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Abstract

Reviews have repeatedly noted important methodological issues in the conduct and reporting of cluster
randomized controlled trials (C-RCTs). These reviews usually focus on whether the intracluster correlation was
explicitly considered in the design and analysis of the C-RCT. However, another important aspect requiring special
attention in C-RCTs is the risk for imbalance of covariates at baseline. Imbalance of important covariates at baseline
decreases statistical power and precision of the results. Imbalance also reduces face validity and credibility of the
trial results. The risk of imbalance is elevated in C-RCTs compared to trials randomizing individuals because of the

allocation technique for their trial.

difficulties in recruiting clusters and the nested nature of correlated patient-level data. A variety of restricted
randomization methods have been proposed as way to minimize risk of imbalance. However, there is little
guidance regarding how to best restrict randomization for any given C-RCT. The advantages and limitations of
different allocation techniques, including stratification, matching, minimization, and covariate-constrained
randomization are reviewed as they pertain to C-RCTs to provide investigators with guidance for choosing the best
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Review

Introduction

Cluster-randomized controlled trials (C-RCTs) allocate
intact social units (clusters, such as hospitals, schools,
or communities) and collect data from members of
those social units (individuals, such as patients, stu-
dents, or citizens). Since data from individuals within a
cluster cannot be assumed to be independent of each
other, C-RCTs require unique methodological consid-
erations compared to trials randomizing individuals
(I-RCTs) [1]. Unfortunately, reviews have repeatedly
noted important methodological issues in the conduct
and reporting of cluster randomized trials (C-RCTs)
[2-6]. In particular, clustering must be taken into
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account when calculating the sample size and conduct-
ing analyses in a C-RCT [7]. However, investigators
embarking on a C-RCT must consider more than just
adaptations to the sample size and the analytic plan
when designing their trial. Another criterion that can
impact upon judgments regarding the validity of a
trial, covariate balance at baseline across treatment
groups, also requires added attention in C-RCTs.

The importance of balance at baseline

Balance at baseline in an experiment provides a founda-
tion for causal inference by enhancing credibility of
asymptotic claims that groups are equal. In an RCT,
balance at baseline of measurable covariates similarly
provides a theoretical basis to attribute measured effects
to the intervention (or reassurance that a null finding is
indeed null). Two additional reasons to seek balance at
baseline are described below, first for RCTs in general
and then for C-RCTs specifically.
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The first additional reason to seek baseline balance
across covariates is that it increases analytical power and
statistical precision [8]. The chance imbalances created
by simple randomization will tend to increase the vari-
ance of the estimated treatment effect and therefore
decrease the efficiency of the trial [9]. Simulation studies
show that a trial that uses simple randomization to allo-
cate intervention groups risks chance imbalances that
can result in a ‘loss’ of information [10]; the implication
may be an important decrease in power and widened
confidence intervals around the estimate of effect. Con-
versely, improving efficiency by increasing balance may
have a non-trivial impact on reducing trial costs. There-
fore, measures of imbalance have been used as a criter-
ion to compare the efficiency of simple randomization
with other allocation techniques [11]. Other ways to in-
crease statistical power in trials include targeted patient
selection and use of covariate-adjusted analysis [12], but
these approaches are outside the scope of this paper.

The second additional reason to seek baseline balance
is to increase the face validity, credibility, and potential
impact of the trial. Even when a priori adjusted analyses
are appropriately [13] used to analyze a randomized trial,
readers may find such analyses less transparent and thus
less trustworthy, especially when adjusted and un-
adjusted results are grossly different [9]. Therefore, even
when adjusted analysis may increase power in an I-RCT,
they may be avoided to simplify presentation of results.

