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Abstract

Background: Early biomarkers are helpful for predicting clinical endpoints and for evaluating efficacy in clinical
trials even if the biomarker cannot replace clinical outcome as a surrogate. The building and evaluation of an
association model between biomarkers and clinical outcomes are two equally important concerns regarding the
prediction of clinical outcome. This paper is to address both issues in a Bayesian framework.

Methods: A Bayesian meta-analytic approach is proposed to build a prediction model between the biomarker and
clinical endpoint for dichotomous variables. Compared with other Bayesian methods, the proposed model only
requires trial-level summary data of historical trials in model building. By using extensive simulations, we evaluate
the link function and the application condition of the proposed Bayesian model under scenario (i) equal positive
predictive value (PPV) and negative predictive value (NPV) and (ii) higher NPV and lower PPV. In the simulations,
the patient-level data is generated to evaluate the meta-analytic model. PPV and NPV are employed to describe
the patient-level relationship between the biomarker and the clinical outcome. The minimum number of historical trials
to be included in building the model is also considered.

Results: It is seen from the simulations that the logit link function performs better than the odds and cloglog functions
under both scenarios. PPV/NPV ≥0.5 for equal PPV and NPV, and PPV + NPV ≥1 for higher NPV and lower PPV are
proposed in order to predict clinical outcome accurately and precisely when the proposed model is considered.
Twenty historical trials are required to be included in model building when PPV and NPV are equal. For unequal
PPV and NPV, the minimum number of historical trials for model building is proposed to be five. A hypothetical
example shows an application of the proposed model in global drug development.

Conclusions: The proposed Bayesian model is able to predict well the clinical endpoint from the observed biomarker
data for dichotomous variables as long as the conditions are satisfied. It could be applied in drug development. But the
practical problems in applications have to be studied in further research.
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Background
The biomarker employed as a surrogate to evaluate effi-
cacy is preferred in clinical trials. It leads to reduced trial
durations and costs [1,2], improved compliance [3], better
ethical satisfaction [4], etcetera For example, United States
Food and Drug Administration (FDA) has enabled acceler-
ated marketing approval based on a surrogate endpoint,
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rather than the primary endpoint, in life-threatening dis-
eases [5,6]. Controversy has surrounded the evaluation
of a biomarker as a surrogate [7-20] since Prentice [7]
formulated a statistical framework in the context of hy-
pothesis testing. However, the evaluation of a biomarker
covers various considerations [21-23]. The experience of
the evaluation is limited and very few biomarkers are ac-
cepted as surrogate endpoints in practice [21]. On the
other hand, as an intermediate endpoint, the biomarker is
still helpful to predict the effect on clinical endpoint from
the intervention even it cannot directly replace the true
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clinical endpoint as a surrogate. In drug development,
the prediction of a true clinical endpoint from an early
biomarker makes sense in early drug efficacy evaluation
and decision making. The key point here is how to build
and evaluate the prediction model between biomarker and
clinical endpoint.
A meta-analytic approach was first considered by Flem-

ing [11] and Hughes et al. [12] to validate a surrogate end-
point from a collection of previous trials. Some approaches
modeled the association between a biomarker and clinical
endpoint based on trial-level summary data in a frequentist
framework [16-19]. But few have made such evaluations
within the Bayesian framework. The main paper involving
a Bayesian meta-analytic method is that of Daniels and
Hughes [13], who considered a mixed effect model for the
trial-level association of treatment effect on biomarker and
clinical outcome. However, it required patient-level data
to estimate the correlation between biomarker and clin-
ical endpoint in the model building [24]. Both patient-
level data and trial-level summary data were necessary for
the method of Daniels and Hughes. Furthermore, Van
Walraven et al. [24] implemented a Monte Carlo model
and Wang et al. [25] employed classical Cox model to
predict clinical outcomes from biomarkers.
The evaluation of the model between the biomarker and

the clinical endpoint is another key concern. It is vital that
the model is able to describe the association between the
biomarker and the clinical outcome well and to predict
the clinical endpoint from the observed biomarker ac-
curately and precisely in a new trial. Buyse et al. [14]
proposed the coefficient of determination R2

