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Abstract 

Background The Mini-Mental State Examination (MMSE) and the Montreal Cognitive Assessment (MoCA) ques-
tionnaires are commonly used to measure global cognition in clinical trials. Because these scales are discrete 
and bounded with ceiling and floor effects and highly skewed, their analysis as continuous outcomes presents chal-
lenges. Normality assumptions of linear regression models are usually violated, which may result in failure to detect 
associations with variables of interest.

Methods Alternative approaches to analyzing the results of these cognitive batteries include transformations (stand-
ardization, square root, or log transformation) of the scores in the multivariate linear regression (MLR) model, the use 
of nonlinear beta-binomial regression (which is not dependent on the assumption of normality), or Tobit regression, 
which adds a latent variable to account for bounded data. We aim to empirically compare the model performance 
of all proposed approaches using four large randomized controlled trials (ORIGIN, TRANSCEND, COMPASS, and NAV-
IGATE-ESUS), and using as metrics the Akaike information criterion (AIC). We also compared the treatment effects 
for the methods that have the same unit of measure (i.e., untransformed MLR, beta-binomial, and Tobit).

Results The beta-binomial consistently demonstrated superior model performance, with the lowest AIC values 
among nearly all the approaches considered, followed by the MLR with square root and log transformations across all 
four studies. Notably, in ORIGIN, a substantial AIC reduction was observed when comparing the untransformed MLR 
to the beta-binomial, whereas other studies had relatively small AIC reductions. The beta-binomial model also resulted 
in a significant treatment effect in ORIGIN, while the untransformed MLR and Tobit regression showed no significance. 
The other three studies had similar and insignificant treatment effects among the three approaches.

Conclusion When analyzing discrete and bounded outcomes, such as cognitive scores, as continuous variables, 
a beta-binomial regression model improves model performance, avoids spurious significance, and allows for a direct 
interpretation of the actual cognitive measure.

Trials registration ORIGIN (NCT00069784). Registered on October 1, 2003; TRANSCEND (NCT00153101). Registered 
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Background
Over the last two decades, there have been extensive 
efforts to test interventions to slow cognitive decline and 
prevent dementia. Results have been at best inconsist-
ent, and researchers have questioned whether limitations 
of commonly used methodological approaches might 
be obscuring real effects. For instance, commonly used 
standard cognitive tests such as the Mini-Mental State 
Examination (MMSE) [1, 2] and the Montreal Cognitive 
Assessment (MoCA) [3] have strong ceiling and floor 
effects (i.e., highly skewed). The floor effect is often a 
result of the cognitive measures’ poor sensitivity in detect-
ing severe cognitive impairment [4], leading to a cluster-
ing of scores at the low end. This precludes their analysis 
as continuous variables with the consequence that true 
differences between randomly allocated groups in a trial 
may not be detected. Indeed, the MMSE and MoCA are 
often analyzed with generalized linear regression models 
such as analysis of covariance (ANCOVA) that assumes 
normality of outcomes for pre- and post-scores or change 
scores that do not fully account for their psychometric 
properties. As it is rare for the results of cognitive tests to 
be normally distributed, the use of linear regression mod-
els (which assume normality) may be inappropriate and 
hamper the ability to detect a true effect.

When distributional assumptions are violated, alter-
native approaches for the analyses of data include 
the transformation of the cognitive scores to cre-
ate a normal distribution (after which linear regres-
sion can be used), the use of different regression 
models that are not dependent on normality, or the 
use of other assessments where the scores are nor-
mally distributed. For example, in international stud-
ies, researchers normalize a skewed distribution using 
country-standardized z-scores [5], or transformed 
scores such as 

√
Max+ 1−

√
(Max+ 1)− score and 

log(Max+ 1)− log((Max+ 1)− score) [6]. Regressions 
that are not dependent on normality (due to bounded 
data) are beta-binomial regression [7–9] and Tobit 
regression [10–12]. In the beta-binomial regression, the 
outcome measure derived from the sum of all discrete 
questions is modeled as a discrete binomial and a beta 
distribution to account for overdispersed data. Tobit 
regression treats the outcome responses as if they were 
normally distributed but censors them if they are out-
side a given range. Although these three approaches have 
been used in observational studies [8, 9], they are rarely 
used in clinical trials.

