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Abstract 

Background  Cluster randomized trials (CRTs) are randomized trials where randomization takes place at an adminis-
trative level (e.g., hospitals, clinics, or schools) rather than at the individual level. When the number of available clusters 
is small, researchers may not be able to rely on simple randomization to achieve balance on cluster-level covariates 
across treatment conditions. If these cluster-level covariates are predictive of the outcome, covariate imbalance may 
distort treatment effects, threaten internal validity, lead to a loss of power, and increase the variability of treatment 
effects. Covariate-constrained randomization (CR) is a randomization strategy designed to reduce the risk of imbal-
ance in cluster-level covariates when performing a CRT. Existing methods for CR have been developed and evaluated 
for two- and multi-arm CRTs but not for factorial CRTs.

Methods  Motivated by the BEGIN study—a CRT for weight loss among patients with pre-diabetes—we develop 
methods for performing CR in 2 × 2 factorial cluster randomized trials with a continuous outcome and continuous 
cluster-level covariates. We apply our methods to the BEGIN study and use simulation to assess the performance of CR 
versus simple randomization for estimating treatment effects by varying the number of clusters, the degree to which 
clusters are associated with the outcome, the distribution of cluster level covariates, the size of the constrained rand-
omization space, and analysis strategies.

Results  Compared to simple randomization of clusters, CR in the factorial setting is effective at achieving balance 
across cluster-level covariates between treatment conditions and provides more precise inferences. When cluster-
level covariates are included in the analyses model, CR also results in greater power to detect treatment effects, 
but power is low compared to unadjusted analyses when the number of clusters is small.

Conclusions  CR should be used instead of simple randomization when performing factorial CRTs to avoid highly 
imbalanced designs and to obtain more precise inferences. Except when there are a small number of clusters, cluster-
level covariates should be included in the analysis model to increase power and maintain coverage and type 1 error 
rates at their nominal levels.
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Background
Cluster randomized trials (CRTs) are randomized con-
trolled trials where randomization takes place at an 
administrative level (e.g., hospitals, clinics, or schools) 
rather than at the individual level. CRTs are an attractive 
research design when there are concerns of treatment 
contamination among participants, when it is logistically 
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easier to conduct the trial by randomizing at the cluster 
level, and when the intervention of interest is delivered at 
the cluster level [1].

A major practical limitation when conducting CRTs is 
the ability to enroll a large number of clusters. When the 
number of available clusters is small, researchers may not 
be able to rely on simple randomization to achieve bal-
ance on cluster-level covariates across treatment condi-
tions  [2]. If these cluster-level covariates are predictive 
of the outcome, covariate imbalance across treatment 
conditions may distort treatment effects, threaten inter-
nal validity, lead to a loss of power, increase the variabil-
ity of the treatment effect, and usually requires statistical 
adjustment in the analysis stage  [3]. For example, in a 
two-arm CRT where clinics are randomized to treatment 
conditions and where the size of a clinic is related to the 
outcome of interest, researchers would want equal num-
bers of small and large clinics in the treatment and con-
trol conditions, respectively.

Factorial experiments are an efficient approach to 
determine which of several possible components of a 
proposed intervention have effects of practical signifi-
cance  [4]. When implementing factorial experiments 
at the cluster level, the challenges involved in balancing 
cluster-level covariates across arms is magnified because 
there are more than two treatment conditions. For exam-
ple, in a 2 × 2 factorial CRT, clusters will be randomized 
to one of 4 treatment conditions.

One approach to address imbalance in prognostic 
cluster-level covariates across treatment conditions is to 
include these covariates in the analysis model which can 
help ensure an unbiased estimate of the treatment effect. 
The drawback to including cluster-level covariates in the 
analysis model is the subsequent loss of degrees of free-
dom that are available to estimate treatment effects. This 
resulting loss of power can be substantial when there are 
a small number of clusters [5]. An alternative to model-
based covariate adjustment is to control for potential 
confounders at the design stage, by balancing the distri-
bution of select measured characteristics across treat-
ment arms. This can help ensure more precise treatment 
effects as well as confidence that observed treatment 
effects are not due to imbalance in prognostic covari-
ates while at the same time avoiding the resulting loss of 
power due to covariate adjustment.

Individually randomized trials often rely on stratifica-
tion to achieve balance on prognostic factors across treat-
ment conditions. In CRTs with a small number of clusters, 
stratifying on more than one variable can be challenging 
because of an insufficient number of clusters to distribute 
among strata. This phenomenon is only exacerbated in 
factorial trials where there are at least 4 treatment condi-
tions. For example, with two binary stratification variables 

there will be total of four strata. To conduct a 2 × 2 facto-
rial CRT would require at least 4 clusters per stratum (16 
clusters total) to avoid unequal allocation of treatments 
within strata  [3]. Furthermore, stratifying on a continu-
ous factor requires converting it to a categorical variable, 
a process that can result in a loss of information.

Covariate-constrained randomization (CR) is an alter-
native procedure for achieving balance across treatment 
conditions on a set of predetermined cluster-level covari-
ates. Unlike individual level trials where participants are 
recruited sequentially, the participating units in a CRT 
are generally assembled at the start of the study so that 
cluster-level covariate values such as geographic location, 
clinic size, and the income level of patients are available 
at the design stage.

