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Abstract

Background: To compare two approaches to the statistical analysis of the relationship between
the baseline incidence of adverse events and the effect of medical emergency teams (METs).

Methods: Using data from a cluster randomized controlled trial (the MERIT study), we analysed
the relationship between the baseline incidence of adverse events and its change from baseline to
the MET activation phase using quadratic modelling techniques. We compared the findings with
those obtained with conventional subgroup analysis.

Results: Using linear and quadratic modelling techniques, we found that each unit increase in the
baseline incidence of adverse events in MET hospitals was associated with a 0.59 unit subsequent
reduction in adverse events (95%Cl: 0.33 to 0.86) after MET implementation and activation. This
applied to cardiac arrests (0.74; 95%CI: 0.52 to 0.95), unplanned ICU admissions (0.56; 95%ClI: 0.26
to 0.85) and unexpected deaths (0.68; 95%Cl: 0.45 to 0.90). Control hospitals showed a similar
reduction only for cardiac arrests (0.95; 95%Cl: 0.56 to 1.32). Comparison using conventional
subgroup analysis, on the other hand, detected no significant difference between MET and control
hospitals.

Conclusions: Our study showed that, in the MERIT study, when there was dependence of
treatment effect on baseline performance, an approach based on regression modelling helped
illustrate the nature and magnitude of such dependence while sub-group analysis did not. The ability
to assess the nature and magnitude of such dependence may have policy implications. Regression
technique may thus prove useful in analysing data when there is a conditional treatment effect.
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Introduction

Following the landmark reports from the Institute of Med-
icine (IOM), numerous programs designed to improve
patient safety have been introduced [1-6]. Rigorous evalu-
ation of such programs provides a considerable challenge.
Organisational theory recognizes that the effectiveness of
health care interventions is likely to be system dependent.
Therefore, understanding system specific organizational
characteristics might be important in evaluating the effec-
tiveness of interventions [7-10].

The medical emergency team (MET) was first introduced
in Australia in the early 1990s. Its main aim is to reduce
unexpected deaths, cardiac arrests and unanticipated
Intensive Care Unit (ICU) admissions [11-14]. The MET
and similar systems have now been widely adopted [15-
17]. Single centre studies using historical controls have
supported the effectiveness of the MET [18-26].

However, statistical analysis of data from the Medical
Early Response & Intervention Therapy (MERIT) study, a
23-hospital cluster randomised controlled trial of the MET
system, failed to show a difference in the aggregate inci-
dence of unexpected cardiac arrests, unexpected deaths
and unanticipated ICU admissions between MET and
control hospitals [27]. The primary MERIT statistical anal-
ysis protocol was based on main effect analysis. Although
it used the baseline incidence of adverse events as a cov-
ariate, it did not test for an interaction effect between
treatment allocation and the baseline incidence of the
study outcomes.

The baseline incidence of a specified outcome is an
important hospital performance characteristic that may
predict the magnitude of improvement in response to an
intervention [28]. It varied greatly in MERIT. This raises
questions regarding what might be the correct statistical
approach to the analysis of the MERIT study results.
Unfortunately, there is no established and widely
accepted statistical approach that can be applied under
these circumstances. Yet the choice of statistical method
might well affect the interpretation of the study findings.
In this setting, a comparison of statistical approaches
might illustrate the impact of the choice of statistical tech-
nique on data interpretation and have useful implications
for the analysis of similar studies in the future.

The aim of this study was to compare a regression based
approach with subgroup analysis in terms of its results
and empirical interpretation when the baseline outcome
proved to be a continuous variable and treatment effect
modifier. Accordingly, we developed a methodology that
incorporated regression-modelling techniques and
applied it to the MERIT study data. With this methodol-
ogy, we studied the relationship between the baseline
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incidence of adverse events and the change that occurred
during preparation for and activation of METs. We then
compared the findings identified with this approach with
those obtained from conventional subgroup analysis.

Methods

The sample recruitment, size calculation, ethical approval,
and randomisation scheme for the MERIT study have
been described previously [27]. The primary outcome for
the MERIT study was the aggregate incidence (adverse
events divided by number of eligible patients admitted to
the hospital during the study period) of the three adverse
events: 1) cardiac arrests without a pre-existing not for
resuscitation (NFR) order, 2) unplanned ICU admissions,
and 3) unexpected deaths (deaths without an NFR order)
occurring in general wards. Secondary outcomes were the
incidences of each individual adverse event. Data collec-
tion was conducted during a two-month baseline period.
This was followed by a four month standardised imple-
mentation period during which education was delivered
on the concepts and practice changes required with the
introduction of the MET and then by a six month study
activation period during which the MET system was oper-
ational [27]. The MERIT study was approved by the Ethics
Committee of the University of New South Wales.

Data collection was conducted in control hospitals during
the same time periods. The conduct of the study was not
publicised in the control hospitals, and the management
and resuscitation committees of the control hospitals
agreed that the operation of their cardiac arrest teams
would continue unchanged during the study.

Statistical Methods

To test our hypothesis, we used the previously published
MERIT data. We set the change in incidence of adverse
events as the dependent variable. We then tested for inter-
action effects (both linear and quadratic) between the
baseline incidence of the primary and secondary out-
comes and treatment allocation (MET versus control). We
used an analytically weighted regression model. We
weighted this model by the number of admissions during
the study period. This weighting is an extension of the
weighted-t test often used in cluster randomised control-
led trials [29-31]. This initial approach established the
existence of significant linear and quadratic interaction
effects for the primary outcome, unexpected cardiac
arrests and unplanned ICU admissions. Thus, we con-
ducted the statistical analyses for control hospitals and
MET hospitals, separately as described below.