Balance at baseline for C-RCTs

Unfortunately, methodological reviews of C-RCTs con-
sistently find that investigators neglect to account for
correlated data when projecting the required sample size
and subsequently run studies that are underpowered [5].
It is especially important to consider statistical efficiency
in C-RCTs, since recruiting clusters is often more diffi-
cult than recruiting individuals [14]. Furthermore, vari-
ability in cluster size due to challenges with recruiting
equal numbers of participants per cluster will exacerbate
loss of power [15-17]. Although block-randomization in
C-RCTs can improve balance in numbers of clusters, it
does not address number of participants within clusters.
(This problem may be partially addressed if the cluster
size is known in advance by rank-ordering the clusters
by size, then applying block-randomization [18] or by
stratified participant-level recruitment, if recruitment of
participants occurs after recruitment of clusters [19].)
Since power in C-RCTs may be limited by the challenges
of recruiting both clusters and participants and because
power is further limited by variability in the number of
participants within clusters, trying to retain power by
ensuring balance in the baseline characteristics of both
clusters and participants in C-RCTs becomes even more
important. Therefore, investigators planning a cluster
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trial should consider options for actively balancing base-
line covariates in addition to taking precautions to bal-
ance the number of participants.

C-RCTs also require special attention with respect to
the perceived credibility of results. In general, analyses
in C-RCTs are slightly more complex than in I-RCTs to
account for clustering. It has been proposed that results
based on analysis of C-RCTs from hierarchical models
that properly account for both patient-level results and
cluster-level data may be less transparent to readers [20].
Therefore, balance at baseline may play an especially im-
portant role in C-RCTs by reducing the difference be-
tween adjusted and unadjusted results.

Random allocation and balance at baseline in C-RCTs
Small differences at baseline in a properly conducted I-
RCT are thought to represent chance findings rather
than bias [21]. Given a large enough sample, ‘simple’ (or
complete) randomization is expected to produce balance
in C-RCTs across cluster-level covariates because this is
the level of allocation. Unfortunately, many C-RCTs do
not have enough clusters to create a reasonable expect-
ation for cluster-level balance. Consider the review of C-
RCTs published between 2000 and 2008 [4], which
found that the median number of clusters was 21, but
25% had fewer than 12 and 14% had less than four clus-
ters per arm (the fewest recommended to ensure statis-
tical validity [22]).

In C-RCTs, baseline balance is needed at the level of
the individual as well as the level of the cluster. Since
participants in each cluster are likely to share certain
characteristics, important participant-level covariate
imbalances across treatment arms are possible, even if
cluster-level characteristics are fully balanced. In a large
C-RCT aiming to improve management of osteoporosis,
which used simple randomization to allocate 435 physi-
cians (clusters) and 1,973 patients, sufficient balance was
achieved across physician characteristics, but not for
patient-level characteristics [23]. In particular, the groups
had important differences in the proportion of patients
with a history of a fracture (a prognostically important
covariate). In a separate paper, the authors showed that
improved balance at baseline would have been attainable
through restricted randomization, leveraging informa-
tion available to the investigators in administrative data-
bases prior to allocation [24].

A review of 36 C-RCTs published in the BMJ, Lancet,
and New England Journal of Medicine between 1997 and
2002 found that three (8%) had evidence for cluster imbal-
ance [25]. Two of the three trials with imbalance had four
or less clusters per arm and neither used restricted
randomization [26,27]. In both cases, schools were the unit
of allocation and sex of the schoolchildren was an import-
ant and unbalanced confounder. One trial explicitly
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recognized that having more single-sex schools in one arm
was the cause of this imbalance. Of note, the result of not
balancing this important covariate in this case led to op-
posite findings between the unadjusted and adjusted
results [26]. The third trial in the review noted to have evi-
dence of cluster imbalance randomized from 10 pairs that
were matched on two covariates. Unfortunately, the
matching was ineffective; large differences between inter-
vention and control arms existing for a key process vari-
able, again resulting in confusing differences between
adjusted and unadjusted results [28]. In contrast, of the 18
studies in the review judged to have adequate baseline
balance, 13 (72%) used restricted randomization and of
the 15 studies in the review judged to have unclear evi-
dence of baseline balance, 12 (80%) used restricted
randomization [25].