The first step in CR is to identify those cluster-level 
covariates that are predictive of the outcome on which 
one wishes to achieve balance. Using the terminology 
of Li et al.  [6], we refer to these covariates as “potential 
confounders" because they are cluster-level prognostic 
factors that, when imbalanced, could distort estimates of 
treatment effects.

The second step in CR is—for every possible randomiza-
tion scheme (or a random subset of schemes when the num-
ber of clusters is large)—to calculate a balance score that 
measures the difference in the distribution of cluster-level 
covariates across treatment conditions  [3, 7]. Next, a sub-
set of schemes is chosen that meet some pre-specified bal-
ance criteria, such the 10% of schemes with the best balance 
scores. Finally, an allocation is randomly selected among 
those schemes that meet the pre-specified criteria and is 
used to randomize clusters. CR tends to produce better bal-
ance on average across treatment conditions as compared 
to simple randomization in which a randomization scheme 
is selected from all possible schemes with equal probability 
assigned to each scheme. Compared with stratification, CR 
may be preferred due to its capacity to accommodate multi-
ple covariates, both categorical and continuous [8].

There are numerous variations of CR that use differ-
ent balance metrics and different analysis strategies. 
In the two-arm setting, Raab and Butcher [7] and  Li 
et al. [6] consider weighted and unweighted pairwise bal-
ance scores based on the difference in covariate means 
between arms. In the multi-arm setting, Zhou et  al.  [9] 
extend the pairwise balance score method, while Watson 
et al.  [10] present a balance metric based on the sum of 
cluster-level mean differences. Ciolino et  al.  [11] calcu-
late a Kruskal-Wallis test for each covariate across arms 
and assesses balance based on the p-values of these tests 
where a minimum p-value greater than 0.30 was found to 
appropriately identify acceptable balance.

The tradeoffs involved in selecting the size of the con-
strained allocation space is an important consideration 
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when using CR. As noted by Moulton [12], a highly con-
strained design—while ensuring good balance across 
treatment conditions—may open the investigator to accu-
sations of manipulation in favor of their hypothesis. Fur-
thermore, there can be a departure of the nominal type 
1 error rate when correlated clusters have a high or low 
probability of being included in the same arm [6, 12, 13].

In a two-arm setting, Li et  al.  [6] found that type 1 
error rates were conservative when using CR if not all the 
covariates used for randomization were included in the 
analysis. Watson et al. [10], and Zhou et al. [9] found the 
same result in simulations of multi-arm trials. For these 
reasons, Li et al. [6], Watson et al. [10], and Zhou et al. [9] 
all recommend adjustment for potential confounders in 
the analyses stage to maintain type 1 error and provide 
adequate power. The most common approach for the 
analysis of CRTs is mixed-effects regression modeling 
with random cluster-level effects to account for within-
cluster correlation. In a longitudinal CRT, mixed-effects 
models are sufficiently flexible to account for variability 
at both the cluster and participant levels.

Existing work on CR has focused on two- or three-arm 
CRTs. The performance of CR in a factorial setting—
where the minimum number of randomization condi-
tions is 4—has not been explored. At the randomization 
stage, a factorial design and a multi-arm parallel design 
are similar. For example, a 2 × 2 factorial trial and a four-
arm trial both aim to enroll equal numbers of clusters to 
one of four conditions. For this reason, CR methods for a 
2 × 2 factorial design and a 4-arm parallel design are the 
same, as they both seek to achieve balance across condi-
tions on prognostic cluster-level covariates. However, 
the analysis of data from factorial designs and multi-arm 
parallel designs is different. In a four-arm trial, each of 
the 4 arms consists of a single intervention and analysis 
involves comparing mean outcomes in each of the arms 
to each other or each of the three arms to a control arm.

In a 2 × 2 factorial trial, main effects are estimated by 
combining the mean outcomes from two conditions and 
comparing them to the mean outcomes from the other 
two conditions. For example, in Table  1 below describ-
ing the design of our motivating example, the effect of 
the in-person intervention is obtained by estimating the 
mean outcome in conditions “a” and “c” and subtract-
ing it from the mean outcome in conditions “b” and “d.” 
Similarly, the effect of text messages is estimated by tak-
ing the mean outcome in conditions “b” and “c” and sub-
tracting it from the mean outcome in conditions “a” and 
“d.” In this way, factorial designs are able to test multiple 
intervention components efficiently, by recycling  [14] 
clusters when estimating intervention effects and their 
interactions. This is especially important for CRTs where 
recruiting clusters can be challenging. Assessing whether 

CR operates differently in the factorial setting is an area 
that requires further investigation.

Motivating example
Our methods are motivated by the Behavioral Nudges 
for Diabetes Prevention (BEGIN) study  [15], a 2 × 2 
factorial CRT studying two pragmatic behavioral inter-
ventions that prompt patients to adopt evidence-based 
treatment for prediabetes in primary care, thereby pro-
moting modest weight loss. Preventing type 2 diabetes 
(T2D) has become a top public health priority given 
the high prevalence of prediabetes and the availabil-
ity of evidence-based treatments to prevent T2D  [16, 
17]. With 682 million office visits made by US adults 
annually, primary care is a critical venue for promoting 
weight loss and T2D prevention [18].