trial to evaluate
the trial-level association and predictive ability. But the
value of R2

trial is difficult to interpret [20], and it is difficult
to clearly define which model is appropriate for prediction.
On the other hand, the accessibility of trial-level summary
data from historical trials is one of the advantages of
meta-analytic approaches. But this approach also leads to
information loss compared with the use of patient-level
data. Therefore, simulation studies [17], which evaluate
the model based on the simulative data from a specific
assumption, ignore the effect of information loss from
trial-level data and may over-evaluate the predictive ability
of meta-analytic model. It is more objective and reasonable
to evaluate the meta-analytic model based on the as-
sumption of the patient-level data of previous trials in
the simulations.
In this paper, we consider a Bayesian meta-analytic

method for building a prediction model between the
biomarker and the clinical endpoint when both endpoints
are dichotomous, which is completely independent of
patient-level data. It is used to predict rate ratio (RR) of
the clinical endpoint from an early biomarker. In addition,
we evaluate the proposed prediction model by using ex-
tensive simulations from clinical practical considerations.
The patient-level data are simulated to evaluate the
meta-analytic prediction model to avoid the assumption
on trial-level data. Positive predictive value (PPV) and
negative predictive value (NPV), which measure the patient-
level association between biomarker and clinical endpoint
for dichotomous variables, are employed in the simulations.
From the clinical point, a good biomarker is expected

to have higher PPV and NPV to predict long-term clinical
outcome (for example, in the early detection of a disease
in clinical diagnosis, the early observed recurrence of a
tumor in oncology study and so on). But a biomarker with
higher NPV and lower PPV is also common in medical
studies. For example, persistent infection of HPV (human
papillomavirus) is considered to be a potential biomarker
of high grade cervical disease and eventually cervical
cancer. Because though HPV persistent infection case
does not always progress to high grade cervical disease,
the one who is not infected with HPV persistently has
only a small probability of getting the disease from the
viewpoint of medical mechanisms. In HPV vaccine clin-
ical trials, a persistent infection of HPV, as a biomarker
that has higher NPV and lower PPV, is able to help predict
vaccine efficacy. Therefore, both scenarios, (i) equal PPV
and NPV and (ii) higher NPV and lower PPV, are con-
sidered in the evaluation of the proposed model in the
simulations.
The proposed prediction model between biomarker and

clinical outcome in this article is built in a Bayesian frame-
work. It is different from the frequentist meta-analytic ap-
proaches [14-19,26]. It intuitively describes the association
between biomarker and clinical endpoint and is easy to
be implemented by using Markov Chain Monte Carlo
(MCMC) techniques. But compared with other Bayesian
methods, the proposed model has its own features. The
Bayesian mixed model proposed by Daniels and Hughes
[13] is not a complete meta-analytic method and the ad-
vantage of the meta-analytic approach cannot be shown.
But the proposed Bayesian model has no such restriction.
Furthermore, the method of Daniels and Hughes ignores
the variability of within-trial treatment effect [10], which is
included in the proposed Bayesian model.
Methods
Bayesian model for prediction
Consider N randomized trials of size ni(i = 1, 2, …, N).
Equal sample size is assumed in the treatment and control
group in each trial. In the i-th trial, BTi and BCi biomarker
responses are observed in the treatment and control
group, respectively. XTi and XCi subjects respond to the
clinical outcome in the two groups. Let φBi be the pro-
portion of biomarker responses in the treatment group in
the i-th trial. It is estimated by φ̂Bi ¼ BTi= BTi þ BCið Þ .
Correspondingly, φ̂Xi ¼ XTi= XTi þ XCið Þ is the estimate
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of φXi, which denotes the proportion of clinical outcome
responses in the treatment group. Assuming the associ-
ation between the biomarker and the clinical endpoint is
equal across N trials irrespective of the intervention, a
generalized linear model

g φXið Þ ¼ βg φBið Þ þ β0 ð1Þ
is proposed to describe the relationship. In the model,

g(⋅) is a link function. The biomarker and clinical end-
point are transformed by using the link function because
they are both dichotomous. In this paper, three link func-
tions, the odds function:

g xð Þ ¼ x
1−x

; ð2Þ

the logit function:

g xð Þ ¼ logit xð Þ ¼ ln
x

1−x

� �
; ð3Þ

and the cloglog function:

g xð Þ ¼ cloglog xð Þ ¼ ln − ln 1−xð Þð Þ; ð4Þ
are considered and will be further compared in the

simulations.
Given Bi, BTi, Xi and XTi, φBi and φXi follow the distri-

butions of

BTieBinomial Bi;φBið Þ: ð5Þ
and

XTieBinomial Xi;φXið Þ; ð6Þ
in which Bi = BTi + BCi and Xi = XTi + XCi.
Figure 1 The diagram of Bayesian model building and prediction.
In the Bayesian model, we consider a uniform prior for
the coefficient β and a normal prior for the intercept β0
with mean zero and variance σ2. The φBi takes a prior dis-
tribution of Beta(aBi, bBi). The non-informative priors are
considered for all three parameters β, β0 and φBi. The pos-
terior distributions of the three parameters depend on the
link function in the model. Given Bi, BTi, Xi, XTi and a spe-
cific link function, the estimates of posterior distributions
for β, β0 and φBi are calculated by using the MCMC
method based on the formulas (1), (5) and (6). The un-
certainty on within-trial treatment effect is considered
by incorporating formula (5) and (6) in the model.
For a new trial j, the rate ratio of the treatment and

control group on the clinical endpoint

RRj ¼
φXj

1−φXj
ð7Þ

is employed to evaluate the efficacy of the intervention.
An equal association between the biomarker and the clin-
ical endpoint across the new trial and historical trials is as-
sumed here. It means that the biomarker in the new trial
captures the same treatment effect as the one in the his-
torical trials. Based on the Bayesian model built from N
historical trials, the MCMC estimation of predictive distri-
bution for φXj is obtained when φBj is given. Correspond-
ingly, the predictive distribution of RRj is derived from
formula (7). We take the median of the predictive distribu-
tion as the point estimate of RRj prediction and construct
the 95% credible interval (CI) with 2.5% and 97.5% percen-
tiles. The flow chart of Bayesian model building and pre-
diction is depicted in Figure 1.
The predictive ability of the proposed model is related

to the association strength between the biomarker and
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the clinical outcome. PPV and NPV are generally employed
to measure the association from the patient level. These
directly affect the predictive ability of the proposed Bayes-
ian model. When one uses the proposed approach to build
the Bayesian model and to predict the clinical outcome of
the new trial, the first thing is to evaluate the strength of
the association between the biomarker and the clinical
endpoint, which is measured by PPV and NPV. Therefore,
a simulation study is conducted to explore the application
condition of the proposed method.
Simulation study
A simulation study is employed to (a) compare the pre-
dictive ability of different link functions (the odds, logit
and cloglog functions) in the proposed Bayesian model
when PPV and NPV vary; (b) explore the effect of the asso-
ciation strength between biomarker and clinical endpoint,
which is measured by PPV and NPV, on the predictive abil-
ity of the model; and (c) discuss the number of historical
trials to be included in model building for a good clinical
prediction in the new trial. As we have mentioned above,
the biomarkers with (i) equal PPV and NPV and (ii) higher
NPV and lower PPV are both common in medical studies.
From the practical perspective, both scenarios are consid-
ered in the simulations. All simulations are repeated for
5,000 times and performed by using R package for data
generation and calculation and OpenBUGS for Bayesian
model fitting.
Data generation process
In N historical randomized trials, it is assumed that the
biomarker response rate of control group is 0.3, and that
400 patients complete the trial for simplicity. The sam-
ple size ratio of treatment and control group is 1:1.
Let πBTi and πBCi be the biomarker response rate of

the treatment and control group in the i-th trial. Then
φBi = πBTi/(πBTi + πBCi). when equal sample size in the
two groups. Because 0 < πBTi <1 and πBTi ¼ φBi

1−φBi
πBCi;