Statistical modelling given significant interaction effects

We analysed the primary outcome and secondary out-
comes in the same way. First, we fitted a quadratic model.
If the model detected a significant quadratic effect, these
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results were presented together with the results of the lin-
ear effect model for comparison. If the model detected no
significant quadratic effect, a linear effect model only was
fitted and presented. This was done to minimize the prob-
lem of multi-co linearity. This model showed that only
unexpected cardiac arrests had negative linear slopes for
both groups. We examined the statistical difference
between these two slopes by testing the interaction effect
between treatment group and the baseline incidence of
unexpected cardiac arrests. We then addressed the issues
of a) small sample size, b) lack of normality, and c) possi-
ble heteroscedasticity. We did this by comparing the ana-
lytically weighted regression modelling results using two
different methods: the ordinary least square method and
the heteroscedasticity-consistent covariance matrix esti-
mation method (HC3) [31,32]. We also assessed the
potential confounding effects of both teaching status and
hospital location. We used a hybrid of forced entry and a
blocked backward elimination multivariate regression
model. The baseline incidence (linear or quadratic) was
forced into the model. The block included teaching status
and hospital location. The probability of the block exclu-
sion from the final model was set at 0.15. We analytically
weighted the regression model by admission volume. We
present the results as the predicted regression curves with
95%CI bands, as well as the original data points for each
hospital.

Conventional subgroup analysis given significant
interaction effects

For the purpose of this analysis, we followed convention
and split the sample into two groups: those hospitals

http://www trialsjournal.com/content/10/1/117

equal to or above the median baseline value and those
hospitals below the median baseline value for a given out-
come. We then used the weighted-t test for the analysis of
both sub-groups separately.

All the analyses were performed using Stata™ 9.2 [33].

Results

The baseline data for hospital and patient characteristics
and the numbers for each event have been presented pre-
viously [27]. The baseline characteristics of the MET and
control hospitals were similar.

Table 1 shows the results of the interaction effects
between treatment (MET versus control) and the baseline
incidence of the primary and secondary outcomes. There
were significant quadratic interaction effects between
treatment allocation and the baseline incidence of the pri-
mary outcome, unplanned ICU admissions and unex-
pected deaths. There was no significant interaction effect
for unexpected cardiac arrests.

Baseline, study and change in incidence from baseline to
study period for the primary and secondary outcomes
showed large variability (Table 2). The relationship
between baseline incidence, and its change, for both pri-
mary and secondary outcomes is presented in Table 3.
During the study period, hospital teaching status and
location had no significant impact on this relationship
(Table 4). Accordingly, we presented the results from the
models with baseline incidence only and the predicted
curves for these relationships are shown in Figure 1. In

Table I: Analytically weighted regression results testing the quadratic interaction effects between treatment and baseline incidence

for primary outcome

Change in P Change in P Change in P Change in P

incidence of incidence of incidence of incidence of

primary unexpected unplanned ICU unexpected

outcome cardiac arrests admissions deaths
MET versus control -4.461 0.168 -2.630 0.090 -1.185 0.504 -1.637 0.004**
Baseline incidence of -1.168 0.144 -2.345 0.053 -1.051 0.056 -2.076 <0.001**
the outcome
(per 1000 admissions)
Linear interaction 1.797 0.043* 2.114 0.088 0.964 0.147 1.658 0.006**
effect between MET
and baseline incidence
of outcome
Baseline incidence of 0.125 0.014% 0.262 0.226 0.063 0.090 0.256 0.036*
outcome squared
Quadratic interaction -0.139 0.012* -0.378 0.104 -0.097 0.039*% -0.322 0.021*
effect between MET
and baseline incidence
of outcome
Constant 6.632 0.035% 3.201 0.039% 2.397 0.113 2046 <0.00 I’
Observations 23 23 23 23
R-squared 0.725 0.873 0.618 0.898
*P < 0.05;
T Changes in incidence for primary outcome were calculated as events per 1000 admissions.

Page 3 of 11

(page number not for citation purposes)