Although simple randomization may frequently be in-
adequate to achieve balance in C-RCTs, a review of 300
randomly selected C-RCTs published from 2000 to 2008
found that only 56% used restricted randomization and
that this proportion was not increasing over time [4].
Further exploration of data from that review revealed
that 19% overall used matching, 32% used stratification,
and 4% used other restricted randomization strategies to
achieve balance. Given that restricted randomization
would be more likely to achieve baseline balance,
the large minority of C-RCTs still using simple
randomization may represent a gap in methodological
best practices.

Allocation techniques for C-RCTs: restricted

randomization

The limited uptake of restricted randomization in C-
RCTs suggests a need for investigators to become better
versed in these options so that they may work with sta-
tisticians to consider advantages and limitations for their
particular trial. Therefore, the advantages and limitations
of some of the major strategies as they relate to C-RCTs
are described below and summarized in Table 1. This is
not a complete catalogue of allocation techniques, but
rather an introduction to the array of options available
to investigators. Since most investigators using restricted
randomization techniques have relied on stratification
and/or matching, emphasis is placed on other allocation
strategies that are particularly promising for C-RCTs. Of
these, minimization represents the prototypical option
for when clusters are recruited and allocated sequen-
tially, while covariate-constrained randomization repre-
sents an ideal option for when blocks of clusters (or all
clusters) are recruited prior to allocation.

Matching
Many investigators conducting community intervention
trials believe that matching is a useful mechanism for
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creating comparable groups at baseline [29]. Matching
provides ‘face validity’ regarding balance between alloca-
tion arms [30] and is thought to be particularly useful
when there are few clusters [31]. For example, one C-
RCT matched six pairs of communities by ensuring that
they shared geographical characteristics, as well as base-
line rates of disease (Table 2) [32].

However, pair-wise matching has a number of chal-
lenges in C-RCTs [36,37]. First, loss of follow-up from
one cluster removes also its match from analysis - this is
also true in I-RCTs, but a loss of a pair of clusters could
be catastrophic for a trial with a small number of clus-
ters. Furthermore, in C-RCTs, achieving a ‘good’ match
that increases power is more difficult as the intra-cluster
correlation (ICC) decreases (because as the amount of
variability between groups decreases, it becomes harder
for the matching process to remove substantial variabil-
ity) [38]. In the process of developing matches, one cre-
ates the important disadvantage in C-RCTs of making it
difficult to properly calculate the ICC [30], which should
be reported to provide guidance to future investigators
planning appropriately powered trials. Relatedly, match-
ing may complicate the analysis of the C-RCT, especially
when it is desirable to investigate the impact of
individual-level factors on the likelihood of the outcome
[39]. When the correlation between matched pairs is
poor [40], or when there is a desire to determine the im-
pact of baseline covariates on the intervention effect,
investigators have pursued ‘breaking the matching’ in
analysis; this approach may increase risk for type 1
error [37].

Stratification

Stratified randomization in C-RCTs has the same major
limitation as in [-RCTs; the number of strata must be
few to avoid unequal allocation (for example, due to in-
complete blocks). This is because as the number of
strata increase, the risk of incomplete filling of blocks
also increase, thereby increasing the risk for imbalances
in prognostic variables [41,42]. Simulations suggest that
the when the total number of strata approach half the
total number of units to be allocated (that is, clusters),
stratification becomes ineffective [43] others have
recommended limiting the number of strata to less than
one-quarter the number of units to be allocated [42].
Since there usually exist prognostically important covari-
ates at both the cluster and individual levels, many C-
RCTs may require active balancing for more covariates
than stratification could accommodate. For example, if
there are two covariates composed of four and two
levels, respectively (for example, region: north, south,
east, west; and sex: male, female) the result is eight total
strata, suggesting that least 16 (and ideally 32) clusters
would be necessary to safely achieve balance.
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Table 1 Allocation techniques for covariate balance in C-RCTs: advantages and limitations

Technique Advantages

Limitations

No need for baseline data;
most transparent, accepted

Simple/Complete randomization

Restricted randomization

Matching Improves face validity; May balance
effectively for many covariates
(only if a good match is found)