BEGIN takes place at the Erie Family Health Center, 
a Federally-funded primary care clinic network in Chi-
cago serving 85,000 vulnerable patients, 83% of whom 
live in poverty and 79% of whom are Hispanic/Latino. 
Given their reach and unique access to high-risk popu-
lations, community health centers are an ideal venue for 
studying primary care-based interventions that promote 
prediabetes treatment uptake and modest weight loss.

The two BEGIN primary care interventions are (1) 
in-person behavioral nudges via a pre-diabetes deci-
sion aid delivered by existing health educators; and (2) 
automated behavioral nudges via motivational letters 
and text messages. These two interventions are being 
tested in 8 Erie Family Health Center clinics using a 2 
× 2 factorial design. Two clinics are randomly assigned 
to each of the the four conditions in Table 1. These four 
conditions are: 

a.	 In-person intervention alone
b.	 Text message intervention alone
c.	 Both in-person and text message interventions
d.	 Neither intervention

Because randomization occurs at the clinic level, there 
is a risk of imbalance in clinic-level characteristics across 
treatment conditions. Table  2 presents data on three 

Table 1  2x2 factorial design of the BEGIN Study

Intervention

Condition In-person Text messages

a On Off

b Off On

c On On

d Off Off
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clinic-level covariates from the 8 clinics in the BEGIN 
study on which the BEGIN investigators sought to achieve 
balance. The data in Table 2 are based on clinic visits in 
2019–2020 (prior to the start of the BEGIN study) among 
patients who met the eligibility criteria of the BEGIN 
study. These three potential confounders are (1) clinic vol-
ume, as measured by the number of office visits; (2) per-
cent of office visits by female patients; and (3) mean BMI 
of visits. It is worth noting that mean BMI is similar across 
the 8 clinics, but total volume varies considerably.

In this manuscript, motivated by the BEGIN study, 
we extend and evaluate CR methods for multi-arm tri-
als  [9–11]—with a continuous outcome and continuous 
cluster-level covariates—to the 2 × 2 factorial CRT set-
ting. The outline for the rest of this paper is as follows. In 
the Methods section, we present methods for CR in the 
setting of a 2 × 2 factorial CRT and describe a simula-
tion study to assess the performance of our methods as 
compared to simple randomization of clusters. In the 
Results  section, we present the results of our simula-
tion study and apply our methods to the BEGIN study. 
The Discussion section provides discussion and areas of 
future work. We conclude in the Conclusions section.

Methods
As mentioned above, once a set of potential cluster-level 
confounders are identified, the next step in performing 
CR is to calculate a balance metric to measure the differ-
ence in the distribution of these cluster-level covariates 
across treatment conditions for all possible randomiza-
tion schemes. In this section, we describe a balance met-
ric for factorial trials that extends the balance metrics of 
Li et al. [6], Raab and Butcher [7], and Watson et al. [10].

Let J be the number of clusters and T be the num-
ber of treatment conditions so that nT = J

T  clusters 
are randomized to each treatment condition. Let xjk 
be the value of the kth  covariate (k = 1, . . . ,K ) in clus-
ter j (j = 1, . . . , J ) , and x̄tk = 1

nT j∈t xjk the mean value 

of the  kth  covariate in clusters assigned to condition t, 
(t = 1, . . . ,T ) . Finally x̄k = 1

J

∑J
j=1 xjk is the overall mean 

of covariate k across all clusters. Our balance metric is:

where dk is a predetermined scaling factor for the 
kth covariate. Following Raab and Butcher  [7] and Li 
et al. [6], we set dk as the inverse of the variance of the kth 
covariate across all clusters. That is

The metric in  (1) and  (2) describe the balance score 
introduced by Watson et al. [10] for use in multi-arm tri-
als. A limitation to this metric is that balance is purely 
defined by covariate values and does not take into 
account clinical importance. For example, in the BEGIN 
study, if clinic volume is considered to be a stronger 
predictor of weight loss than percent of female visits, 
we may want to give clinic volume greater weight in 
the balance metric so that smaller balance scores using 
the weighted metric will reflect better balance on clinic 
volume at the expense of less balance on clinic percent 
female. To incorporate weights into the balance metric 
in (1), we use the approach of Yu et al. [8] to produce the 
weighted balance metric:

where wk is a user-defined weight for the kth covariate. 
If wk = 1 for all covariates, then  (3) reduces to the bal-
ance metric in  (1). When researchers consider certain 
variables to be more predictive of the outcome than oth-
ers or for which there is greater variability across clusters, 
a user-defined weight wk > 1 could be assigned to those 
variables when calculating balance scores [6].