Trials 2009, 10:117 http://www trialsjournal.com/content/10/1/117

Table 2: Incidence of primary and secondary outcomes in individual hospitals

Primary outcome* Cardiac arrests* Unplanned ICU admissions* Unexpected deaths*
Control Baseline Study Change Baseline Study Change Baseline Study Change Baseline Study Change
Hospitals
| 2.07 3.05 0.98 1.03 2.03 1.00 1.03 0.85 -0.19 0.52 1.53 1.0l
2 391 6.32 241 1.74 1.93 0.19 2.17 4.80 2.63 1.45 1.31 -0.14
3 5.23 4.21 -1.02 2.29 1.75 -0.55 4.08 336 -0.72 I.15 0.94 -0.21
4 5.47 2.64 -2.83 2.02 1.15 -0.87 2.59 1.60 -1.00 2.74 0.95 -1.79
5 5.87 353 -2.34 3.25 1.47 -1.78 3.40 2.88 -0.52 1.70 0.60 -1.10
6 5.98 2.73 -3.24 3.76 1.54 -2.22 3.07 1.48 -1.59 2.22 0.74 -1.48
7 6.83 5.00 -1.82 332 1.69 -1.63 2.93 3.44 0.52 3.51 1.50 -2.02
8 842 5.00 -3.42 1.97 I.11 -0.85 7.58 3.89 -3.69 1.40 1.02 -0.39
9 9.70 7.82 -1.87 2.49 1.88 -0.61 7.90 6.62 -1.28 1.66 1.45 -0.21
10 9.99 9.17 -0.82 2.85 0.85 -2.00 9.04 8.15 -0.89 0.95 1.19 0.24
I 14.37 14.98 0.62 3.95 2.65 -1.30 14.37 14.45 0.09 0.36 1.72 1.36
MET Hospitals
12 0.58 1.31 0.73 0.29 111 0.82 0.00 0.30 0.30 0.58 1.0l 0.43
13 1.60 4.65 3.05 0.37 0.78 0.41 1.35 441 3.05 0.37 0.45 0.08
14 1.85 342 1.56 0.46 0.45 -0.02 1.85 2.38 0.52 0.46 0.89 0.43
15 2.95 322 0.27 1.03 1.04 0.02 2.57 245 -0.12 0.64 0.68 0.04
16 3.99 2.90 -1.09 235 1.24 -1.10 247 2.24 -0.23 0.82 0.66 -0.16
17 4.26 4.77 0.51 0.82 1.49 0.67 2.62 3.22 0.60 1.48 1.49 0.02
18 6.53 4.44 -2.09 4.35 1.62 -2.73 327 3.15 -0.12 2.18 1.38 -0.79
19 6.53 7.34 081 3.05 2.34 -0.70 4.35 5.81 1.46 2.03 1.27 -0.76
20 7.55 6.24 -1.31 1.56 2.05 0.49 4.43 3.68 -0.75 2.86 1.37 -1.50
21 7.89 7.16 -0.73 245 1.78 -0.67 6.98 6.40 -0.58 1.27 1.27 0.00
22 15.36 5.86 -9.51 1.40 1.07 -0.33 13.97 5.32 -8.64 1.86 0.40 -1.46
23 19.83 12.37 -7.46 1.04 0.75 -0.29 15.66 10.87 -4.78 5.22 1.88 -3.34

* Baseline incidence and change in incidence are presented as events per 1000 admissions.

Table 3: Weighted quadratic or linear regression models to predict changes in incidence of primary and secondary outcomes during
the study period

Change of primary outcome Change of Change of unplanned Change of unexpected death
unexpected cardiac ICU admission
arrests
Control:  Control: METt Control METt Control MET? Control:  Control: METt
quadratic linear quadratic linear
effect effect effect effect
Baseline -2.168 -0.135 -0.592 -0.945 -0.736 -0.161 -0.556 -2.076 -1.039 -0.676
incidence (0.017)* (0.562) (0.001)* (<0.001)** (<0.001)** (0.313) (0.002)**  (0.002)** (<0.001)**  (<0.001)**
(per 1000
admissions)
Baseline 0.125 0.256
incidence (0.020)* (0.048)*
squared
Constant 6.632 -0.518 2.789 1.487 0.932 0.215 2214 2.046 1.182 0.587
(0.041)* (0.753) (0.005)*  (0.009)**  (0.002)**  (0.804) (0.007)**  (0.001)** (0.002)**  (0.004)**
R-squared  0.532 0.039 0.710 0.782 0.851 0.112 0.643 0.923 0.870 0.819

Note: P values (in the parentheses) for the regression coefficients and the constant; control hospitals showed a quadratic effect for only the primary
outcome and unexpected deaths.

*P <0.05; %P <0.0l;

{[The sensitivity analysis by removing the two hospitals with highest baseline incidence in MET hospitals produced a regression coefficient for
baseline incidence as -0.416 with p = 0.034;

tOnly the MET hospitals showed a linear effect for all of the four outcomes.
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MET hospitals, 5 out of 8 Pearson correlation coefficients
between baseline, implementation and study period for
every outcome were greater than 0.83 with the lowest
value at 0.65. In MET hospitals, the greater the baseline
incidence of the primary outcome, the greater its reduc-
tion during study period. For every 10 additional baseline
events per 1000 admissions, there was an additional
reduction of 5.92 events (59.2%). Furthermore, the base-
line incidence of the primary outcome accounted for 71%
of the variance of this change. In comparison, in control
hospitals, it accounted for 53% of variance. Sensitivity
analysis showed that even after removing the two hospi-
tals with the highest baseline incidence for the primary
outcome, the findings were not qualitatively different.

For both MET and control hospitals, the greater the base-
line incidence of unexpected cardiac arrests detected, the
greater its reduction during the study period. For every 10
additional baseline cardiac arrests per 1000 admissions,
there was an additional reduction of 9.45 and 7.36 arrests
for control and MET hospitals, respectively. Furthermore,
the baseline incidence of unexpected cardiac arrests
accounted for 78.2% and 85.1% of the variance of this
change, respectively. The interaction effect test showed no
statistical difference. The baseline incidence had no
impact on the change in unplanned ICU admissions in
control hospitals. In contrast, in MET hospitals, there was
a significant linear relationship between the baseline inci-
dence and its change during the study period. In MET hos-
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pitals, for every 10 additional baseline events per 1000
admissions, there was an additional reduction of 5.56
events (55.6%). Furthermore, the baseline incidence of
unplanned ICU admissions accounted for 64.3% of the
variance of this change. In comparison, in control hospi-
tals, it only accounted for 11.2% of this variance.