Stratification May be used in combination with other
allocation techniques

Minimization Can balance effectively for many covariates

Covariate-constrained randomization

Balances most effectively for many
covariates; limits risk of selection bias

Higher risk for imbalance

Loss to follow-up is doubled (pair instead of single loss);
challenges with analysis; difficult to estimate/report ICC;
reduced degrees of freedom limits power

Can balance for few covariates on its own

Less transparent, possibly less well-understood by audience;
continuous covariates may need to be split into categories;
potential for selection bias/predictability

Requires access to baseline data; possibly less
well-understood by audience; potential for over-constraint;
requires additional statistical support; allocation must
occur after recruitment

Note also that balancing for individual-level covariates
would require calculating the cluster-level mean (or me-
dian) for the variable of interest prior to stratifying. For
example, one C-RCT testing an intervention directed at

Table 2 Examples of restricted randomization
descriptions from C-RCTs published in high impact
journals

Matching

To help ensure comparability of the intervention
and comparison communities with respect to
baseline HIV and STD prevalence and risk factors
for infection, the communities were matched into
six pairs according to the following criteria:
roadside, lakeshore, island, or rural location;
geographical area (paired communities were
generally in the same district and less than 50 km
apart); and prior STD attendance rates at the
health centre. In each matched pair, one
community was randomly chosen to receive the
STD intervention’ [32].

Stratification To ensure balance between the 2 study arms, family
physician practices underwent stratified randomization
on the basis of the mean age (< 65 v. 2 65 years)

and annual rates of emergency department visits

(< 200 v. = 200) of their clientele. Stratified
randomization was achieved by a separate
randomization procedure performed within each

of the strata’ [33].

Minimization  ‘We randomized practices to intervention and control
groups using a minimization programme, stratifying by
partnership size, training practice status, hospital
admission rate for asthma, employment of practice
nurse, and whether the practice nurse was trained in
asthma care’ [34].

Covariate-
constrained
randomization

‘A balanced randomization procedure ensured that the
intervention and control hospitals were balanced with
respect to the rates of prophylactic use of oxytocin and
episiotomy, the presence or absence of residency
programs, the country and region where the hospital
was located, and the annual number of births at the
hospital. Of 184,756 possible ways of assigning
hospitals to the intervention and control groups with
acceptable balance, one sequence was randomly
selected to determine the composition of the two
groups’ [35].

family physicians aimed to reduce visits to the repeat
emergency department by patients (Table 2). It stratified
the family physicians by a cluster-level covariate (older
versus younger physicians) and by a cluster-level mean
of a participant-level covariate (high vs. low rates of
emergency department visits) [33]. In some instances,
one could imagine stratifying clusters for political or
practical reasons (for example, by geographical location).
In such a scenario, there may be a need for additional
balancing techniques when allocating within strata [44];
this should be planned with careful statistical support.

Minimization

Taves described minimization in 1974 [45] while Pocock
and Simon independently reported its potential benefits
in 1975 [41]. Scott and colleagues provide an excellent
review of minimization discussing the benefits and lim-
itations of minimization for I-RCTs [46]. In general, this
technique randomly assigns the first participants, then
accounts for the covariates of participants previously en-
rolled and assigns each new participant to the group that
provides better balance. As shown in Table 3, if the sev-
enth patient to be allocated to a trial has a high rate at
baseline for the outcome of interest (for example, blood
pressure) and a moderate rate for a covariate (for ex-
ample, age), the computer algorithm will account for the
characteristics of the six patients already allocated and
assign the seventh patient to the arm that improves
overall balance in those covariates.