To perform CR, the balance metric B (or Bw ) is generated 
for all possible randomization schemes of the J clusters. The 
final allocation is chosen from a subset of allocations that 
meet a pre-specified balance criteria. Here, we select a cut-
off value q which is the qth percentile of the balance scores. 
Yu et  al.  [8] note that the cutoff value q should be small 
and away from 1.0 (simple randomization) so that only the 
more balanced randomization schemes are retained in the 
constrained space. For example, Yu et al. [8] set q = 0.1 so 
that only the schemes in the top 10% of balance scores are 
included in the constrained allocation space.

When the number of clusters is small, it is feasible to 
calculate the balance score for all possible allocations 

(1)B =

K
∑

k=1

dk

T
∑

t=1

(x̄tk − x̄k)
2

(2)dk =
1

s2k
=

J − 1
∑J

j=1(xjk − x̄k)2
.

(3)Bw =

K
∑

k=1

wkdk

T
∑

t=1

(x̄tk − x̄k)
2

Table 2  Clinic volume, percent female, and mean BMI of visits 
by patients who met the BEGIN eligibility criteria in 2019–2020 
for each of the 8 clinics in the BEGIN trial

Clinic number Clinic volume Percent female Mean BMI

C1 29,933 73.57 31.19

C2 26,613 88.54 31.20

C3 23,940 77.59 31.53

C4 18,869 77.52 30.55

C5 14,660 84.65 30.32

C6 24,119 81.71 31.11

C7 34,637 74.39 30.58

C8 3429 71.19 31.33
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where the number of allocations is J !
[(J/T )!]T

 . For example, 
when J = 8 and T = 4 , there are only 2520 possible ways 
to randomize clusters. Since treatment assignments can 
be labeled 4! = 24 different ways, these 2520 possible 
allocations correspond to only 2520/24 = 105 unique bal-
ance scores. Thus, when J = 8 , it is computationally fea-
sible to select the final allocation from the top ( q × 100 )% 
of the allocations corresponding to the 105 unique bal-
ance scores. For example, when q = 0.1 , we draw from 
the top 10× 24 = 240 balanced allocations.

However, for CRTs with more clusters, for example, when 
J = 12 and T = 4 , there are 369,600 possible ways to rand-
omize the clusters and enumerating all possible allocations 
becomes computationally expensive. Following Li et al. [6], 
when J > 8 , we randomly sample a subset of 20,000 allo-
cations from all possible allocations, remove duplicate 
allocations, then select our final allocation from the top 
( q × 100 )% of allocations in terms of balance scores.

Simulation study
We use simulation to assess our method of CR in the set-
ting of a 2 × 2 factorial cluster randomized trial and how it 
compares to simple randomization in terms of estimating 
treatment effects. Following Li et  al.  [6] we simulate data 
using the following approach. Let xj1 , xj2 , xj3 be three corre-
lated cluster level covariates for cluster j, (j = 1, . . . , J ); that 
are normally distributed with mean 1 and variance σ 2

x  on 
which we wish to achieve balance. The correlations between 
cluster-level covariates are based on the BEGIN data in 
Table 2 and are: corr(xj1, xj2) = 0.13 , corr(xj1, xj3) = −.04 , 
and corr(xj2, xj3) = −0.19 . Let yij be the outcome of inter-
est for subject i, (i = 1, . . . , nj) ; in cluster j. We set nj = 100 
throughout. Let Trt1j and Trt2j indicate—using dummy 
coding—whether cluster j is assigned to treatments 1 and/
or 2, respectively, where treatment is based on the factorial 
design in Table 1. We generate yij from the following linear 
mixed-effects model:

The parameters β1 , β2 , and β3 are regression coef-
ficients on the cluster-level covariates that are predic-
tive of the outcome (when β  = 0 ). For simplicity, we 
let β1 = β2 = β3 . The coefficients γ1 and γ2 correspond 
to the effects of the two interventions. We set γ1 = 5 
and γ2 = 0 . The parameter bj is a cluster-level random 
effect where bj ∼ N

(

0, σ 2
b

)

 and εij is an error term where 
εij ∼ N

(

0, σ 2
ε

)

 . We assume σ 2
ε = 36 and an intra-cluster 

correlation (ICC) of ρ = 0.05 so that σ 2
b = ρσ 2

ε /(1− ρ).
When controlling for cluster-level covariates in the 

analysis model, the analysis model is identical to  (4) and 
the variance of the outcome is the same across all simu-
lation scenarios and is equal to Var(yij|xj) = σ 2

ε + σ 2
b  . 

(4)yij = β1xj1 + β2xj2 + β3xj3 + γ1Trt1j + γ2Trt2j + bj + εij

When the analysis model does not control for cluster-
level covariates, the covariates xj1, xj2, xj3 are excluded 
from the model and the variance of the outcome varies 
across simulation scenarios and is reflected in an inflated 
between-cluster variance. That is,

where the term 3β2σ 2
x  is the increase in variance due to 

not conditioning on covariates. Since σ 2
ε  and σ 2

b  are fixed 
in our simulations, the variance of the outcome will be 
the same when the product of β2 and σ 2

x  are the same.
We sought to investigate the following factors in our 

simulation study and examine how their effects differ 
when using CR as compared to simple randomization: 
number of clusters, the size of the constrained randomi-
zation space, the variability of cluster-level covariates, the 
magnitude of cluster-level effects on the outcome, and 
whether or not cluster-level covariates are controlled for 
in the analysis model. Table 3 shows the factors that vary 
in the simulation. With five factors with two to four lev-
els each, we evaluated a total of 2× 4 × 3× 3× 2 = 144 
scenarios. Simulation is based on the following steps: 

1.	 Simulate K = 3 correlated cluster level covariates of 
size J from a multivariate normal distribution with mean 
1, variance σ 2

x  , and correlations corr(xj1, xj2) = 0.13 , 
corr(xj1, xj3) = −.04 , and corr(xj2, xj3) = −0.19.

