % [5],
even in published reports, depending on the population
studied. If the prevalence of lesions was 12.1 %, as ob-
served by [5], 2,450 participants would have been re-
quired to achieve 95 % power for the trial. However, if
the prevalence of lesions was 0.2 % [6], Lingen and his
colleagues would have needed to recruit 116,100 partic-
ipants, a 47-fold increase.
All researchers have an ethical responsibility to

choose an accurate sample size. Participants in cancer
screening trials may face emotional and physical harm
from needless biopsy, false positive diagnoses, and
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over-diagnosis of non-fatal disease. A study that overes-
timates the sample size required for a cancer screening
trial exposes study participants to needless harm. A
study that underestimates the sample size lacks the
power to answer the research question, while still
exposing study participants to potential harm.
One possible solution to the ethical dilemma is an in-

ternal pilot study. In an internal pilot design, investiga-
tors use information from the first fraction of study
participants accrued to estimate unknown parameters
[7–10]. The estimates can then be used to calculate an
updated sample size.
Previous work on internal pilot designs for screening

studies has assumed that the ratio of cases is known
prior to the start of the study and that the ratio is fixed
throughout the course of the study. Wu et al. [11] pro-
posed an internal pilot approach for the comparison of
the diagnostic accuracy of screening tests, but, like
Coffey and Muller [12], assumed that the ratio of cases
to non-cases was known before the study, and fixed by
design during the study. In addition, the method of Wu
et al. [11] does not control for possible Type I error in-
flation. While Gurka et al. [13] considered the use of in-
ternal pilot designs for observational studies, they did
not suggest any Type I error correction techniques. In
general, in small samples, internal pilot designs can in-
flate Type I error [14]. There are multiple approaches
for controlling Type I error inflation in internal pilots,
when the inflation occurs due to variance re-estimation
[12, 15–18].
We broaden the definition of the internal pilot design

to match the sampling scheme in cancer screening trials.
We adapt internal pilot methodology to the cancer
screening setting by: 1) allowing the ratio of cases to
non-cases to vary randomly throughout the study, 2) re-
estimating the sample size with internal pilot sample es-
timates of both the disease prevalence and the variance
of the outcome, and 3) adjusting the critical value to
control for possible Type I error rate inflation caused by
sample size re-estimation. The critical value correction

depends on the unconditional distribution of the test
statistic. We show that the approach allows investigators
to attain a targeted power level, and control Type I error
rate inflation in small samples. We demonstrate, via
simulation, that no correction is needed for large sam-
ples. The internal pilot approach is applied to two oral
cancer screening examples: one small one, where the
correction is needed, and one large one, where no cor-
rection is needed. We conclude the manuscript with a
discussion of the results.

Methods
Study design, hypothesis test, and sample size
re-estimation
A novel internal pilot study design for screening trials
The novel internal pilot design includes the following
steps:

1. Initial planning stage: Initial estimation of the
sample size needed.

2. Pilot stage: Collection of paired screening test scores
from a fraction of the planned sample size.

3. Re-estimation: Sample size re-estimation using
pilot-sample based variance and prevalence
estimates.

4. Additional data collection: Collection of additional
data based on the sample size re-estimation.

5. Analysis: Hypothesis testing, using an adjusted
critical value to prevent Type I error inflation.

We expand the notation of Coffey and Muller [9, 12]
and Coffey et al. [19] to accommodate our modifica-
tions in the internal pilot study design. Throughout the
manuscript lower case letters represent fixed variables
and upper case letters represent random variables.
Matrices are written in bold text.
Data for the internal pilot study can be organized

into four sets according to the stage of the study that
is of interest (Fig. 1). Let k ∈ {0, 1, 2, +} index the stage
of interest. Variables indexed by k = 0 describe the