φBi has to be 0 < φBi <0.76 when πBCi is specified as 0.3.
Therefore, we consider φBi comes from the uniform dis-
tribution U(0, 0.76) and the biomarker response rate of
the treatment group πBTi is derived when πBCi = 0.3 in
the simulations.
Let Dpi be the biomarker response identifier of the p-th

patient in the i-th trial and Bi ¼
Xni
p¼1

Dpi ¼ 1
� �

: Here,

Dpi = 1 when the biomarker responds; otherwise, Dpi = 0.
It is randomly generated from Dpi~ Bernoulli(πBTi) for the
treatment group and Dpi~ Bernoulli(πBCi) for the control
group.
Let ρ be the concordance index between Cpi and Dpi,

where Cpi denotes the clinical response identifier of the
p-th patient in the i-th trial and Xi ¼
Xni
p¼1

Cpi ¼ 1
� �

: ρ is

from the distribution of Bernoulli(PPV) for Dpi = 1 and
Bernoulli(NPV) for Dpi = 0. The patient-level data of
clinical endpoint Cpi could be derived by using

when Dpi ¼ 1; Cpi ¼
�
1; if ρ ¼ 1
0; if ρ ¼ 0

;

when Dpi ¼ 0; Cpi ¼ 1; if ρ ¼ 0
0; if ρ ¼ 1

:

� ð8Þ

Finally, the summary statistics of each historical trial,
Bi, BTi,Xi and XTi, are derived from the patient-level data
and employed to build the Bayesian model by using for-
mulas (1), (5) and (6).
The calculation of true values
For a new trial j with sample size of 400, given PPV,
NPV and πBTj, the true value of the clinical response rate
of the treatment group is calculated by using

πXTj ¼ πBTj � PPV þ 1−πBTj
� �� 1−NPVð Þ: ð9Þ

Equally, the true value of clinical response rate of control
group πXCj is calculated and the true value of RRj is derived
from RRj = πXTj/πXCj.
Measures of predictive ability
The accuracy and robustness of RR prediction is vital to
measure the predictive ability of the proposed Bayesian
model. But the traditional measures, for example, bias,
root mean square error (RMSE), etcetera, cannot be ap-
plied here because the endpoint is binary. The log trans-
formation is considered to adjust the non-normality of
the binary endpoint. The modified bias and modified
RMSE are proposed to measure the accuracy of the RR
prediction. For the new trial j, when K predicted values
of RRj are obtained, they are calculated by using

Modified bias ¼ log−1

XK
k¼1

logRRP
kj− logRRTrue

j

� �
K

0
BBBB@

1
CCCCA−1

0
BBBB@

1
CCCCA� RRTrue

j

ð10Þ

and
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Modified RMSE ¼ log−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
k¼1

logRRP
kj− logRRTrue

j

� �2

K

vuuuut
−1

0
BBBBB@

1
CCCCCA� RRTrue

j ;

ð11Þ
in which RRTrue

j denotes the true value of RRj and RRP
kj

is the k-th predicted value of RRj. Similarly, modified
RMSE includes the effect of bias direction to estimate
prediction error compared with modified bias. The RR
prediction is more accurate when the modified bias and
the modified RMSE approach to 0.
To measure the precision of the RR prediction, the

average width of the 95% CIs is calculated by using

Average width of 95% CIs ¼ log−1

XK
k¼1

logRRP
kjL− logRR

P
kjU

� �
K

0
BBBB@

1
CCCCA

ð12Þ
where RRP

kjU and RRP
kjL are the upper and lower bound

of 95% CI of the k-th RRj prediction respectively. When
the average width of 95% CIs approaches to 1, the better
the precision of RR prediction is.

Results
Simulation I: comparison of Bayesian model with different
link functions and positive predictive values/negative
predictive values
Three link functions ( the odds, logit and cloglog func-
tions) are compared in this section. The φBj is assumed
to be 0.1, 0.3, and 0.5. Ten historical trials are generated
randomly from patient level and their trial-level summary
data are included for Bayesian model building. Modified
bias and modified RMSE are calculated to measure the ac-
curacy of RR prediction, and average width of 95% CIs is
estimated to evaluate the precision. Both scenarios, (i)
equal PPV and NPV and (ii) higher NPV and lower PPV,
are considered here.