2.	 Use either CR (see code in Appendix 1 for implement-
ing CR in R) or simple randomization to randomize the 
J clusters to one of the 4 conditions in Table 1.

3.	 Draw εij ∼ N
(

0, σ 2
ε

)

 , i = 1, . . . , nj ; j = 1, . . . , J  . Here, 
we fix σ 2

ε = 36.
4.	 Draw bj ∼ N

(

0, σ 2
b

)

 , j = 1, . . . , J  where 
σ 2
b = ρσ 2

ε /(1− ρ) , and ρ = 0.05 is the ICC.
5.	 Generate nj = 100 values of yij using (4).
6.	 Analyze the data using a linear mixed-effects model 

with a random intercept for cluster and indicator vari-
ables for the two treatment conditions. Based on the 

(5)
Var(yij) = E

{

Var(yij|xj)
}

+ Var
{

E(yij|xj)
}

= σ 2
ε + σ 2

b + 3β2σ 2
x ,

Table 3  Factors that vary in the simulation study

Note: SR simple randomization, SD standard deviation

Factor Values

Number of clusters J J = 8, 12

Size of constrained randomization 
space

Top 10%, 20%, 50%, 100% (SR) 
of balance scores

SD of cluster-level covariates σx 0.5, 1, 2

Cluster-level covariate effects β None ( β = 0 ), medium ( β = 0.5 ), 
large ( β = 1)

Analysis model Control/do not control for covariates
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simulation scenario, the analysis model either controls 
for or does not control for cluster-level covariates.

Steps 1–6 were performed 10,000 times to generate 
10,000 parameter estimates for each of the 144 simulation 
scenarios. We focus our attention on the performance of 
the treatment effects γ . Specifically, using γ1 we assess the 
percent bias, variance, mean squared error (MSE), cov-
erage and width of the 95% confidence interval, and the 
power to reject the null hypothesis. Using γ2 , we assess 
type 1 error under a nominal type 1 error rate of 0.05. For 
each scenario, we also report the mean, minimum, and 
maximum of the balance metric in (1) across the 10,000 
simulations.

Interaction effects
The primary reason for using a factorial design in the 
BEGIN trial was efficiency, as it requires a smaller sample 
size than a three-arm trial. However, an additional advan-
tage of a factorial design is the ability to estimate whether 
treatments interact. To assess our method of CR when 
estimating an interaction effect, we repeated our simula-
tions but now replacing the data generating model in (4) 
with the following model:

Equation  (6) differs from  (4) in two respects. First, an 
interaction term has been included in the model for the 
interaction between the two interventions. Second, the var-
iables Trt1j and Trt1j are entered using effect coding (1, − 1) 
so that the main effects and interaction term are orthogo-
nal to each other [19]. Since the low and high levels of these 
effect codes are further apart than the dummy codes in (4), 
we set γ1 = 2.5 so that the magnitude of the main effect of 
treatment 1 is the same as before. We again set γ2 = 0 to 
assess type 1 error in the presence of an interaction effect. 
Finally, we set γ3 = 2.5 so that the magnitude of the inter-
action effect was the same as that of the main effect.

We again performed Steps 1–6 10,000 times to generate 
10,000 parameter estimates for each of the 144 simulation 
scenarios in Table  3. We report the performance charac-
teristics for γ1 (the main effect of treatment 1) and γ3 (the 
interaction of treatments 1 and 2). Using γ2 (the main effect 
of treatment 2), we assess type 1 error under a nominal 
type 1 error rate of 0.05.

Results
Simulation results
Tables  4 and  5 summarize the results of our simula-
tion study for 8 and 12 clinics, respectively, using both 
CR and simple randomization under various degrees of 

(6)yij = β1xj1 + β2xj2 + β3xj3 + γ1Trt1j + γ2Trt2j + γ3(Trt1j ∗ Trt2j)+ bj + εij.

cluster-level variability ( σx ), cluster-level covariate effects 
( β ), and allocation space sizes. The results in Tables 4 and 5 
are from simulations where cluster-level covariates are not 
controlled for in the analysis model and only main effects 
are estimated.

Looking at Table  4, comparing CR to simple randomi-
zation, the percent bias is essentially 0 for both CR and 
simple randomization. As the magnitude of cluster-level 
covariate effects increases (as measured by β ) variance and 
MSE increase, with both performance criteria better under 
CR. A similar trend is seen with increasing values of clus-
ter-level variability (as measured by σx ), where variance and 
MSE increase as σx increases and both performance criteria 
are worse under simple randomization. Coverage and type 
1 error tend to be conservative under CR while these values 
are at their nominal levels under simple randomization.

