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Abstract

Background: Adjustment for prognostic covariates can lead to increased power in the analysis of randomized trials.
However, adjusted analyses are not often performed in practice.

Methods: We used simulation to examine the impact of covariate adjustment on 12 outcomes from 8 studies
across a range of therapeutic areas. We assessed (1) how large an increase in power can be expected in practice;
and (2) the impact of adjustment for covariates that are not prognostic.

Results: Adjustment for known prognostic covariates led to large increases in power for most outcomes. When
power was set to 80% based on an unadjusted analysis, covariate adjustment led to a median increase in power to
92.6% across the 12 outcomes (range 80.6 to 99.4%). Power was increased to over 85% for 8 of 12 outcomes, and
to over 95% for 5 of 12 outcomes. Conversely, the largest decrease in power from adjustment for covariates that
were not prognostic was from 80% to 78.5%.

Conclusions: Adjustment for known prognostic covariates can lead to substantial increases in power, and should
be routinely incorporated into the analysis of randomized trials. The potential benefits of adjusting for a small
number of possibly prognostic covariates in trials with moderate or large sample sizes far outweigh the risks of
doing so, and so should also be considered.
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Background
Adjustment for baseline covariates in the analysis of ran-
domized controlled trials (RCTs) can lead to a substan-
tial increase in power when the covariates are highly
prognostic [1-10]. Hernandez et al. found that increases
in power of over 20% are possible in certain circum-
stances [3], and this has been demonstrated in simula-
tion studies based on real datasets [1,2,6] and confirmed
through reanalysis of an RCT [8]. Other benefits of ad-
justment include protection against chance imbalances
in important baseline covariates [7], and maintaining
correct type I error rates when the covariates have been
used in the randomization process [11-14].
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Despite these benefits, unadjusted analyses dominate
in practice; reviews have found that between 24 and 34%
of trials use covariate adjustment for their main analysis
[15-19]. It is unclear why so few RCTs perform adjusted
analyses. Researchers may be unsure or sceptical as to
how much of an increase in power is likely to occur in
practice. Few articles have examined this issue using real
data, and most have been limited to datasets in trauma-
tic brain injury [2,5,8] or Alzheimer’s disease [20]. Fur-
ther research to assess the potential increase in power
through adjustment for known prognostic factors, and
the decrease in power through adjustment for nonprog-
nostic factors, would allow researchers to make more in-
formed decisions as to whether covariate adjustment is
likely to be worthwhile in their own trial.
In this paper we give an overview of the benefits and

risks of covariate adjustment in RCTs, using examples
from a previously published trial. We then examine 12
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outcomes from 8 different studies in a variety of disease
areas to determine (1) the likely increase in power
through adjustment for known prognostic covariates;
and (2) the likely decrease in power through inadvert-
ently adjusting for nonprognostic covariates.
Methods
Benefits of covariate adjustment
We describe some of the benefits of covariate adjustment
next, and illustrate these concepts using data from the
Second Multi-centre Intra-pleural Sepsis Trial (MIST2)
[21]. MIST2 was a four-arm trial that compared tissue
plasminogen activator (tPA), DNase and tPA +DNase
against placebo in patients with a pleural effusion. We
focus here on the treatment comparison between the
tPA + DNase and placebo groups, for simplicity. The
primary outcome measure was the change from base-
line to day 7 in the size of the patient’s pleural effusion
(a continuous outcome). A major secondary outcome
measure was the need for surgery at 90 days (a binary
outcome). Patients were randomized using minimi-
zation [22-25]; stratification factors were: the size of the
pleural effusion at baseline; whether the infection was
hospital-acquired, and the presence of purulent pleural
fluid.
Increase in power (continuous outcomes)
One of the main advantages of covariate adjustment is
that it can lead to increased power. For continuous out-
comes, this occurs because the covariates help to explain
some of the variation in outcomes between patients,
leading to smaller standard errors (SEs) for the treat-
ment effect. The amount by which the SE is reduced de-
pends on the correlation between the covariates and the
outcome; the higher the correlation, the larger the in-
crease in power [4].
This is particularly relevant for continuous outcomes