Scenario I: equal PPV and NPV
In the simulations, PPV/NPV is assumed to take the
values of 0.1, 0.25, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95 and 0.99.
Figure 2 depicts the change of modified bias, modified
RMSE and average width of 95% CIs for different φBj

and link functions. No matter which link function is
employed, the modified bias and the modified RMSE are
both worse when PPV/NPV <0.5. The modified RMSE
fails to be estimated for the logit link function when PPV/
NPV <0.5 and φBj ≤0.3 because of the poor prediction.
The other two link functions have the same problems
when PPV/NPV= 0.1 and φBj = 0.1. On the other hand, the
average width of the 95% CIs is not good when PPV/
NPV <0.5, especially when φBj <0.5. Therefore, PPV/
NPV ≥0.5 is an indispensable condition of the proposed
Bayesian model for RR prediction under the assumption
of equal NPV and PPV.
Among the three link functions, both modified bias

and modified RMSE of the logit function are the closest
to zero when PPV/NPV ≥0.5, and the cloglog link function
is better than the odds function. For the logit link func-
tion, modified bias and modified RMSE have a little infla-
tion when PPV/NPV = 0.8 and approach to zero when
PPV/NPV continues increasing. The accuracy of the
prediction remains good, however, if φBj varies when
PPV/NPV ≥0.5 and logit link function is employed. Re-
garding the precision of the RR prediction, the logit
link function has the narrowest average width of the
95% CIs, which increases and approaches to the other
two link functions when PPV/NPV increases. As φBj

increases, the treatment effect becomes smaller and
the average width of 95% CIs of the logit link function
decreases. The logit link function is considered as the
first choice for building the Bayesian model from the
perspective of the accuracy and precision of RR predic-
tion. The detailed simulation results are presented in
Additional file 1: Table S1.
Scenario II: unequal positive predictive value and negative
predictive value
In this scenario, NPV is considered to be 0.99, 0.95 and
0.9, and PPV is not larger than 0.5. The values of PPV
and NPV are listed in Additional file 1: Table S2. As is
depicted in Figure 3, the logit and cloglog link function
have the better prediction accuracy on modified bias and
modified RMSE when PPV +NPV ≥1. But the odds link
function leads to an inaccurate prediction, especially
when φBj = 0.1. As φBj increases, the modified bias of the
cloglog link function is rising and deviates from zero
when φBj ≥0.3 though the modified RMSE of cloglog one
still looks fine. However, the modified bias of the logit
link function always fluctuates around zero regardless of
how φBj varies.
On the other hand, the average width of the 95% CIs

of the logit link function is a little narrower than cloglog
one when PPV/NPV remains the same and PPV+NPV ≥1.
Considering both the accuracy and precision of the pre-
diction, the logit link function is also the optimal one
to build the Bayesian model when PPV + NPV ≥1 under
the assumption of higher NPV and lower PPV. Further-
more, the average width of the 95% CIs of the logit link
function is a little larger when φBj = 0.1 and becomes
smaller when φBj increases. When PPV is fixed, the
logit function has the narrower average width of 95%
CIs, as NPV is smaller.



Figure 2 The simulation results of Bayesian model for different link functions and φBj (N = 10, equal positive predictive value and negative
predictive value). (PPV: positive predictive value; NPV: negative predictive value)
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Simulation II: the number of historical trials to be included
for model building
The number of historical trials to be included for model
building is a key issue to meta-analytic approaches. In
this section, 5, 10, 20, 30 and 50 historical trials are as-
sumed to build the Bayesian prediction model, and their
predictive abilities are compared under (i) equal PPV and
NPV and (ii) higher NPV and lower PPV. Based on the
simulation results of the last section, the logit link func-
tion is employed to build the Bayesian model here. The
observed φBj of the new trial is still assumed to be 0.1, 0.3,
and 0.5.