Power in Table 4 is similar for both CR and simple rand-
omization. However, in those settings where the magnitude 
of potential confounding is high and cluster-level variability 
is also high, power is low for both CR and simple randomi-
zation. For example, when σx = 2 and β = 1 , power is 26% 
under CR (top 10% of balance scores) and 35% under sim-
ple randomization.

As the allocation space increases from 10% to 50%, 
the simulation results are more like those under simple 
randomization. Variance and MSE increase while cover-
age and type 1 error are almost identical when using the 
top 10% or 20% of balance scores and slightly less con-
servative when using the top 50% of balance scores. As 
expected, covariate balance (last column in Table  4) is 
better and less variable as the allocation space becomes 
more constrained. Because the balance metric in  (1) 
standardizes each covariate by the inverse of its variance, 
values of σx do not have an effect on the balance metric 
and mean balance and its range across the 10,000 simula-
tions only depends on the size of the allocation space.

The results in Table  5 based on 12 clusters are simi-
lar to those based on 8 clinics, with better variance and 
MSE under CR and similar power as compared to simple 
randomization. Again, coverage and type 1 error are con-
servative under CR while these criteria are at their nomi-
nal level under simple randomization. However, with 12 
clusters, power is much greater than in the setting with 
8 clusters such that power is only inadequate in the sce-
nario with the highest potential confounding ( β = 1 ) and 
the highest between-cluster variability ( σx = 2).

As noted in the Simulation Study  section, the perfor-
mance criteria in Tables 4 and 5 are the same when the 
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product of σx and β are the same due to the fact that the 
marginal variance of yij is a function of the product of 
σx and β (Eq.  5). For example, the performance criteria 
when σx = 0.5 and β = 1.0 are the same as when σx = 1.0 
and β = 0.5.

Appendix 2 Tables 7 and 8 summarize the simulation 
results for 8 and 12 clusters, respectively, now based 
on a main effects only analysis model that controls 
for cluster-level covariates. Here, the analysis model 
is identical to the data generating model so that the 

Table 4  Simulation results for the effect of treatment with 8 clusters, based on a main effects only analysis model that does not 
control for cluster-level covariates

Note: SD standard deviation, %Bias percent bias, Var variance, MSE mean squared error, Cov coverage of the 95% confidence interval, CI confidence interval, Type 1 
Error proportion of type 1 errors under a nominal type 1 error rate of 0.05, Balance covariate balance

Covariate Degree %Bias Var MSE Cov Power 95% CI Type 1 Mean balance
SD Confounding Width Error (min, max)

Covariate-constrained randomization: top 10% of balance scores

σx = 0.5 β = 0.0 0.07 1.15 1.15 0.95 0.96 5.18 0.05 2.13 (0.35, 3.58)

β = 0.5 0.00 1.19 1.19 0.95 0.95 5.42 0.05 2.13 (0.35, 3.58)

β = 1.0 − 0.06 1.32 1.32 0.96 0.90 6.08 0.04 2.13 (0.35, 3.58)

σx = 1 β = 0.0 0.08 1.15 1.15 0.95 0.96 5.18 0.05 2.13 (0.35, 3.58)

β = 0.5 − 0.06 1.32 1.32 0.96 0.90 6.08 0.04 2.13 (0.35, 3.58)

β = 1.0 − 0.19 1.84 1.84 0.98 0.69 8.21 0.03 2.13 (0.35, 3.58)

σx = 2 β = 0.0 0.07 1.15 1.15 0.95 0.96 5.18 0.05 2.13 (0.35, 3.58)

β = 0.5 − 0.19 1.84 1.84 0.98 0.69 8.21 0.03 2.13 (0.35, 3.58)

β = 1.0 − 0.45 3.92 3.92 0.99 0.26 13.77 0.01 2.13 (0.35, 3.58)

Covariate-constrained randomization: top 20% of balance scores

σx = 0.5 β = 0.0 − 0.27 1.13 1.13 0.95 0.96 5.19 0.05 2.56 (0.35, 3.79)

β = 0.5 − 0.29 1.18 1.18 0.96 0.95 5.42 0.05 2.56 (0.35, 3.79)

β = 1.0 − 0.31 1.33 1.33 0.96 0.90 6.07 0.04 2.56 (0.35, 3.79)

σx = 1 β = 0.0 − 0.27 1.13 1.13 0.95 0.96 5.19 0.05 2.56 (0.35, 3.79)

β = 0.5 − 0.31 1.33 1.33 0.96 0.90 6.07 0.04 2.56 (0.35, 3.79)

β = 1.0 − 0.36 1.95 1.95 0.98 0.69 8.15 0.03 2.56 (0.35, 3.79)

σx = 2 β = 0.0 − 0.27 1.13 1.13 0.95 0.96 5.19 0.05 2.56 (0.35, 3.79)

β = 0.5 − 0.34 1.94 1.95 0.98 0.69 8.15 0.03 2.56 (0.35, 3.79)

β = 1.0 − 0.42 4.39 4.39 0.98 0.27 13.59 0.02 2.56 (0.35, 3.79)