that are also measured at baseline (for example, a pain
score might be measured at baseline and again at 6
months). These baseline measurements are generally
highly correlated with outcome, and so adjustment can
lead to substantial gains in power [7,26]. This is true re-
gardless of whether the outcome measure is defined as
the measurement at 6 months, or as a change from
baseline to 6 months; as long as the analysis adjusts for
the baseline measurement, both analyses provide identi-
cal treatment effect estimates and SEs.
In the MIST2 trial, the correlation between the size of

the patient’s pleural effusion at baseline and day 7 was
0.44. Accounting for baseline effusion size in the analysis
resulted in a large reduction in the SE of the treatment
effect (unadjusted SE of 4.3 vs adjusted SE of 2.8; a 35%
reduction), leading to a substantial increase in power.
Increase in power (binary and time-to-event outcomes)
Adjusting for important prognostic covariates in the ana-
lysis of a binary or time-to-event outcome when estimating
an odds ratio or hazard ratio will also lead to an increase
in power. However, unlike continuous outcomes, where
adjusting for important covariates leads to a reduction in
the SE, adjusting for important covariates with a binary or
time-to-event outcome will generally lead to larger SEs;
however, this increase in the SE is offset by an increase in
the estimated treatment effect; that is, estimated odds or
hazard ratios will be further from 1 (where an odds or
hazard ratio of 1 indicates no treatment effect), assuming
that there is a true treatment effect. Therefore, adjustment
for covariates with a binary or time-to-event outcome
will generally lead to a loss in precision (wider confi-
dence intervals) but increased power [9,10].
This difference occurs because the methods are estima-

ting different treatment effects. Adjusted analyses lead to
subject-specific (or conditional) estimates, which compare
an ‘intervention’ patient with a ‘control’ patient with the
same covariates. Unadjusted analyses lead to marginal (or
population-averaged) estimates, which compare an ‘inter-
vention’ patient with a ‘control’ patient who has been ran-
domly selected from the trial, regardless of their covariate
values. For continuous outcomes, subject-specific and
marginal analyses have the same expected treatment ef-
fect, but this is not generally the case for binary and time-
to-event outcomes [9].
In the MIST2 trial, adjustment for the size of the

pleural effusion at baseline in the analysis of surgery at
90 days led to increases in both the size of the treatment
effect and its SE: an unadjusted log(odds ratio) of −1.14
(SE, 0.84) vs an adjusted value of −1.46 (SE, 0.87). How-
ever, because the increase in the treatment effect
through adjustment was much higher than the increase
in the SE, this led to a substantial increase in the Z stat-
istic (unadjusted −1.36 vs adjusted −1.67; a 23% in-
crease), leading to increased power.
Protection against chance imbalance in important baseline
covariates
Randomization ensures that, on average, both known
and unknown covariates are well balanced between treat-
ment groups [23]. However, randomization does not gua-
rantee balance; in any individual trial, there may be large
imbalances in important prognostic covariates between
treatment groups merely by chance. Any such imbalance
can give an unfair advantage to one treatment group over
another if not accounted for in the analysis. Therefore,
prespecifying that important baseline covariates are in-
cluded in the analysis will help to ensure that any chance
imbalances between treatment groups in these covariates
will not affect treatment effect estimates [27].
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In the MIST2 trial, there was an imbalance between
treatment arms in the size of the pleural effusion at
baseline (mean placebo 39 (standard deviation (SD), 22)
vs mean tPA +DNase 47 (SD 24)). Because the size of
the effusion at baseline was highly correlated with the
size at day 7 (0.44), this imbalance gave an unfair ad-
vantage to the tPA + DNase group. The unadjusted treat-
ment effect was −12.3, but was reduced to −7.6 after
adjustment (a 38% reduction).