This study aims to empirically evaluate model perfor-
mance of different approaches analyzing continuous cog-
nitive scores versus linear models of the untransformed 
data using four large randomized controlled trials. We 

also compared treatment effects across methods that use 
the same unit of measurement (i.e., untransformed MLR, 
beta-binomial, and Tobit). The lessons learnt from these 
post hoc analyses may inform analyses of data from other 
cognitive measurements characterized by discrete and 
bounded outcomes in clinical trials with non-normally 
distributed scores.

This paper is organized as follows. Data section pre-
sents a description of the four trials. Methods section 
starts by introducing generalized linear regressions to 
transformed outcomes and non-linear regressions and 
follows by describing the analysis used to compare the 
different approaches against the standard or untrans-
formed generalized linear regression. The analysis 
includes assessing the distribution of the scores, estimat-
ing the effect size (except for the ones with the trans-
formation), computing the confidence intervals, and 
evaluating model fit measured by the Akaike informa-
tion criterion (AIC) [13]. Finally, in the Results section, 
we provide a brief discussion of the results obtained and 
conclude with some general conclusions and recommen-
dations in the “Discussion” section.

Methods
Overview of the four clinical trials
We used data from 4 international clinical trials. The 
Outcome Reduction with an Initial Glargine INterven-
tion (ORIGIN) trial investigated the effect of insulin glar-
gine (versus standard care) on cardiovascular events in 
patients with diabetes and pre-diabetes [14]. The MMSE 
was administered at baseline, year 2, year 5, and the last 
follow-up. The effect of the interventions on the MMSE 
was assessed with repeated-measures ANOVA before 
and after adjusting for selected baseline covariates [15]. 
The Telmisartan Randomised AssessmeNt Study in ACE 
iNtolerant subjects with cardiovascular Disease (TRAN-
SCEND) trial assessed the effect of the angiotensin-
receptor blocker telmisartan (versus placebo) in patients 
intolerant to ACE inhibitors with cardiovascular disease 
or diabetes with end-organ damage [16]. The MMSE 
was administered at baseline and last follow-up and then 
dichotomized and analyzed using logistic regression 
to assess the treatment effect [17]. The Cardiovascular 
Outcomes for People Using Anticoagulation Strategies 
(COMPASS) trial evaluated whether rivaroxaban alone 
or in combination with aspirin would be more effective 
than aspirin alone for secondary cardiovascular preven-
tion [18]. The New Approach Rivaroxaban Inhibition of 
Factor Xa in a Global Trial versus ASA to Prevent Embo-
lism in Embolic Stroke of Undetermined Source (NAVI-
GATE ESUS) trial tested whether rivaroxaban (versus 
aspirin) would reduce in result in a lower risk of recur-
rent stroke than aspirin [19, 20]. Both COMPASS and 
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NAVIGATE-ESUS only collected the MoCA scores at 
baseline and study end. COMPASS has not yet published 
cognitive measures by the treatment group. However, 
NAVIGATE-ESUS assessed changes in MoCA scores 
between treatment groups using the Mann–Whitney U 
or Kruskal–Wallis test [20].

Overview of the analysis methods
Transformation to enable the use of multivariable linear 
regression (MLR) Models
The generalized linear regression model [21] assumes 
normality of outcome and is summarized below.

Let yi be the continuous outcome for individual  i , 
i = 1, . . . , n . The continuous outcome yi is expressed as

• β0 is the intercept;
• β1 is the fixed treatment effect for the experimental 

intervention relative to the control;
• xi is the binary treatment indicator with 1 for intervention

and 0 for control for the ith individual.
• βk for k = 2, 3, 4, and 5 are the fixed effects for the 

covariates: baseline score, age, sex, and education 
level, respectively.

• ei ∼ N 0, σ 2
i  is the error term for individual i.