The baseline incidence showed a significant quadratic
relationship with the change in unexpected deaths in con-
trol hospitals and a linear relationship in MET hospitals.
In MET hospitals, for every 10 additional baseline unex-
pected deaths per 1000 admissions, there was an addi-
tional reduction of 6.76 events (67.6%). The baseline
incidence accounted for 81.9% of the variance of this
change. In comparison, in control hospitals, it accounted
for 92.3% of this variance.

The relationship between baseline incidence and its
change between baseline and implementation periods for
each outcome is shown in Table 5. These show that, in
MET hospitals, for all outcomes, the greater the baseline
incidence, the greater the reduction. In contrast, control
hospitals showed a quadratic trend for primary outcome
and unexpected deaths. These relationships are shown in
Figure 2.

Conventional subgroup analyses results
There was no significant interaction effect (p = 0.081) for
a dichotomized modifier using the baseline median value

Table 4: Weighted quadratic or linear regression models to predict changes in incidence of primary and secondary outcomes during
the study period after adjusting for teaching status and location of the hospitals

Change of primary outcome Change of

unexpected cardiac

Change of unplanned Change of unexpected death
ICU admission

arrests
Control:  Control:  METT Control METT Control METT Control:  Control: METt
quadratic linear quadratic linear
effect effect effect effect
Baseline -2.235 -0.110 -0.523 -0.980 -0.725 -0.085 -0.465 -1.990 -1.130 -0.680
incidence (0.042)* (0.692) (0.002)** (<0.001)**  (<0.001)** (0.639) (0.010)** (0.021)* (<0.001)**  (<0.001)**
(per 1000
admissions)
Baseline 0.128 0.229
incidence (0.046)* (0.216)
squared
Teaching 0.521 0.338 -0.862 -0.130 -0.592 0.069 -0.285 -0.098 -0.460 -0.141
vs. non- (0.714) (0.856) (0.568) (0.706) 0.212) (0.960) (0.846) (0.816) (0.200) (0.695)
Teaching
Rural vs. 0.531 -0.761 -2.787 -0.739 -0.430 -2.051 -2.582 -0.107 -0.347 -0.338
Urban (0.792) (0.766) (0.129) (0.133) (0.393) (0.317) (0.158) (0.813) (0.437) (0.366)
Constant 5411 -0.455 7.108 2.628 2.497 1.998 5.231 2.290 2.557 1.230
(0.258) (0.928) (0.106) (0.034)* (0.068) (0.600) 0.211) (0.065) (0.047)* (0.242)
R-squared 11 I 12 I 12 I 12 I I 12

Note: P values (in the parentheses) for the regression coefficients and the constant; control hospitals showed a quadratic effect for only the primary

outcome.
*P <0.05 *P<0.0l;

tOnly the MET hospitals showed a linear effect for all of the four outcomes.
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Relationship between baseline and change in incidence (y axis) for all outcomes during the study period*.*
95%Cl band of the predicted curve as well as the original data points presented; the sizes of the scatter points in each graph
were drawn proportional to the volume of admissions during the study period; baseline incidence and change in incidence are
presented as events per 1000 admissions; for only primary outcome and unexpected death in control hospitals, the figures sug-
gest a quadratic relationship.

Table 5: Weighted quadratic or linear regression models to predict the changes in incidence of primary and secondary outcomes
during the implementation period

Change of primary outcome  Change of Change of unplanned ICU Change of unexpected death
unexpected cardiac admission
arrests

Control: Control: METt Control MET? Control: Control: METt Control: Control: METt

quadratic linear quadratic linear quadratic linear
effect effect effect effect effect effect
Baseline -2.393 0.099 -0.497 -0.163 -0.585 -0.941 -0.081 -0.504 -2.810 -0.844 -0.587
incidence  (0.008)**  (0.699) (0.001)* (0.761) (<0.001)** (0.046)*  (0.547) (<0.001)** (0.001)**  (0.003)** (<0.001)**
(per 1000
admissions)
Baseline 0.154 0.061 0.487
incidence  (0.006)** (0.056) (0.006)**
squared
Constant  7.342 -1.379 2.191 0.292 0.952 2.160 0.053 1.767 2.700 1.067 0.497
(0.022)*  (0.455) (0.008)** (0.841) (0.004)**  (0.089) (0.943) (0.007)** (0.001)**  (0.026)*  (0.019)*
R-squared 0.645 0.017 0.717 0.011 0.731 0411 0.042 0.719 0.870 0.653 0.732

Note: P values (in the parentheses) for the regression coefficients and the constant; control hospitals showed a quadratic effect for only the primary
outcome and unexpected deaths,.