Scenario I: equal positive predictive value and negative
predictive value
Based on the results of the last section, PPV/NPV ≥0.5 is
considered here. The values of PPV/NPV are listed in
Additional file 1: Table S3. As is seen in Figure 4, the
prediction is a little underestimated when φBj = 0.1. The
modified bias increases and even deviates from zero
positively with the rise of φBj. It varies within (-0.08,0.08)
regardless of how φBj changes. The modified RMSE is
the smallest when 50 trials are included in model
building for φBj = 0.1. But as φBj increases, the larger N
does not always bring an accurate prediction. For ex-
ample, the model built from five trials has the smallest
modified RMSE when φBj = 0.5. It is perhaps because
there is no treatment effect when φBj = 0.5, and more
historical trials include larger variations in the model,
which reduces the accuracy of the prediction. Regard-
ing the precision of RR prediction, the average width
of the 95% CIs is smaller when N is larger and φBj in-
creases. The detailed simulation results are presented
in Additional file 1: Table S3.



Figure 3 The simulation results of Bayesian model for different link functions and φBj (N = 10, higher negative predictive value and
lower positive predictive value). (PPV: positive predictive value; NPV: negative predictive value)
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When N = 20, the maximum modified RMSE is only
about 0.1, and the average width of the 95% CIs is also
larger than 0.6 even when φBj = 0.1. Therefore, the mini-
mum number of historical trials to be included for
model building is proposed to be 20 for an accurate and
precise prediction when PPV and NPV are equal.

Scenario II: unequal positive predictive value and negative
predictive value
In the simulations, NPV is considered to be 0.99, 0.95
and 0.9 and PPV ≤0.5. As long as PPV + NPV ≥1 is satis-
fied, the accuracy of the prediction is good on both
modified bias and modified RMSE. They both converge
to zero when N and φBj increase. The larger PPV +NPV
is, the more accurate the prediction. Even when N = 5,
the modified RMSE is smaller than 0.4 for φBj = 0.1. There-
fore, five historical trials are enough to build a model that
has an accurate prediction.
On the other hand, the larger N leads to the smaller

average width of 95% CIs, which is shown in Figure 5.
When PPV and φBj is fixed, the average width of 95% CIs
rises with the increase of NPV. When N = 5 and φBj = 0.1,
the minimum average width of 95% CIs is only about 0.2.
The 95% CIs of the RR prediction is wide and the Bayesian
model brings a conservative interval estimate. In conclu-
sion, when a higher NPV and a lower PPV are considered,
the Bayesian model built from five historical trials is
enough for an accurate point estimate of the prediction,
but leads to a conservative interval estimate. If a precise
interval estimate of RR prediction is expected, N = 30 is



Figure 4 The simulation results of Bayesian model for various N and φBj given logit link function (equal positive predictive value and
negative predictive value). (PPV: positive predictive value; NPV: negative predictive value)
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proposed where the average width of 95% CIs is larger
than 0.5 even when φBj = 0.1.

Hypothetical example
To evaluate the efficacy of a vaccine in clinical trial, the
incidence rate of the disease of interest is usually ob-
served. Vaccine efficacy (VE) is estimated by using VE =
1 − πT/πC = 1 − RR, in which πT and πC denote the inci-
dence rate of the disease in the vaccine and control
group. However, the occurrence of disease requires too
long a follow-up time. Virus infection is considered as an
early biomarker of the disease. It has an NPV of 99.99%
and PPV of 15% for predicting the occurrence of the dis-
ease. VE is just a transformation of RR. It is possible to
predict vaccine efficacy earlier when the infection cases
are observed by employing our proposed approach.
It was hypothesized that five global placebo-controlled

vaccine trials with sample size ratio of 1:1 completed in
the United States, Europe and Japan. The number of
disease cases and infection cases in the vaccine and pla-
cebo group in each trial are listed in Table 1. Recently,
a new placebo-controlled trial was conducted in China
to evaluate VE in the Chinese population. A total of
3606 subjects in two groups of equal size were recruited.
A total of 36 infection cases were observed, with 7 cases
from the vaccine group. No disease was observed, and we
wanted to evaluate vaccine efficacy earlier based on the in-
fection cases.
It is presumed that there is no ethnic difference in the

association between infection and disease occurrence even
if the vaccine efficacy is different between Chinese and
other ethnic groups. The proposed approach can be ap-
plied to build the Bayesian model from historical vaccine
trials and to predict VE from the observed infection cases
in the Chinese population. A Bayesian model built from
five historical vaccine trials in the United States, Europe
and Japan could bring an accurate point estimate and a
conservative interval estimate of VE prediction according