One transformation, such as standardizing cogni-
tive measures, was initially introduced to address meth-
odological issues where the cognitive performance of 
individuals without impairment, particularly those 
with higher education, was challenging. This approach 
was further extended to standardize scores by country, 
using country-specific baseline parameters, with the 
baseline mean and standard deviation calculated sepa-
rately for every country in a multinational trial. This 
method has the added benefit of accounting for system-
atic country differences. Other approaches are based on 
the fact that given that the distributions of the MMSE 
or MoCA scores are left skewed and that the highest 
score of each is 30. In these approaches, transformations 
[expressed as h

(

yi
)

 ] were done to satisfy the normal-
ity assumption of linear regression models [22] as fol-
lows: h(score) =

√
Max+ 1−

√
(Max+ 1)− score and 

h(score) = log(Max+ 1)− log((Max+ 1)− score).

Regression models not dependent on normality: 
beta‑binomial regression
Given the cognitive scores often are calculated by sum-
ming equal 0 or 1 scores from a series of questions (e.g., 
the MMSE was calculated by summing up 30 yes–no ques-
tions), the beta-binomial distribution has a similar data 

(1)yi = β0 + β1xi + β2Baselinei + β3Agei + β4Sexi + β5Edui+ei

structure that consists of a finite sum of Bernoulli variables 
with a probability parameter analyzed as a random variable 
that follows a beta distribution.

Let yi be a sum of all binary responses of n questions for 
individual i conditioned on the random variable with a 
probability parameter pi of a Bernoulli distribution. Then 
pi follows a beta distribution with parameters ( a, b ) and,

where ρ = (1+ a+ b)−1 is the intraclass correlation 
coefficient [23]. Then yi follows a beta-binomial distribu-
tion with

The linear predictor of the beta-binomial hierarchical 
generalized linear model [7] is

where νi is the random intercept effect attributed to indi-
vidual i and follows a beta distribution. For the covariate 
xi, E(pi) = exp(β0 + β1xi)/(1+ exp(β0 + β1xi)) [24]. A 
beta-binomial regression has the random component fol-
lowing a beta distribution with more flexibility on the shape 
of distribution instead of the common normal distribution 
with a symmetrical bell shape to model binomial overdis-
persed. For example, the beta-binomial takes on a U-shaped 
if both a and b are less than 1 and approximates the bino-
mial distribution if both a and b are greater than 1 [25].

Regression models not dependent on normality: Tobit 
regression
Tobit regression is an alternative under normality assump-
tions and in the presence of moderate ceiling or floor 
effect, by setting a continuous variable as the response con-
strained or censored to a closed interval [10, 11].

Let y∗i  be the random latent variable that is not censored 
for individual i . Furthermore, it is assumed that y

∗
i  can be 

observed for a given range [l,u] and is censored when y∗i  
falls outside of that range. The Tobit model with y∗i  con-
ditional on the base-specific parameters bi with the linear 
regression model as the underlying model for y∗i  is given by

with bi ∼ N (0, D) . Then yi is obtained from y∗i  as

E(pi) = µ =
a

a+ b
,V (pi) = µ(1− µ)ρ

E
(

yi
)

= nµ,V
(

yi
)

= nµ(1− µ)[1+ (n− 1)ρ].

logit (pi) = β0 + β1xi + β2Baselinei + β3Agei
+ β4Sexi + β5Edui + νi

y∗i |bi = β0 + β1xi + β2Baselinei + β3Agei
+ β4Sexi + β5Edui+zibi + ei

yi = l for y∗i ≤ l
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Although the approach is justified, the estimated coef-
ficients obtained with this approach could go beyond the 
closed interval due to the artificial situation based on an 
assumption of censoring and may result in unrealistic 
interpretations.

Statistical methods
Since the study duration and the frequency of data col-
lection varied across studies, the model used for different 
analysis approaches had the last follow-up score as the 
dependent variable and the treatment effect as the inde-
pendent variable adjusting for the baseline score, age, and 
sex.