* P <0.05; P < 0.0l

tOnly the MET hospitals showed a linear effect for all of the four outcomes.
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Table 6: Subgroup analysis results using medians of the baseline incidences as the cut-off values

Change in incidence of

primary outcome

Change in incidence of
unexpected cardiac
arrests

Change in incidence of

unplanned ICU
admissions

Change in incidence of
unexpected deaths

Group with baseline incidence > medians

Weighted difference
(MET versus Control)
P
Number of hospitals
Group with baseline
incidence < medians
Weighted difference
(MET versus Control)
P
Number of hospitals

0.402
(0.776)
12
1.597

0.200
I

0.536
(0315)
12
0.726

0.042%*
I

0.091
(0.937)
12
1258

0.325
I

0222
(0.636)
12
-0.118

0.678
I

* Significant at 5%
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as cut-off. Logically, therefore, there was no need to con-
duct further subgroup analysis. Nevertheless, the follow-
ing subgroup analysis was presented for demonstrative
purpose. Table 6 shows the results of statistical analysis
using the weighted-t test for sub-groups after splitting
them according to median baseline values. None of the
outcomes showed any statistical significance between
MET and control hospitals for both subgroups, except for
a borderline significant effect for unexpected cardiac
arrests in the subgroup with an incidence lower than the
median baseline incidence.

Discussion

We applied a statistical approach that incorporates regres-
sion-modelling techniques to the analysis of data from
the MERIT study; a cluster randomized controlled trial of
the implementation of Medical Emergency Teams
(METs). We compared this approach to one based on the
conventional method of using a median cut off value to
separate groups and then performing subgroup analysis.
We found that an approach incorporating regression
modelling detected a significant effect of the baseline inci-
dence of the adverse events upon the subsequent effect of
introducing METs. In contrast, conventional subgroup
analysis did not. The findings based on regression model-
ling suggest that the baseline incidence of cardiac arrests,
unplanned ICU admissions, and unexpected deaths has a
significant association with their subsequent reduction
after the introduction of a MET. They also indicate that the
magnitude of this reduction was proportional to their
baseline incidence. Finally, they demonstrate that the
choice of statistical analysis plan can significantly affect
the interpretation of the outcome data obtained during
MERIT [34]

The MERIT study paper was designed to compare the inci-
dence of the primary and secondary outcomes during the
study period and powered according to the expected size
of the therapeutic effect and the expected incidence and
variance of the primary outcome [35]. Accordingly, all the
analyses were designed and conducted based on a main
effect model with adjustment for baseline incidences. This
is similar to an ANCOVA approach [36]. Thus, the base-
line incidences of both primary and secondary outcomes
were adjusted for in the model, but only as covariates. No
interaction effects were tested for. Such strategy didn't
examine whether the treatment effect was influenced by
the baseline incidence of the study outcomes. It didn't
examine the possibility that the outcomes would be, to
some extent, affected by their baseline incidence of
adverse events (baseline hospital performance). It is plau-
sible for many interventions where the relative risk reduc-
tion may relate to different baseline incidences of the
primary outcome. In MERIT trial, we could address this
issue by empirically testing for the interaction effect
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between treatment allocation and the baseline incidence
of study outcomes. We tested for both linear and quad-
ratic interaction effects in order to avoid potential mis-
specification of true interactions. Misspecification refers
to situations when significant interaction effects and/or
higher order effects are omitted from a model. In this case,
a simplified model with only a main effect and/or linear
effect is a simple but possibly inaccurate reflection of the
relationship under investigation. The rationale for intro-
ducing a higher order interaction effect was that there was
an insufficient theoretical basis to believe that any interac-
tion effect should be linear. This is analogous to introduc-
ing a quadratic effect for continuous variables in a main
effect model.

Given the above considerations, we set out to test whether
choice of statistical technique affected our ability to detect
the impact of baseline incidence of adverse events on the
effect of introducing MET systems. We used regression
modelling techniques to explore the relationship between
the baseline incidence of adverse events and its change.
The main advantage of using the change of the outcome
as the endpoint is in its intuitive interpretation. That is, a
lot of system and policy initiatives aim to affect change.
The changes incurred by the intervention are often the
outcomes we want to understand. Also given that the dis-
tribution of baseline incidences was balanced and the
before-after correlation was high for the primary end-
point, the efficacy gain of using an ANCOVA approach
may have been negligible [36]. We assessed MET and con-
trol hospitals separately after we found significant interac-
tion effects and found that, for the primary outcome,
unplanned ICU admissions and unexpected deaths, the
baseline incidence and their subsequent changes were
related in a different way in MET hospitals compared to
control hospitals. In MET hospitals, the relationship
between the baseline incidence and its change was linear.
In control hospitals, this relationship was quadratic for
the primary outcome and for unexpected deaths. It was
absent for unplanned ICU admissions. We also found
that, for MET hospitals, these observations started to
apply during the education and training period well
before the MET system had been activated. A similar edu-
cation effect on outcome after introduction of a MET sys-
tem has been previously suggested [19].

The MERIT main-effect analysis, an unconditional valid
analysis, showed that benefit of MET may be small on
average. Our conditionally analysis showed that the ben-
efit may still be large among those hospitals with high
baseline incidences of the study outcomes. The observa-
tions derived from statistical modelling suggest a 'propor-
tionality effect’. That is, the relative change in the
incidence of an outcome was similar across all levels of
baseline incidence, but the absolute change became
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greater as baseline incidence increased. This phenomenon
has been described with other interventions [28]. For
example, a recent study of the impact of quality of care
interventions in 3000 U.S. hospitals found that, for 16 out
of the 17 process-of-care measures, hospitals with a low
level of performance at baseline had the greatest improve-
ment [28].

Our results are consistent with the notion that the effec-
tiveness of interventions in complex organizations may be
dependent on specific local characteristics. They also sug-
gest that baseline characteristics of individual hospitals
should be explored when assessing the possible effective-
ness of interventions directed at system change. The
strong predictive effect and the magnitude of the variance
of improvement explained by the baseline incidence of
outcome variables also suggest that such outcomes may
be useful indicators of quality of care. They are relatively
easy to measure, define, and report upon in a timely fash-
ion.