Minimization improves covariate balance compared to
both simple randomization and stratification; the differ-
ence is greater in smaller trials, but this advantage of
minimization has been shown to hold for I-RCTs until
the sample exceeds 1,000 patients [46]. Simulations indi-
cate that increasing the number of covariates in
minimization does not substantially increase imbalance
(in comparison to stratification) [47]. The number of
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Table 3 Example of minimization (adapted from Scott
et al.2002) [46]

Covariate Intervention Control
Baseline rate

High 2 2
Moderate 2 3

Low 1 1
Covariate rate

High 2 3
Moderate 3 1

Low 1 1

Allocation of seventh patient with high baseline rate and moderate covariate
rate.

Marginal totals if allocated to intervention group:

Baseline: |(2+1) - 2| =1; Covariate: |(3+1) - 1|=3; 1+3=4.

Marginal totals if allocated to control group:

Baseline: |2 - (2+1)|=1; Covariate: 3 - (1+1)|=1; 1+1=2.

Therefore, patient allocated to control because 2 < 4.

covariates to be included in the minimization algorithm
is primarily limited by statistical concerns since it is
recommended that all covariates minimized should be
included in statistical analysis [48]. The ability of
minimization to balance more covariates has led to the
suggestion by some commentators that it is the ‘plat-
inum standard’ of allocation techniques [49].

The pharmaceutical industry [50] and other commen-
tators [51] warn against the use of minimization mainly
due to higher risk of selection bias that comes with pre-
dictability of deterministic assignment. The extent of this
risk is debated [52] and must be weighed against the
advantages of greater covariate balance. A random com-
ponent may be added to the minimization procedure so
that as imbalance grows the odds of allocation to the
arm that reduces imbalance also grow, but are never
equal to one [53]. This may have the advantage of redu-
cing predictability of allocation. Many authors have sug-
gested additional variations on the general minimization
approach either to further improve balance or to reduce
risk of selection bias [11,54-56]. For instance, Begg and
Iglewicz [57] (and later Atkinson [58]) applied optimum
design theory (minimizing the variance in the model re-
lating the covariates to the outcome) and allowed for
balancing of continuous variables obviating the need to
categorize continuous covariates as high and low. It is
unclear whether the theoretical advantages of these
more complex techniques translate into practical benefit
in typical trials [59].

Another concern may be that by forcing balance in
known prognostic covariates, an investigator could (un-
knowingly) cause imbalance in unmeasured factors.
However, it has been suggested that the balance for un-
measured variables can be no worse due to minimization
because whenever the unmeasured factor is correlated
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with the minimized covariate, the balance for this factor
will actually be improved and whenever the unmeasured
factor is not correlated at all with the minimized covari-
ate then its distribution would be unaffected [60].
Although it cannot be proven empirically without meas-
uring the unmeasurable, this explains why balance of
non-targeted variables should not made worse by using
minimization [61].

The ability of minimization to balance many covariates
within a small trial should make it a particularly good al-
location technique for C-RCTs. However, to actively bal-
ance numerous covariates requires access to data at the
time of recruitment; cluster-level means (or medians)
would be used to minimize participant-level covariates,
such as the practice-level mean of patient blood pressure
values [62]. Fortunately, many C-RCTs take place in the
context of medical systems with administrative data or
access to historical records [24]. Despite its promising
features and the availability of free software to imple-
ment it [63], minimization was used in only 2% of 300
randomly selected C-RCTs published from 2000 to 2008
[4]. (Although it is possible that this is an underestimate
if minimization is misreported as stratification, this is
similar to the estimated overall proportion of trials that
use minimization [48].) One C-RCT using minimization
was published in the BMJ in 2004 (Table 2). It allocated
44 QP practices (clusters) minimizing imbalance across
four covariates with 54 total strata [34]. This trial tested
a nurse outreach model aiming to support primary care
providers in caring for patients with asthma. It was im-
portant to achieve balance across multiple cluster and
individual level variables that might confound the effect
of the intervention on asthma emergency visits. If the
investigators had used traditional stratification, the trial
would have been at high risk of imbalance due to over-
stratification.