Fig. 1 Adapted internal pilot design for a cancer screening study
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initial planning stage. Since no data has been col-
lected, planning stage variables take on planned or
speculated values. Variables indexed by k = 1 and k = 2
identify data observed in the pilot stage and the add-
itional data collection stage, respectively. Variables
indexed by k = + describe the entire sample, which
includes data from all participants.
Let the random variable Ndk be the number of study

participants in stage k with disease status d ∈ {n, c}, with
n indicating no disease, and c disease. For example, Nc1

is the number of individuals with disease in the pilot
sample. When the subscript d is dropped, the random
variable Nk denotes the number of people both with and
without disease in the kth stage of the study. For ex-
ample, N1 is the total number of individuals in the pilot
sample, and N+ is the final sample size.
Let Nmin and Nmax be the minimum and maximum

sample sizes allowed by the study investigator, and assume
that N+ ∈ [min (N1, Nmin), Nmax]. Let n0 be the initial sam-
ple size estimate, and define λ = n1/n0. Let γπ ¼ π=π̂ 0 ,
where π ∈ (0, 1) is the true prevalence of disease, and
π̂ 0∈ 0; 1ð Þ is the initial estimate of prevalence of disease.
Let π̂ 1 ¼ nc1=n1 be the estimate of prevalence of disease
from the pilot data. With σ2 the true variance of the
difference in the two screening test scores, and σ̂ 2

0 > 0
the variance estimate used for the initial sample size
calculation, define γ ¼ σ2=σ̂ 2

0 . Let SSE1 ¼ σ̂ 2
1 � n1−2ð Þ

where σ̂ 2
1 represents the variance of the difference in

the two screening test scores estimated after the in-
ternal pilot study. Let Pt and αt be the target power and
Type I error level for the study.

A paired comparison of the diagnostic accuracy of two
screening tests
Let yidj be the screening test score for individual i ∈ {1, 2,
…, N+}, with disease status d, on screening test j ∈ {A, B}.
Assume that the two screening test scores [yidAkyidBk]

'

have a bivariate normal distribution with mean μd
= [μdAμdB]

', V(yidjk) = σdj
2 , and Cov(yidAk, yidBk) = ρdσdAσdB.

We assume that differences between the screening test
scores for both the cases and non-cases are distributed
with equal variance, V(yinA − yinB) =V(yicA − yicB) = σ2.
Under the bivariate normal assumption, the AUC for
screening test j is given by Φ[(μcA − μnA)/σ] ([20], p. 83,
Result 4.8) where Φ is the cumulative distribution func-
tion of the standard normal. The difference between the
AUCs is given by Φ[(μcA − μnA)/σ] −Φ[(μcB − μnB)/σ].
For a paired comparison of the AUCs of the two screen-

ing tests, we test the hypothesis H0 : (μcA − μnA) − (μcB
− μnB) = (μcA − μcB) − (μnA − μnB) = 0 against HA : ¬ H0. If H0

holds, the AUCs, and hence the diagnostic accuracies of
the two screening tests, are equal. To test H0, we fit a gen-
eral linear univariate model with the difference in the

screening test scores as the outcome. The approach was in-
spired by the work of Demler et al. [21]. We assume that
the difference between screening test scores is Gaussian
and that the observations on different participants are
independent.
The general linear univariate model for the final data set

can be written as Y+ =X+β + ϵ+, where Y+ is an N+ × 1
matrix containing the difference in the screening test
scores for each individual, [yidA − yidB]

', X+ is an N+ × 2 de-
sign matrix that identifies disease status, β is a 2 × 1
matrix of mean differences [μcA − μcBμnA − μnB]

', and ϵ+ is
the N+ × 1 matrix of errors. We test H0 by writing the con-
trast matrix C = [1–1], forming θ =Cβ, and using an F
statistic ([22], p. 51, Equation 2.32). The final F statistic
used in our adapted internal pilot design is written as F+.

Sample size re-estimation for an internal pilot with
unknown disease prevalence
The initial sample size is calculated as in Muller et al.
[23]. For that calculation, the study investigator will spe-
cify σ0

2 and β0. Ideally, speculated values will be based on
data from previous studies, closely related published re-
sults, or clinical experience.
After the internal pilot, the final sample size can be re-

calculated using the following iterative algorithm. The
goal of the algorithm is to find N+, where the power of
the study is equal to Pt, the target power. First, check to
see if the pilot data includes either all cases or all non-
cases. If so, set N+ = n0. Otherwise, calculate the final
sample size as follows. With nc1 and nn1 as observed in
the initial pilot, define κ to be the greatest common factor
of nc1 and nn1. Let D = nc1/κ, E = nn1/κ, and R = (D + E).
Speculate that X+ will take the form X+ = Es(X)⊗ 1m,