Appropriate confidence intervals and P values after
stratified randomization
Many trials use stratified randomization to balance key
prognostic covariates between treatment arms. A recent
review found 63% of trials used at least one stratification
factor; however, only 26% of these appropriately accoun-
ted for these variables in their primary analysis [12]. If
the stratification factors are associated with outcome,
then stratified randomization has the effect of forcing
the outcomes between treatment groups to be more si-
milar than they otherwise would be. This leads to correl-
ation between the treatment groups, which violates the
standard statistical assumption of independence. If this
correlation is ignored (by not adjusting for the stratifi-
cation factors in the analysis) then the SE for treatment
effect will be biased upwards, leading to confidence in-
tervals that are too wide, P values that are too large,
incorrect type I error rates and a reduction in power.
Conversely, accounting for the stratification factors in
the analysis leads to correct SEs and no loss in power
[11-14,28]. Therefore, it is essential that stratification
factors be accounted for in the trial analysis.
The MIST2 trial used three stratification factors in the

randomization process. Previous research has shown
that not accounting for these stratification factors in the
analysis led to SEs that were biased upwards by 14 to
15%, which in turn led to type I error rates of around
2.6% (rather than the nominal 5%). This resulted in
major reductions in power (adjusted 80% vs unadjusted
59%) [11].

Risks of covariate adjustment
Loss in power due to adjustment for nonprognostic
covariates
Although adjustment for prognostic covariates can lead
to increased power, adjustment for nonprognostic cova-
riates can lead to increased SEs, and thus a decrease in
power. This occurs because each continuous or binary
baseline covariate uses a ‘degree of freedom’, which ef-
fectively reduces the sample size, meaning that there is
less information with which to estimate the treatment
effect (in cases where the covariate actually is prognos-
tic, the benefits of the prognostic ability outweigh any
loss of information, and power will be increased despite
the loss of a degree of freedom). This is particularly an
issue with small sample sizes (as reducing the effective
sample size from 50 to 40 patients through adjustment
for 10 nonprognostic covariates will have a much lar-
ger impact than reducing it from 500 to 490 patients).
Therefore, caution is required in the number of covariates
that are included in the analysis if the sample size is small.

Inflation of the type I error rate due to overstratification
Covariate adjustment can lead to inflated type I error
rates (that is, increased probability of a false positive)
when there is a small sample size and a binary or time-
to-event outcome [11,29]. This is because covariate adjust-
ment can lead to overstratification in these situations,
meaning that there are too many covariates in relation to
the number of observed events. It is therefore important
to keep the overall sample size and expected event rate in
mind when deciding how many covariates to include in
the analysis.

Missing data on covariates
If some patients are missing data on certain covariates
that were to be included in the analysis, it may be un-
clear how to proceed. Two unsatisfactory options are to
perform a complete case analysis (where patients with
missing values for the covariates are excluded from the
analysis) and to exclude covariates with missing data
from the analysis. A complete case analysis is unsatisfac-
tory as it will reduce the sample size, and therefore re-
duce power (the opposite of our intention). Excluding
covariates with missing data from the analysis is simi-
larly unsatisfactory, as it deviates from the prespecified
analysis plan, and might result in key prognostic covari-
ates being excluded, negating some of the benefits of
adjustment.
A preferable and simple alternative is to use mean im-

putation [30], where the missing values are replaced with
the mean of the observed data. This has been shown to
give unbiased estimates of treatment effect and preserve
the type I error rate in RCTs (unlike in observational
studies, where it can lead to bias). This allows all pa-
tients to be included in the analysis, and should there-
fore increase power compared with a complete case
analysis, or one that excludes the covariate. Other simple
and appropriate methods of dealing with missing base-
line data are also available [30].

Bias due to data-driven methods of choosing covariates
Methods are available to identify which covariates to in-
clude in the analysis, such as stepwise selection, where
variables with large P values are removed, or by adjust-
ing for covariates with a large observed difference be-
tween treatment arms at baseline. Reviews have found
that between 16% and 31% of trials use these methods
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[15,17,18]. However, these methods use the trial data
to decide which covariates to include, and have been
shown to lead to incorrect type I error rates in many
situations [31]. Prespecifying which variables will be
included in the analysis in the protocol or analysis
plan will avoid bias, and give more credibility to the
trial results.