Figure 5 The simulation results of the Bayesian model for various N and φBj given logit link function (higher negative predictive value
and lower predictive value). (PPV: positive predictive value; NPV: negative predictive value)
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to the simulation results in last section. Logit link function
is employed in the Bayesian model. The VE on disease in
the Chinese population is predicted as 81.84% with 95%
CI of (53.98%,97.54%). Consequently, the vaccine is con-
sidered to have significant efficacy in the Chinese popula-
tion because the lower boundary of the conservative 95%
CI is still larger than zero.
Table 1 Five hypothetical historical vaccine trials

N Number of infection cases

Vaccine Placebo

1 2954 2 213

2 3200 10 86

3 529 2 45

4 3674 27 130

5 3452 24 296

CI: credible interval.
Discussion
The proposed Bayesian prediction model between a bio-
marker and the clinical outcome in this article is one of
meta-analytic approaches. It focuses on the prediction of
clinical outcome based on biomarker, not the replacement
as a surrogate. According to Prentice criterion [7], the
proposed Bayesian model requires that the association
Number of disease cases Vaccine efficiency
(95% CI) on diseaseVaccine Placebo

0 23 100.0%(82.5%,100.0%)

1 6 83.3%(-37.6%,99.6%)

0 2 100.0%(-431.4%,100%)

3 8 62.7%(-55.5%,93.6%)

0 30 100.0%(87.1%,100.0%)
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between the biomarker and the clinical endpoint be equal
across the two groups. Compared with the Daniels and
Hughes method, the proposed Bayesian model is a
complete meta-analytic approach, which only requires
the accessible trial-level summary data of previous trials,
and no patient-level data is necessary. Nikolakopoulos
et al. [27] also employed a Bayesian method to predict
clinical endpoint based on observed biomarker for phase
II trial decision making. But there are important differ-
ences between the two approaches. First, the model be-
tween a biomarker and the clinical endpoint must be
known for clinical outcome prediction, and how to build
the model from previous studies was not considered in
[27]. But it is part of our work. Both model building from
historical trials and model prediction for a new trial are
considered here. Second, as a meta-analytic approach, our
proposed model only involves trial-level summary data of
historical studies for model building and predicts clinical
endpoint with trial-level summary biomarker data for the
new trial. The patient-level data of the new trial is not ne-
cessary for the prediction. PPV and NPV are not involved
in model building and model prediction, but are needed
for model evaluation. Third, the proposed prediction
model is also different. Here, we propose a generalized
linear model to describe the association between the
biomarker and the clinical endpoint. We only consider
the prior information on the model parameter β, β0 and
φBi for model building, but not place prior information
on the clinical endpoint in the prediction. Finally, the
scenario of unequal PPV and NPV between the biomarker
and the clinical endpoint, which is common in vaccine
clinical trials, is discussed in this article. On the other
hand, the proposed Bayesian model describes the relation-
ship between biomarker and clinical endpoint regardless
of treatment effect. The historical trials for model building
do not have to contain the same treatment and control
group. The observational studies are also available for
model building as long as both biomarker and clinical
endpoint are collected in the studies. It further increases
the availability of historical studies and makes it easy to be
applied in practical.
In the proposed Bayesian model, φBi and φXi are

employed to measure the treatment difference of bio-
marker and clinical outcome between the two groups and
connected with formula (1). That is because this paper
is to predict the rate ratio of clinical outcome for binary
endpoint. φBi and φXi, which are usually considered in
vaccine clinical trials, have a direct connection with RR
that is shown in formula (7) and does not depend on
trial size. The association between the biomarker and
clinical endpoint could be well described in the model
in virtue of φBi and φXi. When unequal sample size in the
two groups is considered, φBi is still calculated by φBi=πBTi/
(πBTi+πBCi), but estimated by φ̂Bi ¼ BTi= BTi þ BCi � Rð Þ
where R is the sample size ratio of treatment and control group.
Equally, φXi is estimated by φ̂Xi ¼ XTi= XTi þ XCi � Rð Þ.
Therefore, the proposed Bayesian model is still applic-
able for unequal sample size in two groups.
Though multiple meta-analytic models between bio-

marker and clinical outcome were proposed, few of them
evaluated the model in a broad sense and explicitly de-
scribe the application guidance. The direct assumption on
trial-level data in Baker’s simulation study [17] possibly
influences the evaluation. The association model may
be over-evaluated because the information loss from the
trial-level data was ignored. R2

trial , introduced by Buyse
et al. [14], is difficult to interpret, and it is difficult to de-
fine the application condition clearly. To overcome both
problems, we make assumption on the patient-level data
of historical trials and perform the simulations to evaluate
the meta-analytic model.
Both scenarios, (i) equal PPV and NPV and (ii) higher