where Es(X) is an (R × 2) matrix such that

Es Xð Þ ¼ 1D 0D
0E 1E

� �
; ð1Þ

and m is a positive integer chosen so that N+ =mR ≥ n1.
Calculate the power as 1 − Pr[F+ ≤ fcrit] [23], where

fcrit = FF
− 1[(1 − αt); 1, N+ − 2] and F+ has a non-central

F distribution with 1 numerator degrees of freedom,
denominator degrees of freedom N+ − 2, and non-

centrality parameter ωþ ¼ δþ=σ̂ 2
1, where δþ ¼ θ−θ0ð Þ0

C X
0

þXþ
� �−

C
0

h i−1
θ−θ0ð Þ.

Sequentially increment or decrement m until the
power of the experiment meets or exceeds Pt, at m =mt.
Set the final sample size to be N+ =mtR, unless N+ ≥
Nmax or N+ ≤Nmin. If N+ ≥Nmax then set N+ =Nmax.
If N+ ≤Nmin then set N+ =Nmin. Finally, calculate N2

as N2 =N+ − n1.
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Simulation studies
Verification of unconditional power
We conducted a simulation study designed to verify the
result of Equation (10) below. Simulation study parame-
ters came from modifying an example presented in Kair-
alla et al. [24]. Kairalla et al. [24] modified a balanced
example in Wittes and Brittain [8] so that the numbers
of cases to non-cases were unequal. Kairalla et al. then
assumed a fixed case mixture throughout the study. We,
in turn, modified the example in [24] by allowing the
ratio of cases to non-cases to vary randomly.
Initial parameters were set at: C = [1–1], Pt = 0.90,

αt = 0.05, β = [1 0]', and σ0
2 = 2. The resulting initial

sample size was n0 = 96 participants. With λ = 0.5,
the pilot sample was fixed at n1 = 48. The true rate
of disease was set at π = 1/3. The parameter y
ranged between 0.5 to 2 by 0.25 while γπ was fixed
at 1. Under the alternative hypothesis, the bivariate
normal parameters were set at μc1 = 3, μc2 = 4, ρc12 =
0, μn1 = 0, μn2 = 0, ρn12 = 0, and σc

2 = σn
2 = 1. To calcu-

late Type I error under H0, the bivariate normal pa-
rameters were set at μc1 = 3, μc2 = 3, ρc12 = 0, μn1 = 0,
μn2 = 0, ρn12 = 0, and σc

2 = σn
2 = 1. The distributional

parameters under the null correspond to an AUC of
0.983 and a difference in AUC of 0.015 under the al-
ternative. All programs were written in version 9.3
of SAS/IML® software [25] and are available upon re-
quest. The empirical power was calculated as the
proportion of times the null hypothesis was rejected.
The experiment was repeated 10,000 times. The
maximum absolute deviation (MAD) was calculated
as the maximum absolute difference between the
empirical estimates and the theoretical value. Using
a normal approximation to the distribution of a pro-
portion, the half-width of the 95 % CI for a target
power of 0.90 is 0.0053.

Assessment of Type I error rate inflation
We conducted a simulation study to assess the mag-
nitude of the Type I error rate inflation for a variety
of experimental conditions. The Type I error rate was
simulated for a prospective cancer screening trial with
an internal pilot design. The disease prevalence and
variance were either correctly or incorrectly specified
and then re-estimated using pilot data. The hypoth-
esis test was conducted using either an adjusted or
unadjusted critical value.
The empirical Type I error was calculated for 648 dif-

ferent scenarios. The null hypothesis was that there was
no difference in the diagnostic accuracy of the screening
tests. For each scenario, we simulated 10,000 replicate
data sets, conducted the hypothesis test, formed the
P-value, and decided whether to accept or reject the
null hypothesis at the αt = 0.05 level. The number of

replicates was chosen so that the 95 % confidence inter-
val of the proportion was no more than 0.005. The em-
pirical Type I error was calculated as the proportion of
replicates where the null hypothesis was rejected. For
some scenarios, the study population was composed of
either all cases or all non-cases. For all such scenarios,
we considered there to be insufficient evidence to reject
the null hypothesis.
The 648 different scenarios came from a range of

parameter values. Parameters of the bivariate normal
distributions for the cases and non-cases were fixed
at μn ∈ {[0 0]'}, μc ∈ {[0.2 0.2]', [0.5 0.5]'}, σ0