Simulation study
We performed a simulation study to assess the increase
or decrease in power from covariate adjustment across a
number of outcomes and studies in a variety of different
disease areas.
We performed simulations for 12 different outcomes

(four continuous, six binary, two time-to-event) based
on 8 different studies. The studies were the AUGIB study
[32-35], the Function After Spinal Treatment, Exercise,
and Rehabilitation (FASTER) trial [36], the MIST2 trial
[21], the MOSAIC trial [37], the primary biliary cirrho-
sis (PBC) trial [38], the PROGRAMS trial [39], the
RE01 trial [40] and the TIME2 [41] trial. Further in-
formation on each study is available in Table 1 and in
Additional file 1.
Full details of the simulation study can be found in

Additional file 1. Briefly, we simulated 5,000 datasets for
Table 1 Description of studies

Study Disease area Study type Sample size Outcome

AUGIB Acute upper
gastrointestinal
bleeding

Observational
study

600a Mortality i

Further ble
hospital

RBC transf
hospital

FASTER Postoperative
rehabilitation

RCT 316 Oswestry d
index

MIST2 Malignant pleural
effusion

RCT 210 Size of the
pleural eff
7 days

Need for s
90 days

MOSAIC Sleep apnoea RCT 391 Epworth S
Score

PBC Primary biliary
cirrhosis

RCT 312 Time to de

PROGRAMS Extremely preterm,
small for gestational
age neonates

RCT 280 Sepsis-free
to day 14

Mortality u

RE01 Metastatic renal
carcinoma

RCT 347 Time to de

TIME2 Malignant pleural
effusion

RCT 106 Mean brea
over 42 da

aThis dataset contained 6,750 patients; however, when assessing this study, we set
chose 600 as this was the median sample size found among trials with a binary pri
each outcome and the simulated data were based on
parameter estimates obtained from the study datasets.
We used two different treatment effects; one was calcu-
lated to give 50% power (referred to as an ‘underpowered’
trial) and the other to give 80% power (an ‘adequately
powered’ trial), based on an unadjusted analysis. We used
between one and four known prognostic covariates for
each outcome, taken from the study datasets.
For each outcome, we compared power between four

different methods of analysis: (1) unadjusted for all base-
line covariates; (2) adjusted for known prognostic covari-
ates; (3) adjusted for three ‘random-noise’ covariates
(which were not related to the outcome); and (4) ad-
justed for both known prognostic and ‘noise’ covariates.
We assessed the impact of included noise covariates to
determine how much of a loss in power to expect from
adjusting for covariates that were not related to out-
come. All analyses were performed using a regression
model (linear regression for continuous outcomes, logis-
tic regression for binary outcomes and a Cox model for
time-to-event outcomes). Adjusted analyses were per-
formed by including the covariates in the regression
model. All covariates were kept in the model, regardless
of statistical significance; this was to reflect adherence to
a predefined analysis plan.
measure Outcome type Prognostic covariates

n hospital Binary (1) clinical Rockall score

eding in Binary (1) clinical Rockall score

usion in Binary (1) presence of shock; (2) haemoglobin
concentration at baseline

isability Continuous (1) Oswestry disability index at baseline;
(2) type of surgery

patient’s
usion at

Continuous (1) size of the pleural effusion at baseline;
(2) hospital-acquired infection; (3) large
tube size; (4) drain present

urgery at Binary (1) size of the pleural effusion at baseline;
(2) large tube size

leepiness Continuous (1) Epworth Sleepiness Score at baseline;
(2) sex; (3) MRI received at baseline

ath Time-to-event (1) age; (2) albumin concentration; (3)
bilirubin concentration; (4) histological
stage

survival up Binary (1) gestational age at birth; (2) birth
weight

p to day 14 Binary (1) gestational age at birth; (2) birth
weight

ath Time-to-event (1) WHO score; (2) tumour grade; (3)
white cell count

thlessness
ys

Continuous (1) breathlessness at baseline; (2)
performance status; (3) mesothelioma