The distributions of the last follow-up MMSE, as well 
as the country-standardized MMSE score, the square 
root MMSE, and the log-transformed MMSE, were 
assessed by plotting histograms and computed skewness 
and kurtosis. Skewness is a measure of the asymmetry 
and kurtosis is a measure of “peakedness” of a distribu-
tion. A distribution with either an absolute skew value 
larger than two or an absolute kurtosis larger than seven 
could be considered as substantial non-normal.

The treatment effect (treatment versus control) in 
clinical trials on the cognitive function was then ana-
lyzed using the untransformed MLR, MLR with 
country-standardized score, MLR with square root trans-
formation, MLR with log transformation, beta-binomial 
regression, and Tobit regression. The covariates for the 
model included baseline score, age, sex, and education 
(< 12 years of education, ≥ 12 years of education) for both 
MMSE and MoCA, even though the MoCA score already 
accounts for the education level by adding one point for 
those with < 12 years of education as part of its score.

yi = y∗i for l < y∗i ≤ u

yi = u for y∗i ≥ u

The model performance for the different analysis 
approaches of the same dataset was compared using 
the Akaike information criterion  (AIC) [13], a meas-
ure of the log-likelihood penalized for the number of 
variables. To ensure comparability of AIC values across 
methods, the AIC values for the MLRs were obtained 
using the maximum likelihood estimation. Smaller 
AIC values indicate a better model fit. The AICs for 
the models with the transformed outcomes need to 
have their likelihood multiplied by the correspond-
ing Jacobian matrix to be comparable with other AICs. 
For the MLR, the normality of residuals was further 
assessed by plotting the histograms and Q-Q plots. The 
treatment effects were only compared among untrans-
formed MLR, beta-binomial regression, and Tobit 
regression given that the units of cognitive measure 
of transformed MLR became different from the origi-
nal measure. The treatment effects were reported as 
mean differences with corresponding 95% confidence 
intervals (CI) and CI width. The assumption of linear-
ity was assessed using the residual vs predicted plot. In 
addition, we conducted mixed models with repeated 
measures (MMRM) and beta-binomial regression for 
ORIGIN, which is the only study that collected MMSE 
data multiple times. Analyses were performed using 
SAS software, Version 9.4 and R Version 4.2.3.

Results
Participants with baseline and last follow-up MMSE 
scores were included from ORIGIN (n = 11,691 mean 
age, 63.5  years, 65% male, 38% higher education, mean 
follow-up, 5.9 years) and TRANSCEND (n = 5815 mean 
age, 66.9  years, 57% male, 34% higher education, mean 
follow-up, 4.6  years) (Table  1). Participants with base-
line and last follow-up MoCA scores were included from 
COMPASS (n = 17,864, mean age 68.2  years, 78% male, 
47% higher education, mean follow-up, 1.9  years) and 
NAGIVATE-ESUS (n = 7016, mean age, 66.9  years, 62% 

Table 1 Baseline characteristics for ORIGIN, TRANSCEND, COMPASS, and NAVIGATE-ESUS

SD standard deviation, Q1 first quartile, Q3 third quartile, MMSE Mini-Mental Status Examination, MoCA Montreal Cognitive Examination

Description ORIGIN TRANSCEND COMPASS NAVIGATE-ESUS

N 11,691 5815 17,864 7016

Study follow-up (years), mean (SD) 5.9 (1.4) 4.6 (1.0) 1.9 (0.7) 1.0 (0.6)

Age(years), mean (SD) 63.5 (7.8) 66.9 (7.3) 68.2 (7.9) 66.9 (9.8)

Male, n(%) 7625 (65) 3319 (57) 13,996 (78) 4327 (62)

Education > 12 years, n (%) 4422 (38) 1974 (34) 8360 (47) 3244 (46)

Baseline MMSE, mean (SD) 27.9 (2.9) 27.5 (3.1) –- –-

Baseline MMSE, median (Q1–Q3) 29 (27, 30) 29 (26, 30) –- –-

Baseline MoCA, mean (SD) –- –- 24.5 (3.9) 23.1 (5.5)