Covariate-constrained randomization

If data are available for the important cluster and/or
individual-level covariates of participants prior to the al-
location procedure, more complex techniques may be
used to ensure acceptable balance. For example, Moul-
ton [64] described a procedure in which a statistical pro-
gram could be used to enumerate all the possible
allocations of participating clusters when clusters and
their covariates are known in advance. Next, the investi-
gators would narrow this list of allocations down to the
ones that met prespecified criteria for balance across
baseline covariates. Finally, the actual allocation would
be chosen randomly from this constrained list, thereby
achieving an acceptable allocation while retaining ran-
domness in the selection process. As seen in Table 4, if
there were only four clusters recruited, these could be
allocated into two arms in six different ways. In two of
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Table 4 Example of covariate-constrained randomization
(adapted from Moulton 2004) [64]

Baseline performance

Allocation Intervention Control Difference

A 25 50 60 75 30

B 25 60 50 75 20

@ 25 75 50 60 5

D 50 60 25 75 5

E 50 75 25 60 20

F 60 75 25 50 30
Covariate rate

Allocation Intervention Control Difference

A 80 60 75 70 25

B 80 75 60 70 125

C 80 70 60 75 7.5

D 60 75 80 70 75

E 60 70 80 75 125

F 75 70 80 60 25

A to F each represent different possible allocations for four clusters showing
absolute difference between arms for mean rate of baseline performance and
the mean rate of one additional covariate.

the possible allocations (A, F), the difference in the base-
line performance is very large. In a trial with more clus-
ters, the possible allocations increases exponentially, and
it is possible to remove unacceptable allocations from
the list and chose randomly from any remaining alloca-
tions with acceptable balance.

This approach has been shown in simulation studies
to provide even better balance than minimization result-
ing in increased power, especially for trials with few
units allocated as is common in C-RCTs [65,66]. This
may be partially explained by the fact that covariate-
constrained randomization can balance continuous cov-
ariates without loss of power from categorization of
these variables (for example, high, medium, low) as
occurs in minimization. However, when there are very
few clusters as in the example illustrated in Table 4, the
parameters for assessing balance may need to be
widened so that the actual allocation to be utilized can
be randomly selected from a larger set. Over-constraint
due to strict balancing requirements that result in very
few eligible allocations may force certain clusters to-
gether. For example, in Table 4, if the caliper for balance
in the baseline rate or the confounder rate was set at a
mean difference of 10, only two allocations would re-
main and both feature the highest and lowest ranking
clusters together in one arm. This is not desirable since
it means that the allocation is no longer truly random
and this situation may invite skepticism regarding active
manipulation by the investigator [64]. In addition to re-
quiring added statistical support during the process of

Page 6 of 9

recruitment and allocation, the main drawback of this
approach is that to acquire the necessary data, recruit-
ment of numerous clusters must be completed prior to
any cluster allocation. Investigators can allocate blocks
of clusters as they are enrolled, though the first block
should have at least eight units and the subsequent ones
at least six [67].

Covariate-constrained randomization was used in only
2% of 300 randomly selected C-RCTs published from
2000 to 2008 [4]. However, the availability ready-made
algorithms to implement this approach [67,68] may
make the process more accessible. Like minimization, it
is possible to apply more complex formulae when con-
ducting this procedure. Rather than setting parameters
regarding covariates to be within 10% of each other,
investigators can balance with the goal of minimizing
variance or decreasing the effects of adjusted analyses in
a cluster-trial, as proposed by Raab and Butcher [20].
This particular approach was used in a study published
recently in the New England Journal of Medicine [35],
indicating the growing acceptability of this allocation
technique by editors (and readers).