NPV and lower PPV, are considered in the simulations
from the practical perspective. In clinical diagnosis, higher
PPV and NPV are usually required for a biomarker to de-
tect the potential disease earlier [27,28]. But the biomarker
with a higher NPV and lower PPV is also common in
vaccine studies. According to the simulation results, the
proposed Bayesian model leads to a good prediction of
clinical RR based on a biomarker when both PPV and
NPV are larger than 0.5. For higher NPV and lower PPV,
the model makes sense of the prediction when PPV +
NPV ≥1. In an actual trial, the exact values of NPV and
PPV between biomarker and clinical outcome are gener-
ally unknown. But it is possible to estimate PPV and NPV
within a range by clinicians from the medical mechanism
and clinical experiences and evaluate if the model is ap-
plicable. Furthermore, the logit link function is better than
other functions in model building from the point of accur-
acy and precision of RR prediction. But for a specific trial,
an extensive simulation for the trial is recommended to
choose the optimal link function for model building to sat-
isfy the demand of the trial.
Regarding the minimum number of historical trials to

be included in model building, it is advised that 20 his-
torical trials be enough to build a model that predicts
clinical RR accurately and precisely for equal PPV and
NPV. When higher NPV and lower PPV is considered,
the model built from five historical trials is able to lead
to an accurate point estimate of the prediction, but a
conservative interval estimate. If a more precise predic-
tion is demanded, a larger N is required. However, if
too low biomarker and clinical response rate is expected in
all historical trials, more historical trials are proposed to be
included in model building in order to describe the
association between biomarker and clinical outcome
accurately and well predict the clinical outcome from
biomarker in the new trial. A simulation is also proposed
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to evaluate the minimum number of historical trials for a
specific trial.
The proposed Bayesian model for clinical outcome

prediction based on biomarker in this paper is not only
for binary endpoint, but also continuous variables as long
as a suitable link function is given. The proposed method
has extensive potential applications in drug development.
The example shows an application in global drug develop-
ment. As long as an equal association between the bio-
marker and the clinical endpoint across different ethnic
groups is considered from the medical point, it is possible
to ‘bridge’ the relationship from historical global studies
to a new regional trial in virtue of the proposed Bayesian
model and then predict clinical endpoint in the new re-
gion. It is different from the traditional bridging study,
which bridges the treatment effect from historical trials,
and equally enhances the efficiency of regional trial in
another way. On the other hand, the early prediction of
clinical outcome with the help of the Bayesian model
built from the historical studies is able to help with
making a go/no-go decision in new drug development.
However, a few practical problems, for example, sample
size estimation of regional trial involving biomarker, go/no-
go decision rule based on biomarker, etcetera, will be
encountered in the application of the proposed Bayesian
model. They are not in the scope of this article and will be
discussed in further studies.

Conclusions
A Bayesian prediction model between a biomarker and
the clinical outcome is proposed in this paper. It is a
complete meta-analytic approach and only requires trial-
level data in model building. It is able to predict well the
clinical outcome from an observed biomarker when PPV/
NPV ≥0.5 for equal PPV and NPV and when PPV +NPV
≥1 for higher NPV and lower PPV. The Logit link function
is preferred in both scenarios. The minimum number of
historical trials to be included in model building is pro-
posed to be 20 when PPV and NPV are considered to be
equal. For higher NPV and lower PPV, the Bayesian model
from five historical trials could lead to an accurate point
estimate, but conservative interval estimate of the predic-
tion. The proposed model has potential applications in
decision making of new drug development and global-
regional drug development program. But the practical
problems have to be discussed in further studies.
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