Baseline MoCA, median (Q1–Q3) –- –- 25 (23, 27) 24 (21, 27)
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male, 46% higher education, mean follow-up, 1 year). The 
mean baseline and follow-up MMSE scores for ORIGIN 
and TRANSCEND were 27.9 (SD = 2.9) vs. 27.3 (SD = 3.5) 
and 27.5 (SD = 3.1) vs. 27.4 (SD = 3.5), respectively, while 
for COMPASS and NAVIGATE-ESUS, the mean baseline 
and follow-up MoCA scores were 24.5 (SD = 3.9) vs. 24.4 
(SD = 4.0) and 23.1 (SD = 5.5) vs. 23.5 (SD = 5.6), respec-
tively (Tables 1 and 2). There was no significant difference 
in scores between baseline and follow-up in any of the 
four studies.

The follow-up MMSE distributions in the ORIGIN 
and TRANSCEND studies were similarly bounded, 
with most participants having a maximum score of 
30 (Fig.  1). The distribution of change scores from 
baseline, since the models were adjusted for base-
line, exhibited a lack of normality as well (Sup-
plemental Fig.  1). However, the absolute skewness 
greater than 2 and the absolute kurtosis greater than 
8 (Table  2) indicated that the distributions were sub-
stantially non-normal. Even after country-standardi-
zation of MMSE scores, the distributions still showed 
large absolute skewness and kurtosis values. Apply-
ing a square root or log transformation substantially 
reduced the skewness and kurtosis values. In contrast, 

the follow-up MoCA distributions in the COMPASS 
and NAVIGATE-ESUS studies were left-skewed but 
still considered normal, with most participants hav-
ing scores close to the maximum (Fig.  1). The abso-
lute skewness and kurtosis were high but still within 
the range expected for a normal distribution. Applying 
a square root or log transformation further improved 
the skewness of the distribution (Table 2).

In terms of fitting the MLR with transformations, we 
found that the model performance significantly improved 
for the MMSE scores, and slightly improved for the 
MoCA scores when we applied either the square root or 
log transformation as compared to the untransformed 
MLR (Table  2). For instance, in ORIGIN with MMSE 
scores, the AIC decreased from 58,013 for the untrans-
formed MLR to 50,317 with the square root transfor-
mation, and to 47,162 with the log transformation. In 
COMPASS with MoCA scores, the AIC decreased from 
84,925 for the untransformed MLR to 82,322 with the 
square root transformation but increased to 85,861 with 
the log transformation. The histograms of residuals (Sup-
plemental Figs. 2 and 3) became more normally distrib-
uted by reducing the initially high skewness and kurtosis 
values to a more acceptable range after applying square 

Table 2 Last follow-up cognitive measures applying transformations and model performance after fitting a mixed linear model

SD standard deviation, Q1 first quartile, Q3 third quartile, Skewness a measure of the asymmetry of a distribution (substantial non-normal: absolute skewness ≥ 
2), Kurtosis a measure of “peakedness” of a distribution (substantial non-normal: absolute kurtosis ≥ 7), MLR Multivariate linear regression model for treatment effect 
adjusting for baseline score, age, sex, and education, AIC Akaike information criterion (smaller is better), MMSE Mini-Mental Status Examination, MoCA Montreal 
Cognitive Examination, STD country-standardized score

Follow-up cognitive measures MLR

Mean (SD) Median (Q1-Q3) Skewness Kurtosis AIC

ORIGIN (N = 11,691)

 MMSE 27.3 (3.5) 29 (26, 30)  − 2.2 9.8 58,013

 STD MMSE  − 0.2 (1.2) 0.2 (− 0.7, 0.7)  − 1.7 6.2 62,601

 SQRT MMSE 3.8 (0.8) 4.2 (3.3, 4.6)  − 1.1 4 50,317

 LOG MMSE 0.9 (0.8) 0.7 (0, 1.6) 0.4 2.1 47,162
TRANSCEND (N = 5815)