Choosing an allocation technique
Given the above considerations, investigators planning a
C-RCT are encouraged to consider alternatives to simple
randomization, especially when there are few total clus-
ters (to achieve balance at the cluster-level) and/or many
participants per cluster (to achieve balance at the partici-
pant level). It is also possible to combine techniques and
even to actively balance participants separately from
clusters (for example, by using stratified recruitment
strategies if recruitment of participants can occur separ-
ately from allocation of clusters [19]). Table 1 describes
the advantages and limitations various allocation techni-
ques with respect to their potential utility for improving
balance at baseline. In Figure 1, a series of questions and
answers are described that may aid investigators in deter-
mining the approach most appropriate for their particu-
lar trial. In general, matching has the fewest advantages
as compared to other restricted randomization options
and covariate-constrained randomization seems the most
favorable choice. The input of a statistician should play a
key role in determining the risk of imbalance and decid-
ing upon an allocation technique, keeping in mind that
different approaches will have varying requirements for
statistical support and may require unique analytic plans.
Consider, for example, our C-RCT in which two differ-
ent quality improvement interventions were tested
across 14 primary care clinics, aiming to improve man-
agement of patients’ blood pressure, cholesterol, and gly-
cemic control [62]. With only 14 clusters, it seemed
probable that the baseline values for the outcomes of
interest (patients’ mean blood pressure, cholesterol, and
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Is there access to
baseline data for
covariates that are
prognostically important
prior to allocation?

If yes, consider restricted
randomization to actively
balance for such covariates
and ask each of the
following questions
(amongst others) to
identify the preferred
allocation technique:

.

Is it feasible to recruit blocks of

initiating the intervention one

Figure 1 Questions to ask and potential answers when trialists and statisticians work together to consider allocation techniques for
balancing covariates in cluster-trials. “One would expect that in most trials access to some relevant data would become accessible
immediately after recruitment and prior to allocation. ®Only use matching if confident in ability to achieve a good match.

If yes, consider covariate-
constrained randomization or
minimization or matchingb

Are there many measurable,
prognostically important
covariates?

If no, consider covariate-
constrained randomization or
minimization or stratification

If yes, consider covariate-
constrained randomization

If no, consider minimization

If yes, consider covariate-
constrained randomization

clusters prior to allocating,
rather than allocating and

cluster at a time?

Are statistical resources
available during recruitment
and allocation?

If no, consider minimization

glycosylated hemoglobin values) would be imbalanced.
In this trial, baseline data were available, meaning that
any restricted randomization technique may have been
considered. Given that numerous variables were avail-
able, including baseline values for the primary outcomes
and size, stratification alone was ruled out. Matching
was deemed undesirable due to the risk of double-loss
to follow up and challenges with analysis. Although
covariate-constrained randomization was preferred given
its superior ability to achieve balance, [66] it was deemed
infeasible because there were outside pressures to pro-
vide the interventions immediately upon recruitment,
rather than allocating blocks of clusters. As a result,
minimization was selected.

In other scenarios, additional factors to consider that
may have a bearing on the preferred allocation technique
include: desire for a specific allocation ratio (as this
would require adaptations to typical allocation techni-
ques [56]) desire for stakeholders to witness the alloca-
tion process (as was done with one study using
covariate-constrained randomization [69]); and prag-
matic issues that may arise due to geographical spread
of clusters and/or challenges with recruitment [15,19].
Regardless of the choice made, efforts should be made
to achieve (and report) allocation concealment to limit
selection bias; this is important for all trials, but espe-
cially so when deterministic rather than random alloca-
tions are used, such as minimization [51,70]. In addition,
with simple or complex allocation techniques, the entire
trial may be compromised if the computer program is
not reliable, as happened with one large study using
minimization [71].

Conclusion

Achieving balance at baseline using simple randomization
in C-RCTs is less likely than in typical RCTs due to the
correlated nature of nested data and is less likely when
there are few clusters to be randomized. Therefore, inves-
tigators planning C-RCTs should avoid using simple
randomization, especially when there are few clusters in
the trial. Given the risk of baseline imbalances for C-RCTs
, the known limitations of stratification and matching, and
the potential benefits of covariate-adaptive allocation tech-
niques, investigators should consider use of the latter
methods whenever important covariates are measurable
prior to group assignment. In particular, when baseline
data and statistical support are available and numerous
clusters can be recruited prior to allocation, covariate-
constrained randomization can offer investigators the
chance to remove the risk of baseline imbalance with min-
imal risk for bias.
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