The regression towards the mean effect may explain the
baseline effect seen in MET hospitals with our statistical
modelling approach. Regression toward the mean effect,
sometimes called the regression effect, is a statistical prin-
ciple concerning the relationship between two linked
measurements, x and y. It states that if x is above its mean,
then the associated y is likely to be closer to its mean than
x was. The conventional way to assess data for the pres-
ence of this effect in MERIT would be to compare the pat-
tern of results in MET hospitals with those in control
hospitals [37]. The difference in the pattern shown in Fig-
ure 1 &2 between MET and control hospitals suggests that
the distribution of outcomes is unlikely to be explained by
such an effect. In addition, the range of regression coeffi-
cients for all outcomes increased in magnitude during the
study period. Furthermore, in MET hospitals, the correla-
tions between baseline, implementation and study period
were high. Such higher correlation makes it less likely that
the results are due to regression towards the mean [38].
Moreover, as we adopted a stratified (by teaching status
and geographic location: urban versus metropolitan) and
blocked randomisation scheme, the baseline incidences
distributions were balanced between MET and control
hospitals [27]. Stratified randomization and baseline bal-
ance also make it less likely that a regression towards the
mean effect explains our findings.

Our statistical approach avoided the possibility of mis-
specification by incorporating a higher order interaction
effect. Secondly, by not splitting the sample using a
median value cut-off, our approach decreased the prob-
lems associated with loss of statistical power. It may be
possible to effectively carry out a sufficiently powered
conventional subgroup analysis in a very large rand-
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omized controlled trial. However, the MERIT study had
only a 25% power to detect a 30% difference in the pri-
mary outcome and more than 100 hospitals would have
been needed to give it sufficient power. These features of
the MERIT study make it unlikely that one could detect a
statistical difference when comparing 5 to 6 hospitals
within two arms. A further aspect of our modelling
approach is that, although we analysed MET and control
hospitals separately, our conclusions are based on the
comparison of the same results between two groups. This
approach compared the relationship of baseline perform-
ance with study outcome between control and treatment
groups and used all data to draw conclusions. Subgroup
analysis, instead, assessed treatment effects in both lower
and higher baseline performance groups, respectively.
This aspect is a further critical factor in making it less likely
that the different patterns seen were due to the regression-
toward-the-mean phenomenon. The advantage of this
regression approach over subgroup analysis may be that it
allows for smooth linear or nonlinear relationships with
baseline variables. These smooth relationships may be
plausible in some settings such as in the MERIT study.
However, one potential disadvantage of our approach is
that, due to the existence of a significant quadratic interac-
tion effect, it may not be feasible to provide a unique treat-
ment effect estimate (such as absolute risk difference) as
would be the case with a conventional approach. Further-
more, the existence of a non-linear interaction effects
means that the incremental value of the treatment effect is
dependent on the value of the baseline incidence. The
baseline period was short compared to the implementa-
tion and study periods. This may have influenced our
findings. However, we found a strong association between
the baseline incidence and its change. The strength of this
association provides evidence that the baseline incidence
had sufficient predictive validity.

Our analysis was performed post hoc. Furthermore, the
number of hospitals included in the study was relatively
small. However, sensitivity analysis showed that even
after removing the two hospitals with the highest baseline
incidence for the primary outcome, the findings were not
qualitatively different. Nonetheless, our results should be
considered preliminary and they should be confirmed in
future studies with similar design.

Conclusions

In summary, we used regression modelling to test the
hypothesis that the baseline incidence of cardiac arrests,
unplanned ICU admissions, and unexpected deaths has a
significant influence on the change in their incidence that
could be achieved through the introduction of a MET. Our
findings support this hypothesis. We also found that the
magnitude of this reduction was proportional to the base-
line incidence of adverse events such that the higher the
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baseline incidence, the greater the absolute reduction.
These differences were consistent with the initial findings
of the significant interaction effects. We found that these
observations were in contrast to those obtained using con-
ventional sub-group analysis. They suggest that the choice
of statistical analysis can significantly affect the interpreta-
tion of the findings of the MERIT study. They also raise
concerns about the robustness of conventional sub-group
analysis in similar settings.

List of abbreviations

MET: Medical Emergency Team. ICU: Intensive Care
Unit; MERIT: Medical Early Response Intervention & Ther-
apy; ANCOVA: Analysis of Covariance.

Competing interests
The authors declare that they have no competing interests.

Authors' contributions

JC contributed to the conceptualisation, all data analyses
and prepared the first draft of the paper. AF, RB, KH and
SF contributed to the conceptualisation and critical writ-
ing of the paper. All authors approved the final draft of the
paper and have the access to the data used in generating
the paper. The draft was approved by the ANZICS Clinical
Trials Group Executive Committee.

Acknowledgements

The MERIT study is a collaboration of the Simpson Centre for Health Serv-
ices Research and the Australian and New Zealand Intensive Care Society
Clinical Trials Group. The study was funded by grants from the National
Health and Medical Research Council of Australia, the Australian Council
for Safety and Quality in Health Care and the Australian and New Zealand
Intensive Care Foundation as part of the MERIT study.