the sample size to 600 patients to make this more realistic to a trial setting. We
mary outcome in a recent review [12]. RCT, randomized controlled trial.
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Figure 1 Simulation results for ‘underpowered’ trials. Change in power through covariate adjustment as compared with unadjusted analysis
for ‘underpowered’ trials (where an unadjusted analysis gives 50% power).
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Results
Results are shown in Figures 1 and 2. Adjustment for
prognostic covariates led to substantial increases in
power for most outcomes. For ‘underpowered’ trials, co-
variate adjustment led to a median increase in power
across the 12 outcomes from 50% to 66.7% (range 51.0
to 84.4%). Power was increased to over 55% for 8 of 12
outcomes, and to over 75% for 5 of 12 studies. The
increase in power from covariate adjustment was smal-
ler in ‘adequately’ powered trials, though still substan-
tial. The median increase in power was from 80% to
92.6% (range 80.6 to 99.4%), and power was increased to
over 85% and 95% for 8 of 12 and 5 of 12 outcomes,
respectively.
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Figure 2 Simulation results for ‘adequately powered’ trials. Change in
analysis for ‘adequately powered’ trials (where an unadjusted analysis gives
Adjustment for ‘noise’ covariates had little impact on
power. For ‘underpowered’ trials, the largest decrease in
power was from 50% to 48.6% (range 48.6% to 50.3%),
and only 2 of 12 trials had a decrease in power to less
than 49%. For ‘adequately’ powered trials the largest de-
crease in power was from 80% to 78.5% (range 78.5% to
80.1%), and only 1 of 12 trials had a decrease in power
to less than 79%.

Discussion
Although it is well known that adjustment for prognostic
covariates can lead to increased power in RCTs, there
has been little research attempting to quantify how much
of a gain is possible under real trial conditions, or how
TIME2 (breathlessness)

FASTER (Oswestry Disability Index)

MOSAIC (Epworth Sleepiness Score)
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PROGRAMS (mortality)
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20

power through covariate adjustment as compared with unadjusted
80% power).
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much of a loss in power can be expected after adjustment
for nonprognostic (or ‘noise’) covariates. A better under-
standing of this would help researchers to select appropri-
ate covariates to adjust for in their own trials a priori.
In this simulation study using real patient data from a

number of differing disease and therapeutic areas, we
found that adjustment for strong prognostic covariates
led to substantial increases in power in the majority of
scenarios we studied. We additionally found that adjust-
ment for ‘noise’ covariates had little negative impact on
power. These two findings suggest that known prognos-
tic covariates should be included in the analysis, in order
to increase power. Additionally, a small number of co-
variates that are suspected (but not known) to be prog-
nostic could also be included in the analysis, since the
potential gains in power if they truly are prognostic far
outweigh any potential loss in power if they are not
prognostic. As discussed elsewhere, the covariates to be
adjusted for should be prespecified in the protocol or
analysis plan prior to examining the data [42].
The one exception to these recommendations is when

there is a small sample size and a binary or time-to-
event outcome, as adjustment for covariates in these sce-
narios could potentially inflate the type I error rate
[11,29]. This is unlikely to be a problem for trials with
a moderate or large sample size. However, it is often
difficult to define how small is too small in terms of
sample size; if in doubt, methods to account for prog-
nostic covariates with a small sample size have been
proposed [29].
Our study has some limitations. First, we only assessed

the impact of adjusting for three ‘noise’ covariates. We
chose this number, as we felt that an analysis that adjusts
for a small number of covariates is generally viewed
more favourably than an analysis adjusting for a large
number of covariates [43]. Further research to examine
the impact of adjustment for more than three suspected
prognostic covariates might be useful. Second, we have
not discussed the different methods of accounting for
prognostic covariates that can be used. However, these
issues have been discussed elsewhere [28,29,44,45], and
are beyond the scope of this study. Finally, the AUGIB
study was observational, and the participants might have
been more heterogeneous than in most randomized tri-
als, which could increase the apparent effect of covariate
adjustment. Therefore, results from the AUGIB study
should be interpreted cautiously.

Conclusions
Researchers should adjust for known prognostic covari-
ates. The possible benefits of also adjusting for a small
number of suspected prognostic covariates with moder-
ate or large sample sizes far outweigh any risks, and so
should also be considered.
Additional file

Additional file 1: Study information, simulation details and results.
Additional information on each study used, how the simulation study
was performed and simulation results.
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