Covariate-constrained randomization: top 50% of balance scores

σx = 0.5 β = 0.0 − 0.06 1.14 1.14 0.95 0.96 5.21 0.05 3.34 (0.50, 4.80)

β = 0.5 − 0.06 1.21 1.21 0.95 0.95 5.43 0.05 3.34 (0.50, 4.80)

β = 1.0 − 0.06 1.41 1.41 0.95 0.90 6.03 0.04 3.34 (0.50, 4.80)

σx = 1 β = 0.0 − 0.06 1.14 1.14 0.95 0.96 5.21 0.05 3.34 (0.50, 4.80)

β = 0.5 − 0.07 1.41 1.41 0.95 0.90 6.03 0.04 3.34 (0.50, 4.80)

β = 1.0 − 0.07 2.23 2.23 0.97 0.70 8.00 0.04 3.34 (0.50, 4.80)

σx = 2 β = 0.0 − 0.08 1.14 1.14 0.95 0.96 5.21 0.05 3.34 (0.50, 4.80)

β = 0.5 − 0.08 2.22 2.22 0.97 0.70 8.00 0.04 3.34 (0.50, 4.80)

β = 1.0 − 0.09 5.49 5.49 0.97 0.31 13.20 0.03 3.34 (0.50, 4.80)

Simple randomization

σx = 0.5 β = 0.0 − 0.06 1.17 1.17 0.95 0.96 5.17 0.05 4.50 (0.49, 9.42)

β = 0.5 − 0.12 1.26 1.26 0.95 0.94 5.37 0.05 4.50 (0.49, 9.42)

β = 1.0 − 0.18 1.53 1.53 0.95 0.90 5.92 0.05 4.50 (0.49, 9.42)

σx = 1 β = 0.0 − 0.06 1.17 1.17 0.95 0.96 5.17 0.05 4.50 (0.49, 9.42)

β = 0.5 − 0.18 1.53 1.53 0.95 0.90 5.92 0.05 4.50 (0.49, 9.42)

β = 1.0 − 0.30 2.59 2.59 0.95 0.71 7.75 0.05 4.50 (0.49, 9.42)

σx = 2 β = 0.0 − 0.06 1.17 1.17 0.95 0.96 5.17 0.05 4.50 (0.49, 9.42)

β = 0.5 − 0.30 2.59 2.59 0.95 0.71 7.75 0.05 4.50 (0.49, 9.42)

β = 1.0 − 0.54 6.79 6.79 0.95 0.35 12.66 0.05 4.50 (0.49, 9.42)
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results for CR are the same across all scenarios within 
a fixed allocation space and the results for simple ran-
domization are the same across all scenarios. Overall, 
even when controlling for covariates in the analyses, 

there is a benefit to using CR as compared to simple 
randomization in terms of lower MSE, greater power, 
and narrower confidence interval width. And unlike in 
the unadjusted analyses, coverage and type 1 error are 

Table 5  Simulation results for the effect of treatment with 12 clusters, based on a main effects only analysis model that does not 
control for cluster-level covariates

Note: SD standard deviation, %Bias percent bias, Var variance, MSE mean squared error, Cov coverage of the 95% confidence interval, CI confidence interval, Type 1 
Error proportion of type 1 errors under a nominal type 1 error rate of 0.05, Balance covariate balance

Covariate Degree %Bias Var MSE Cov Power 95% CI Type 1 Mean balance
SD Confounding Width Error (min, max)

Covariate-constrained randomization: top 10% of balance scores

σx = 0.5 β = 0.0 − 0.16 0.76 0.76 0.95 1.00 3.81 0.05 1.26 (0.11, 1.92)

β = 0.5 − 0.17 0.79 0.79 0.95 1.00 3.97 0.04 1.26 (0.11, 1.92)

β = 1.0 − 0.18 0.86 0.86 0.96 0.99 4.42 0.04 1.26 (0.11, 1.92)

σx = 1 β = 0.0 − 0.16 0.76 0.76 0.95 1.00 3.81 0.05 1.26 (0.11, 1.92)

β = 0.5 − 0.19 0.86 0.86 0.96 0.99 4.42 0.04 1.26 (0.11, 1.92)

β = 1.0 − 0.21 1.17 1.18 0.98 0.94 5.90 0.02 1.26 (0.11, 1.92)

σx = 2 β = 0.0 − 0.16 0.76 0.76 0.95 1.00 3.81 0.05 1.26 (0.11, 1.92)

β = 0.5 − 0.22 1.18 1.18 0.98 0.94 5.90 0.02 1.26 (0.11, 1.92)

β = 1.0 − 0.27 2.41 2.41 0.99 0.52 9.80 0.01 1.26 (0.11, 1.92)

Covariate-constrained randomization: top 20% of balance scores

σx = 0.5 β = 0.0 0.05 0.75 0.75 0.95 1.00 3.81 0.05 1.54 (0.19, 2.24)

β = 0.5 0.06 0.78 0.78 0.95 1.00 3.96 0.05 1.54 (0.19, 2.24)