Management Committee: Ken Hillman (Study Chair), Simon Finfer (Study
Vice-chair), Rinaldo Bellomo, Daniel Brown, Michelle Cretikos, Jack Chen,
Gordon Doig, Arthas Flabouris and David Sanchez.

Steering Committee: Ken Hillman (Chair), Jennifer Bartlett, Rinaldo Bel-

lomo, Daniel Brown, Michael Buist, Jack Chen, Michelle Cretikos, Michael

Corkeron, Gordon Doig, Simon Finfer, Arthas Flabouris, Michael Parr, San-
dra Peake and John Santamaria.

Site Investigators and Research Co-ordinators (in alphabetical order):
Australian Capital Territory:

Calvary Hospital - Marielle Ruigrok, Margaret Willshire

Canberra Hospital -David Elliott, John Gowardman, Imogen Mitchell, Car-
olyn Paini, Gillian Turner

New South Wales:
Broken Hill Hospital - Coral Bennett, Linda Lynott, Mathew Oliver, Linda

Peel Sittampalam Ragavan, Russell Schedlich Gosford Hospital - John
Albury, Sean Kelly

http://www trialsjournal.com/content/10/1/117

John Hunter Hospital - Ken Havill, Jane O'Brien
Prince of Wales Hospital - Harriet Adamson, Yahya Shehabi,
Royal North Shore Hospital - Simeon Dale, Simon Finfer

Wollongong Hospital - Sundaram Rachakonda, Kathryn Rhodes, E. Grant
Simmons

Wyong Hospital - John Albury, Sean Kelly
Queensland:
Mackay Hospital - Kathryn Crane, Judy Struik

Redcliffe Hospital - Matthys Campher, Raymond Johnson, Sharon Ragau,
Neil Widdicombe

Redland Hospital - Susan Carney, David Miller

Townsville Hospital - Michelle Barrett, Michael Corkeron, Sue Walters
South Australia:

Flinders Hospital - Tamara Hunt, Gerard O'Callaghan

Queen Elizabeth Hospital - Jonathan Foote, Sandra Peake

Repatriation General Hospital - Gerard O'Callaghan, Vicki Robb

Royal Adelaide Hospital - Marianne Chapman, Arthas Flabouris, Deborah
Herewane, Sandy Jansen

Victoria:

Bendigo Hospital - John Edington, Kathleen Payne

Box Hill Hospital - David Ernest, Angela Hamilton
Geelong Hospital - David Green, Jill Mann, Gary Prisco
Monash Hospital - Laura Lister, Ramesh Nagappan,

St. Vincent's Hospital - Jenny Holmes, John Santamaria

Wangaratta Hospital - Chris Giles, Debbie Hobijn

References

I. Donaldson MS, Kohn LT, Corrigan J: To err is human: building a
safer health system. Washington, D.C: National Academy Press;
2000.

2. Institute of Medicine: Crossing the quality chasm: A new health
system for the 21Ist century. Washington D.C.:National Acade-
mies Press; 2001.

3. Aspden P, Institute of Medicine (Committee on the Work Environ-
ment forNurses and Patient Safety): Patient safety: achieving a
new standard for care. Woashington, D.C:National Academies
Press; 2004.

4. ByersJF, White SV: Patient safety: principles andpractice. New
York, NY: Springer; 2004.

5. Child AP, Institute of Medicine (Committee on the Work Environ-
ment forNurses and Patient Safety): Keeping patients safe: trans-
forming the work environment of nurses. Woashington,
D.C:National Academies Press; 2004.

6.  United States, Congress, House, Committee on Energy and Com-
merce: Patient Safety and Quality Improvement Act report

Page 10 of 11

(page number not for citation purposes)



Trials 2009, 10:117

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

(to accompany H.R. 663) (including cost estimate of the
Congressional Budget Office). Washington, D.C:U.S. G.P.O;
2003.

Argyris C: On organizational learning 2nd edition. Malden, Mass: Black-
well Business; 1999.

Jackson MC: Systems thinking: creative holism for managers.
Chichester: Wiley; 2002.

Green LW, Kreuter MW, Green LW: Health program planning:
an educational and ecological approach. 4th edition. New
York: McGraw-Hill; 2005.

Windsor RA: Evaluation of health promotion, health educa-
tion, and disease prevention programs. 3rd edition. Boston:
McGraw-Hill; 2004.

Hillman K, Chen J, Brown D: A Clinical Model for Health Serv-
ices Research - The Medical Emergency Team. | Crit Care
2003, 18(3):195-199.

Hillman K, Parr M, Flabouris A, Bishop G, Stewart A: Redefining in-
hospital resuscitation: the concept of the medical emer-
gency team. Resuscitation 2001, 48(2):105-110.

Braithwaite RS, DeVita MA, Mahidhara R, Simmons RL, Stuart S, Fora-
ida M, Medical Emergency Response Improvement Team (MERIT):
Use of medical emergency team (MET) responses to detect
medical errors. Quality and Safety in Health Care 2004, 13:255-259.
Lee A, Bishop G, Hillman K, Daffurn K: The Medical Emergency
Team. Anaesth Intensive Care 1995, 23:183-186.

Audit Commission: Critical to success the place of efficient and
effective critical care services within the acute hospitals. Lon-
don 1999.

Department of Health (UK): Critical Care Outreach. Department
of Health (UK); 2003.