2 ∈ {0.34},
and ρn = ρc = 0.5. This corresponded to a difference in
the AUCs of test A and test B of 0.05 or 0.1, respect-
ively. The proportion of the initial sample size used
for the internal pilot was in the range of λ ∈ {0.25,
0.5, 0.75}. We varied target power, Pt ∈ {0.80, 0.90},
the ratio of the true variance to the initial variance
estimate, γ ∈ {0.5, 1, 1.5}, and the ratio of the true
population disease prevalence to the initial prevalence
estimate, γπ ∈ {0.1, 1, 1.9}. The initial prevalence esti-
mate was fixed at π0 = 0.5, corresponding to a bal-
anced study design.

Validation of Type I error control
We compared our adjusted method to an unadjusted
internal pilot approach for a scenario where signifi-
cant Type I error inflation occurred. The parameters
that defined the scenario were μn = {[0 0]'}, μc = {[0.3
0.92]'}, σ0

2 ∈ {0.34}, ρn = ρc = 0.5, π = 0.5, and λ ∈ {0.5}.
The parameters correspond to an AUC of 0.64 for
test A and an AUC of 0.87 for test B. We varied γ
between 0.25 and 4. With Pt = 0.90 and α = 0.05, the
initial sample size was 42. The adjusted method was
applied to each of three possible prevalence misspeci-
fication scenarios with γπ ∈ {0.1, 1, 1.9}.

Results
Type I error rate control
Overview
In general, internal pilot studies can inflate Type I error
rate [14]. Here, we describe a method to bound Type I
error rate in internal pilot studies where both the vari-
ance of the outcome and the disease prevalence are re-
estimated in the internal pilot step. First, we give the
unconditional power and hence the Type I error for the
F test statistic. We uncondition over all possible reali-
zations of N1, Nc1, Nc2, and N2. After demonstrating
that the Type I error rate takes on a maximum value
across a specified range of γ and γπ, we describe a
method for identifying the values of γ and γπ at which
the maximum occurs. We choose a critical value for
the final hypothesis test so that the maximum Type I
error rate is bounded.
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Unconditional Type I error
We derive the distribution of the F+ statistic under H0

and HA. Under H0, the formulae give an unconditional
Type I error. Under HA, the formulae give unconditional
power. Because both the variance and the disease preva-
lence are re-estimated, the test statistic is a function of
the pilot sample size and the final sample size. Deriv-
ation of the distribution of the test statistic requires
obtaining three results:

1. The distributions of N1, Nc1, Nc2, N2, and N+.
2. The distribution of F+ conditional on N1, Nc1, Nc2,

N2, and N+.
3. The unconditional Type I error and power of the F+

test statistic.

Under the Type I error rate control subsection each
of the three afore mentioned results are presented.
Throughout the this subsection we find it useful to use
functional notation to emphasize the dependence of var-
iables on N1, Nc1, Nc2, N2, and σ1

2. For example, we write
N2(σ1

2, Nc1, N1) to indicate that the additional sample size
is a function of the pilot variance and the pilot case
mixture.

Distributions of , N1, Nc1, Nc2, and N2

The number of participants in the pilot sample is fixed
by study design: n1 = λn0. Assuming a true disease preva-
lence of π, Nc1 ∼ Binomial(n1, π) and Nc2 ∼ Binomial(N2,
π). The random variables σ̂ 2

1 and Nc1 are distributed in-
dependently. Summing over all possible values of nc1,
the unconditional probability mass distribution of the
additional sample is:

PrfNþ ¼ nþg ¼
Xn1
nc1i¼0

PrfNþ ¼ nþjNc1i ¼ nc1ig � PrfNc1i ¼ nc1ig

¼
Xn1
nc1i¼0

ðPrfNþ≤nþ þ 1jnc1ig−PrfNþ≤nþjnc1igÞ

� PrfNc1i ¼ nc1ig; ð2Þ

where the first line extends Equation 18 of [9], and the
second line follows from the law of total probability. The
conditional probability mass function of N+ is calculated
by extending Equation 17 of [9] as follows:

Pr Nþ≤nþjnc1if g ¼ Pr χ2 n1−2ð Þ≤ n1−2ð Þ
σ2

δþ
ωþ

jNc1i ¼ nc1i

� �
:

ð3Þ

Note that since N2 =N+ − n1,

Power of the final hypothesis test conditional on N1, Nc1,
Nc2, N2, and N+

We show the dependence of the power on N1, Nc1, Nc2,
and N2.
The additional sample size N2 is a function of σ̂ 2

1 and
Nc1. Since the power function is strictly monotone in-
creasing, for fixed values of σ̂ 2

1 , n1, and nc1, there exists
one and only one N2 = n2. However, for a fixed n1 and
nc1, there exist infinitely many σ̂ 2

1 , all of which would
yield the same final sample size.
Let q1(n2, nc1) and q2(n2, nc1) represent the smallest

and the largest value of σ̂ 2
1 that would lead to the add-

itional sample size n2 for a fixed n1 and nc1. Let q(n2,
nc1) be the value of σ̂ 2

1 that falls in the interval (q1(n2,
nc1), q2(n2, nc1)].
We can express the approximate power of the F+ test

statistic for a value f(n2, nc2, nc1) as a function of n2, nc2,
and nc1. Let I(n2, nc2, nc1) represent the probability of
rejecting H0 when the alternative is true, conditional on
nc2, nc1 and the value q(n2, nc1). Then

Iðn2; nc2; nc1Þ ¼ 1−PrfFþ≤f ðn2; nc2; nc1Þjqðn2; nc1Þ; nc2; nc1g
¼ 1−Prfcðn2; nc2; nc1Þ⋅χ2½a;ωþðn1 þ n2; nc2 þ nc1Þ�

−χ2ðn2Þ≤qðn2; nc1Þjqðn2; nc1Þ; nc2; nc1g;
ð5Þ

where ν+ =N+ − 2, c(n2, nc2, nc1) = ν+/[2f(n2, nc2, nc1)]
with χ2[a, ω+(n1 + n2, nc2 + nc1)] denoting a non-
central χ2 with a degrees of freedom and a non-
centrality parameter of ω+(n1 + n2, nc2 + nc1). Equation
(5) follows from the proof in the Appendix of Coffey
and Muller [9].

Expected power of the F test statistic unconditioned from
N1, Nc1, Nc2, N2, and N+

We uncondition Equation (5) from Nc1, q(n2, nc1), Nc2,
and N2. Using the law of total probability, the uncondi-
tional power is

Iðn2; nc2Þ ¼ 1−
Xn1
nc1i¼0

Iðn2; nc2; nc1iÞ � Pr½N2 ¼ n2jnc1i� � Pr½Nc1 ¼ nc1i�:

ð6Þ

Substituting Equation (6) into Equation (5) gives

Iðn2; nc2Þ ¼ 1−
Xn1
nc1i¼0

PrfQðn2; nc2; nc1iÞ≤qðn2jnc1iÞjqðn2jnc1iÞ; nc2; nc1ig

� Pr½N2 ¼ n2jnc1i� � Pr½Nc1 ¼ nc1i�:
ð7Þ

Unconditioning the power from Nc2, we obtainPr Nþ≤nþjnc1if g ¼ Pr N2≤n2jnc1if g: ð4Þ
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Iðn2Þ ¼ 1−
Xn2
nc2i¼0

Iðn2; nc2iÞ � Pr½Nc2 ¼ nc2ijn2�; ð8Þ

leading to

Iðn2Þ ¼ 1−
Xn2
nc2i¼0

�Xn1
nc1i¼0

PrfQðn2; nc2; nc1iÞ≤qðn2jnc1iÞjqðn2jnc1iÞ; nc2; nc1ig

� Pr½N2 ¼ n2jnc1i� � Pr½Nc1 ¼ nc1i�Þ � Pr½Nc2 ¼ nc2ijn2�

¼ 1−
Xn2
nc2i¼0

�Xn1
nc1i¼0

Z q2ðn2; nc1Þ

q1ðn2; nc1Þ
PrfQ

�
n2; cðn2; nc2i; nc1iÞ;δðnc2i; nc1iÞ

�
≤tg

� f χ2ðt; ν1Þ
PrfN2 ¼ n2jnc1ig dt � Pr½N2 ¼ n2jnc1i� � Pr½Nc1 ¼ nc1i�Þ

� Pr½Nc2 ¼ nc2ijn2�; ð9Þ
with f χ2 t; ν1ð Þ defined in Johnson et al. [26]. The distri-

butional results of Coffey et al. [19] hold, conditional on
fixed values of N1, Nc1, and Nc2. The expected power is
given by