 MMSE 27.4 (3.5) 29 (26, 30)  − 2.1 8.9 28,048

 STD MMSE  − 0.1 (1.1) 0.3 (− 0.5, 0.7)  − 1.9 7.0 30,628

 SQRT MMSE 3.8 (0.8) 4.2 (3.3, 4.6)  − 1.1 3.9 24,214

 LOG MMSE 0.93 (0.8) 0.7 (0, 1.6) 0.4 2.1 22,697
COMPASS (N = 17,864)

 MoCA 24.4 (4.0) 25 (22, 27)  − 1.3 5.2 84,925

 STD MoCA 0 (1.0) 0.1 (− 0.6, 0.7)  − 1.1 4.9 90,561

 SQRT MoCA 3.1 (0.8) 3.1 (2.6, 3.6)  − 0.4 3.1 82,322
 LOG MMSE 1.7 (0.7) 1.8 (1.4, 2.2)  − 0.5 3.3 85,861

NAVIGATE-ESUS (N = 7016)

 MoCA 23.5 (5.6) 25 (21, 27)  − 1.6 5.8 36,515

 STD MoCA 0.1 (1.0) 0.3 (− 0.4, 0.8)  − 1.4 5.8 38,780

 SQRT MoCA 3 (1.0) 3.1 (2.4, 3.6)  − 0.6 3.2 34,179
 LOG MMSE 1.8 (0.8) 1.8 (1.4, 2.3)  − 0.4 2.8 35,472
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root or log transformations. This was more evident in 
the Q-Q plots, where most points aligned closely to the 
straight line for the cognitive measures with a log trans-
formation (Supplemental Figs. 4 and 5).

SQRT: 
√
Max+ 1−

√
(Max+ 1)− score

LOG: log(Max+ 1)− log((Max+ 1)− score)

AIC for Beta-binomial were 46,342, 46,342, 22,387, 
81,848, and 34,288 for ORIGIN, TRANSCEND, COM-
PASS, and NAVIGATE-ESUS, respectively.

AIC for Tobit were 49,095, 23,588, 84,112, and 35,641 
for ORIGIN, TRANSCEND, COMPASS, and NAVI-
GATE-ESUS, respectively.

Fig. 1 Histograms for the MMSE of ORIGIN and TRANSCEND studies and the MoCA of COMPASS and NAVIGATE-ESUS studies
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Next, we compared the MLR with two other regres-
sion models not only the model performance but also 
the treatment effects with the three models had the same 
unit of measure for the cognitive scores.

In the ORIGIN study, the beta-binomial regression 
model showed a lysignificant higher MMSE score of 0.38 
units (95% CI, 0.11 to 0.66; CI width = 0.55, p = 0.006; 

AIC = 46,342) in the treatment group as compared to the 
control group. In contrast, both the untransformed MLR 
(0.049; 95% CI, − 0.06 to 0.15; CI width = 0.21; p = 0.36; 
AIC = 58,013) and the Tobit regression model (0.13; 95% 
CI, − 0.02 to 0.28; CI width = 0.30; p = 0.08; AIC = 49,095) 
showed no significant treatment effect (Fig.  2). A sub-
stantial AIC reduction was found in comparing between 

Fig. 2 Between-group mean difference and model performance given by AIC values for the selected methods
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the MLR untransformed and the beta-binomial. The 
intracluster correlation coefficients obtained for the 
beta-binomial models were 0.090, 0.078, 0.022, and 0.044 
for ORIGIN, TRANSCEND, COMPASS, and NAVI-
GATE-ESUS, respectively. Although treatment effects 
were insignificant across all models for the other stud-
ies, a consistent trend was observed in which all three 
approaches had similar treatment effect estimates. 
Moreover, the beta-binomial models consistently exhib-
ited slightly lower AIC values, even when compared to 
the MLR with transformations.

Similar results were found in the ORIGIN study with 
repeated measures, where the beta-binomial and MMRM 
showed similar treatment effect differences. However, the 
beta-binomial resulted in a narrower confidence interval 
width and a smaller AIC (Fig. 3).