Institute of Health Improvement USA: Getting Started Kit: Rapid
Response Teams. [http://www.ihi.org/ihi].

Ball C, Kirkby M, Williams S: Effect of the critical care outreach
team on patient survival to discharge from hospital and
readmission to critical care: non-randomised population
based study. BMJ 2003, 327(7422):1014.

Bellomo R, Goldsmith D, Uchino S, Buckmaster ], Hart GK, Opdam
H, Silvester W, Doolan L, Gutteridge G: A prospective before-
and-after trial of a medical emergency team. Med | Aust 2003,
179(6):283-7.

Braithwaite RS, DeVita M, Stuart S, Foraida M, Simmons RL: Can car-
diac arrests be prevented in hospitalised patients? Results of
a medical crisis response team (Condition C). Journal of Gen-
eral Internal Medicine 2003, 18(Supplement 1):222-223.

Buist MD, Moore GE, Bernard SA, Waxman BP, Anderson )N,
Nguyen TV: Effects of a medical emergency team on reduc-
tion of incidence of and mortality from unexpected cardiac
arrests in hospital: preliminary study. BM] 2002,
324(7334):387-90.

DeVita MA, Schaefer |, Lutz J, Dongilli T, Wang H: Improving med-
ical crisis team performance. Crit Care Med 2004, 32(2
Suppl):S61-S65.

DeVita MA, Braithwaite RS, Mahidhara R, Stuart S, Foraida M, Sim-
mons RL, Medical Emergency Response Improvement Team (MERIT):
Use of medical emergency team responses to reduce hospi-
tal cardiopulmonary arrests. Qual Saf Health Care 2004,
13(4):251-254.

Kenward G, Castle N, Hodgetts TJ, Shaikh L: Evaluation of a Med-
ical Emergency Team one year after implementation. Resus-
citation 2004, 61:257-263.

Leary T, Ridley S: Impact of an outreach team on re-admissions
to a critical care unit. Anaesthesia 2003, 58(4):328-332.

Pittard AJ: Out of our reach? Assessing the impact of introduc-
ing a critical care outreach service. Anaesthesia 2003,
58(9):882-885.

The MERIT investigators: Introduction of medical emergency
team (MET) system - a cluster-randomised controlled trial.
Lancet 2005, 365:2091-2097.

Williams S, Schmaltz SP, Morton D), Koss RG, Loeb JM: Quality of
Care in U.S. Hospitals as Reflected by Standardized Meas-
ures, 2002-2004. The New England Journal of Medicine 2005,
353:255-264.

Campbell MK, Mollison J, Steen N, Grimshaw JM, Eccles M: Analysis
of cluster randomized trials in primary care: a practical
approach. Family Practice 2000, 17(2):192-196.

http://www trialsjournal.com/content/10/1/117

30. Kerry M, Bland JM: Analysis of a trial randomized in clusters. Br
Med | 1998, 316:54-54.

31. Long], Ervin L: Using Heteroscedasticity Consistent Standard
Errors in the Linear Regression Model. The American Statistician
2000:217-224.

32. MacKinnon JG, White H: Some heteroskedasticity consistent
covariance matrix estimators with improved finite sample
properties. Journal of Econometrics 1985, 29:305-325.

33. StataCorp: Stata statistical software: Release 8.2. College Sta-
tion, Texas: Stata Corporation; 2004.

34. Winters BD, Pham |, Pronovost P): Rapid Response Teams -
Walk, Don't Run. JAMA 2006, 296(13):1646-1647.

35. Kerry M, Bland JM: Statistical notes: Sample size in cluster ran-
domization. BMJ 1998, 316:549-549.

36. Vickters A, Altman D: Statistical notes: Analysing controlled
trials with baseline and followup measurements. BM/ 2001,
323(7321):1123-1124.

37. Morton V, Gorgerson DJ: Effect of regression to the mean on
decision making in health care. BMJ2003:1083-1084.

38. Bland JM, Altman DA: Statistical Notes: regressiontowards the
mean. BMJ 1994:1499.

Publish with Bio Med Central and every
scientist can read your work free of charge

"BioMed Central will be the most significant development for
disseminating the results of biomedical research in our lifetime."
Sir Paul Nurse, Cancer Research UK
Your research papers will be:
« available free of charge to the entire biomedical community
« peer reviewed and published immediately upon acceptance
« cited in PubMed and archived on PubMed Central
« yours — you keep the copyright

Submit your manuscript here: O BioMedcentral
http://www.biomedcentral.com/info/publishing_adv.asp

Page 11 of 11

(page number not for citation purposes)



http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14595572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14595572
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11426471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11426471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11426471
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289627
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7793590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7793590
http://www.ihi.org/ihi
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14593033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14593033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14593033
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12964909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12964909
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11850367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11850367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11850367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15043232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15043232
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15289626
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15172703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15172703
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12648113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12648113
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12911362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12911362
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15964445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15964445
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16034011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16034011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16034011
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10758085
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10758085
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10758085
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9501723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9501723
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11701584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11701584
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12750214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12750214
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8019287
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8019287
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/publishing_adv.asp
http://www.biomedcentral.com/

	Abstract
	Background
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Statistical Methods
	Statistical modelling given significant interaction effects
	Conventional subgroup analysis given significant interaction effects

	Results
	Conventional subgroup analyses results

	Discussion
	Conclusions
	List of abbreviations
	Competing interests
	Authors' contributions
	Acknowledgements
	References