PrfFþðNþ; Ncþ; Nc1Þ≤f ðNþ; Ncþ; Nc1Þg

¼ 1−
Xn1þn2

nþi¼n1

Xnc1þnc2

nþci¼nc1

Xn1
nc1i¼0

Z ∞

q1ðn2i ; nc1iÞþ
Fχ2

z
cðncþiÞþ

; 2;
δðncþiÞþ

γσ20

2
4

3
5f χ2ðz; νþÞ

� Fβ

� q2ðn2i; nc1iÞ
z

;
ν1
2
;
n2i
2

�
−Fβ

� q1ðn2i; nc1iÞþ
z

;
ν1
2
;
n2i
2

�
dz

� Pr½Nc1 ¼ nc1i� � Pr½Nc2 ¼ nc2ijn2i�;

ð10Þ

where F+(N+, Nc +, Nc1) is the final test statistic, f(N+,
Nc +, Nc1) is an observed value, Fχ2 is the cumulative
distribution function of a non-central χ2 [27], Fβ is the
cumulative distribution function of a beta (one) distrib-
uted random variable [27], ν1 = n1 − 2, and the bounds
of the integration depend on nc1 and n2. The Type I
error can be calculated from Equation (10) when the
null hypothesis is true. Notice that when the null
hypothesis is true, the χ2 distribution in Equation (10)
becomes a central χ2.

Bounding Type I error
There exists a maximum Type I error across a specified
range of γ and γπ. Let αmax be the global maximum
Type I error. Power for a study design is maximized
when the ratio of the number of study participants with
disease to the number of study participants without dis-
ease is one-to-one. Thus, αmax must occur for γπ = 1.
The problem of showing that there is a maximum then
reduces to showing that there exists a maximum with
respect to γ for γπ = 1. Coffey and Muller [12] provide
evidence to support this assertion.
We propose the following method to find the γ = γ*

and γπ = γπ
b for which the maximum Type I error

occurs:

9. First, fix a range for γ∈ [a, b] and γπ∈ [c, d] a priori,
based on the previous literature.

10.Find the value of γπ = γπ
b that results in a study

design with a permissible prevalence value that is
closest to a one-to-one ratio of cases to non-cases
(that is, the value closest to 1 ∈ [c, d]).

11.Finally, for a fixed γπ
b , find the value of γ = γ* that

yields the maximum Type I error inflation, using
Equation (10) and a golden section search algorithm
[28].

The maximum Type I error is bounded by identify-
ing an adjusted critical value for the final test statistic.
For γ = γ* and γπ = γπ

b we use a bisection search algo-
rithm to find α* so that under H0, Pr{F+(N+, Nc +,
Nc1) ≤ fadj} = αt, where fadj = FF

− 1[(1 − α*); 1, N+ − 2].

Simulation studies results
Verification of unconditional power
The simulation study suggested that for the parame-
ters chosen, Equation (10) provides a good estimate of
unconditional power. The MAD between predicted
empirical power and theoretical power always fell
within the 95 % confidence interval (Tables 1 and 2).
The half-width of the 95 % CI for a target Type I error
of 0.05 is 0.0043.

Assessment of Type I error rate inflation
Results from the simulation are presented in Figs. 2, 3,
and 4. Overall, the Type I error rate was inflated when
the initial sample size was smaller than 50 and the initial
prevalence estimate was correct. As the fraction of the
initial sample size estimate used in the pilot study in-
creased, the inflation grew smaller. The initial sample
sizes for all 648 scenarios ranged from 12 to 2,028 par-
ticipants, with an interquartile range of 61 to 635 partic-
ipants. The median observed Type I error was 0.0495,
with a minimum of 0.0244, a maximum of 0.0839, and
an interquartile range of 0.0479 to 0.0521.
The figures suggest that no Type I error adjustment is