The baseline cognitive score, baseline age, sex, and 
education level were mostly significantly associated with 
the dependent variable across the MLR untransformed, 
the beta-binomial, and the Tobit regression. Except in 
the NAVIGATE-ESUS study, the association between 
sex and cognitive scores was only found significant in 
the beta-binomial, and Tobit regression, but became not 
significant in the untransformed MLR. The degree of the 
associations between the covariates and the outcomes 
varied with the different approaches but the direction 
of the association remained consistent (Supplemen-
tal Table  1). The assumption of linearity was met, with 
points mostly hovering around the horizontal line for the 
generalized linear regression model, beta-binomial, and 
Tobit regression (Supplemental Figs. 6–7).

Discussion
We used data from four international clinical trials to 
empirically evaluate the performance of different mode-
ling approaches to analyze cognitive measures, specifically 

MMSE and MoCA. The methods used were the standard 
MLR, country-standardized MLR, squared root MLR, 
log-transformed MLR, beta-binomial, and Tobit regres-
sion. The beta-binomial consistently had the lowest AIC 
values compared to other approaches for both MMSE 
and MoCA in all studies, suggesting that this approach 
provided a better effect size estimate associated with an 
improved model fit, particularly for bounded data. It is 
also reassuring that the beta-binomial provides a reasona-
ble and good fit, along with unbiased estimates, when the 
intracluster correlation coefficient is less than 0.1, accord-
ing to the simulation [26]. The squared root MLR and the 
log-transformed MLR show a reasonable improvement 
on the model performance from the MLR standard, but 
it was challenging to make sense of the between-group 
mean difference relative to the actual cognitive scores. 
The effect sizes were significantly different between the 
beta-binomial and the standard MLR models only in 
ORIGIN, which had a substantial AIC reduction. For the 
Tobit regression, there was a small, improved model fit 
with smaller AIC as compared with the MLR standard. All 
the four studies had a small effect size and varying mag-
nitude and significance of the covariate association across 
different models. Based on these results, we recommend 
considering the beta-binomial to avoid any spurious sig-
nificance in comparing treatment effects or assessing risk 
factor effects in discrete and bounded cognitive measures 
during clinical trials Several studies [7–9] support these 
findings. One study [7] highlighted issues with apply-
ing a linear mixed model to outcomes due to ceiling and 
floor effects. Another study [8] also concluded that the 
beta-binomial distribution provided the best fit and found 
similar results when comparing the performance of four 
distributions (normal, t-family, binomial, and beta-bino-
mial) in analyzing longitudinal data with the MMSE as the 
response variable. Lastly, another study [9] demonstrated 

Fig. 3 Between-group mean difference and model performance given by AIC values for the ORIGIN study with repeated measures
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how to analyze and interpret health-related quality of life 
data using beta-binomial regression.

Due to data availability in four cardiovascular clini-
cal trials, comparisons of different approaches were 
primarily conducted on response outcomes at two time 
points (baseline and follow-up). Additionally, we com-
pared the mixed model with repeated measures and 
the beta-binomial model for the ORIGIN study, which 
included four time points. If more time points were 
available, it would be worthwhile to explore the perfor-
mance of these analysis approaches with a greater num-
ber of time points and different methodologies to study 
the score variations.

Conclusions
These findings demonstrate that beta-binomial regression 
analyses of continuous cognitive scores (that are derived 
from clinical instruments with floor and ceiling effects) will 
optimally assess the effect of an intervention on cognitive 
status within a randomized clinical trial. It allows for a direct 
interpretation of results and provides an unbiased estimate 
in trials using cognitive scores with non-standard psycho-
metric properties. These findings are relevant and applica-
ble to any analysis concerning outcomes influenced by floor 
and ceiling effects. We aimed to provide non-simulated 
empirical evidence for outcomes influenced by floor and 
ceiling effects. Our future work will explore how to estimate 
the power when analyzing the outcomes using a beta-bino-
mial regression and incorporating repeated measures.
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