needed when the sample size is large. This observation

Table 1 Empirical versus theoretical power by variance
misspecification

γ Empirical power Theoretical power Absolute deviation

0.5 0.9945 0.995 0.0005

0.75 0.9646 0.964 0.0006

1 0.9369 0.934 0.0029

1.25 0.9168 0.922 0.0052

1.5 0.9144 0.916 0.0016

1.75 0.9137 0.913 0.0007

2 0.9136 0.910 0.0036
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is consistent with the results from Wu et al. [11]. The
results from the simulation study by Wu et al. [11] cor-
respond to the subset of results in Figs. 2, 3, and 4 with
γ = 1 and γπ = 1. However, Wu et al. [11] did not con-
sider cases with small initial sample sizes, and thus did
not observe the Type I error rate inflation shown in our
results. In our first example, we present an application
with a large sample size where no adjustment is needed
to bound the Type I error rate.

Validation of Type I error control
Results from the Type I error control simulation ap-
pear in Fig. 5, which shows a comparison of the Type
I error inflation for the adjusted and unadjusted
methods. The figure plots Type I error rate as a func-
tion of γ, cross-classified by γπ for the two methods.
Figure 5 shows that the adjusted method controls the
Type I error rate in small samples. The maximum
possible Type I error occurred with γπ

b = 1, γ* = 0.8541
for a Type I error of 0.0564. The adjusted Type I
error rate was α* = 0.0438. Note that fadj is only
assigned a value after the pilot sample is collected
and N+ = n+ is re-estimated.

Applications
Example 1: A large oral cancer screening trial where no
adjustment is needed
One implication of this study is that internal pilot de-
signs often require no penalty for re-estimating both
outcome variance and disease prevalence. In addition,
the internal pilot design ensures that researchers will
have sufficient power.

Table 2 Empirical versus theoretical Type I error by variance
misspecification

γ Empirical type I error Theoretical type I error Absolute deviation

0.5 0.0505 0.053 0.0025

0.75 0.0487 0.053 0.0043

1 0.0496 0.052 0.0024

1.25 0.0505 0.052 0.0015

1.5 0.0514 0.052 0.0006

1.75 0.0478 0.051 0.0032

2 0.0507 0.051 0.0003

Fig. 2 Type I error rate by scenario with the pilot study size at 25 % of initial sample size estimate
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Recall the study by Lingen et al. discussed in the Back-
ground section. One aim of the study was to compare
the diagnostic accuracy of a combined modality involv-
ing both visual and tactile oral exam with VELscope®
[29]. The investigators wished to detect oral pre-
malignancy and malignancy. There was substantial un-
certainty about the rate of oral pre-malignancy and
malignancy in the target population. The rate of suspi-
cious lesions varies widely in Western populations,
ranging from 0.2 % to 16.7 % [5]. Further, the variance
of scores for visual and tactile oral exam and for exami-
nations with VELscope was largely unknown. The uncer-
tainty made an internal pilot design attractive.
One critical step for designing an internal pilot

study is choosing Nmin and Nmax. The investigators
wished to estimate a confidence interval for the per-
centage of oral lesions that were benign. To ensure
that the confidence interval had a half-width of no
more than 0.1 %, the investigators had to make sure
that the entire study enrolled at least 96 people with

lesions. If the rate of suspicious lesions was about
12.1 %, the minimum sample size could be no less
than 800. The upper bound on sample size was fixed
by monetary constraints. Previous experience had
shown that a sample size of more than 30,000 was
fiscally unfeasible. This set Nmax at 30,000.
The initial power calculation was based on plaus-

ible values from the literature. A conservative esti-
mate for the AUC for visual and tactile oral exam is
0.60. A clinically interesting difference between AUCs
is 0.06. This corresponds to μn ∈ {[0 0]'}, μc ∈
{[0.359 0.584]'}, σ = 1, and ρn = ρc = 0. Assuming that
the rate of suspicious lesions in the population is
12.1 %, the initial sample size needed for 95 % power
is 2,156 non-cases and 294 cases for a total sample
size of 2,450.
The final sample size that would be needed for the

study would depend on results from the internal pilot.
The results presented in the Type I error control valid-
ation indicate that Type I error inflation would not be a

Fig. 3 Type I error rate by scenario with the pilot study size at 50 % of initial sample size estimate
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problem for a study designed with an initial sample size
of 2,450. Thus, the final hypothesis test could be carried
out with α set to 0.05.

Example 2: A small oral cancer screening trial where
adjustment prevents Type I error inflation
A second implication of this manuscript is that internal
pilot designs with small sample size require an adjustment
to prevent Type I error inflation. Small sample sizes often
occur because of biological constraints. For example,
Wong et al. [30] are currently recruiting for an oral cancer
screening trial in people with Fanconi anemia. Fanconi
anemia is a rare genetic disease that occurs in roughly 1 in
131,000 people in the United States. People with Fanconi
anemia are at increased risk for oral cancer, although the
magnitude of the risk is unknown. The prevalence of oral
squamous cell carcinoma could be as high as 100 % or as
low as 3 % [31, 32].
Because the study is still in progress, the design has not

yet been published. To illustrate the results of our manu-
script, we show how an internal pilot trial might be used
to compare the diagnostic accuracy of two assays for IL-8

for the prediction of oral cancer. In people with Fanconi
anemia, IL-8 is a useful biomarker for screening for oral
cancer [33, 34].
Consider a trial in which people with Fanconi anemia

are given two salivary assays: a salivary bead-based assay
for IL-8, and an enzyme-linked immunosorbent assay
(ELISA). The diagnostic accuracy (AUC) of the ELISA
and the salivary bead-based assay is 0.85 and 0.94,
respectively [34, 35]. The target power is set to 0.80. A
clinically interesting difference in diagnostic accuracy is
a difference between AUCs of 0.09. The target Type I
error rate is 0.05. Means and variances of both ELISA
and a salivary bead-based assay are available in the lit-
erature [34, 35], with μn ∈ {[759.4 759.4]'}, μc ∈ {[3347.7
4700.0]'}, and σnA = σnB = σcA = σcB = 3328174.5. Modest
correlation is set at ρn = ρc = 0.5.
If half the people in the study have oral cancer, the ini-

tial sample size required is 84 participants. Thus, the
study could be subject to Type I error inflation. If we re-
estimate the sample size after the first 42 participants
have been collected, the study could have a Type I error
rate inflated to 0.054. This inflation occurs at γπ

b = 1 and

Fig. 4 Type I error rate by scenario with the pilot study size at 75 % of initial sample size estimate
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γ* = 0.7254. This is an 8 % inflation from the target Type
I error rate of 0.05. Adjusting gives an adjusted alpha
level of αadj = 0.0463. The adjusted critical value can be
calculated as fadj = FF

− 1[(1 − α*); 1, N+ − 2]. Recall that the
actual adjusted critical value will depend on the final
sample size calculated after the internal pilot is observed.
For example, if n+ = 100, then fadj = 4.07. Thus with n+ =
100, any observed test statistic larger than 4.07 should
be rejected.

Discussion
In this manuscript, we describe an internal pilot approach
for cancer screening trials when the disease prevalence
is unknown. We demonstrated that conducting an in-
ternal pilot study without adjusting the critical value
caused Type I error rate inflation in small (N <50) sam-
ples, but not in large samples. We also demonstrated
that our adjusted method controlled Type I error rate
in small samples.
The approach has both strengths and limitations. A

strength is that the method allows investigators to obtain
expected power at least as high as needed, for all but the
most rampant variance and prevalence misspecifications.
One limitation is the assumption that the screening test
scores have a bivariate normal distribution of the test
scores and that the assumptions of the general linear
univariate model [22] are met. Secondly, the method
may be overly conservative, and result in a Type I error
rate lower than nominal. However, for prospective cancer

screening trials, being conservative is reasonable. Cancer
screening methods may be adopted in large populations,
and replicable research is vital for maintaining public
trust. Finally, the computing time is somewhat lengthy,
because the integration and sums from Equation (10) have
high complexity. For any one study design, the amount of
time is reasonable. For example, it took less than eight
hours to run all programs used in Example 2. In addition,
our simulation study demonstrated that the method is not
necessary in screening studies with large sample sizes.

Conclusion
We have shown that an internal pilot approach usually
achieves goal power, and, for most studies with sample
size greater than 50, requires no Type I error correction.
Further, we have provided a flexible and accurate ap-
proach to bound Type I error below a goal level for
studies with small sample size (N < 50). Both investiga-
tors and statisticians should use the new methods for
the design of cancer screening trials.
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