β = 1.0 0.08 0.87 0.87 0.96 0.99 4.41 0.04 1.54 (0.19, 2.24)

σx = 1 β = 0.0 0.05 0.75 0.75 0.95 1.00 3.81 0.05 1.54 (0.19, 2.24)

β = 0.5 0.08 0.87 0.87 0.96 0.99 4.41 0.04 1.54 (0.19, 2.24)

β = 1.0 0.11 1.23 1.23 0.98 0.94 5.86 0.03 1.54 (0.19, 2.24)

σx = 2 β = 0.0 0.05 0.75 0.75 0.95 1.00 3.81 0.05 1.54 (0.19, 2.24)

β = 0.5 0.10 1.23 1.23 0.98 0.94 5.86 0.03 1.54 (0.19, 2.24)

β = 1.0 0.16 2.72 2.72 0.99 0.54 9.71 0.01 1.54 (0.19, 2.24)

Covariate-constrained randomization: top 50% of balance scores

σx = 0.5 β = 0.0 0.01 0.76 0.76 0.95 1.00 3.80 0.05 2.09 (0.23, 3.06)

β = 0.5 0.01 0.80 0.80 0.95 1.00 3.95 0.05 2.09 (0.23, 3.06)

β = 1.0 0.00 0.92 0.92 0.96 0.99 4.39 0.04 2.09 (0.23, 3.06)

σx = 1 β = 0.0 0.01 0.76 0.76 0.95 1.00 3.80 0.05 2.09 (0.23, 3.06)

β = 0.5 0.00 0.92 0.92 0.96 0.99 4.39 0.04 2.09 (0.23, 3.06)

β = 1.0 − 0.01 1.42 1.42 0.97 0.93 5.80 0.03 2.09 (0.23, 3.06)

σx = 2 β = 0.0 0.01 0.76 0.76 0.95 1.00 3.80 0.05 2.09 (0.23, 3.06)

β = 0.5 − 0.01 1.42 1.42 0.97 0.94 5.80 0.03 2.09 (0.23, 3.06)

β = 1.0 − 0.03 3.41 3.41 0.98 0.54 9.55 0.03 2.09 (0.23, 3.06)

Simple Randomization

σx = 0.5 β = 0.0 − 0.02 0.75 0.75 0.95 1.00 3.80 0.05 2.99 (0.30, 8.60)

β = 0.5 − 0.06 0.81 0.81 0.95 1.00 3.95 0.05 2.99 (0.30, 8.60)

β = 1.0 − 0.10 0.98 0.98 0.95 0.99 4.36 0.05 2.99 (0.30, 8.60)

σx = 1 β = 0.0 − 0.02 0.75 0.75 0.95 1.00 3.80 0.05 2.99 (0.30, 8.60)

β = 0.5 − 0.10 0.98 0.98 0.95 0.99 4.36 0.05 2.99 (0.30, 8.60)

β = 1.0 − 0.17 1.66 1.66 0.95 0.93 5.71 0.05 2.99 (0.30, 8.60)

σx = 2 β = 0.0 − 0.02 0.75 0.75 0.95 1.00 3.80 0.05 2.99 (0.30, 8.60)

β = 0.5 − 0.17 1.66 1.66 0.95 0.93 5.71 0.05 2.99 (0.30, 8.60)

β = 1.0 − 0.32 4.42 4.42 0.95 0.55 9.33 0.05 2.99 (0.30, 8.60)
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not conservative and are close to their nominal levels 
when using CR with 8 clusters and at their nominal lev-
els with 12 clusters.

Comparing simulations with 8 clusters where the analyses 
does not control for covariates (Table 4) to simulations with 
8 clusters where the analysis model does control for covari-
ates (Appendix 2 Table 7) we see that controlling for covari-
ates has an especially adverse effect on power such that 
power is only 54% under CR (top 10% of balance scores) and 
43% under simple randomization. The only scenario where 
controlling for covariates produces better results than not 
controlling for covariates is the extreme scenario with the 
highest potential confounding and the highest between-
cluster variability. Here, variance, MSE, power, and CI width 
are all better when controlling for covariates.

With 12 clusters (Appendix 2 Table  8) there appears 
to be a clear advantage to controlling for cluster-level 
covariates in the analyses. The effect on power as com-
pared to not controlling for covariates (Table 5) is mod-
est, and in those scenarios with a high degree of potential 
confounding, controlling for covariates results in a 
marked increase in power. For example, under CR (top 
10% of balance scores) in the scenario with the highest 
potential confounding and the highest between-cluster 
variability, power goes from 0.52 when not controlling for 
covariates to 0.99 when controlling for covariates. And as 
mentioned earlier, coverage and type 1 error are at their 
nominal levels when controlling for covariates.

Results from simulations that included an interaction 
term are reported in Appendix 3 Tables 9 through 12. 
Performance criteria (bias, coverage, power) is same for 
the main effect and the interaction. However, power in 
these simulations is lower than power in simulations 
that only include main effects of treatment, owing to 
the additional cluster-level coefficient in the analysis 
model for the interaction term. This reduction in power 
was especially pronounced in simulations based on 8 
clusters. Furthermore, when controlling for cluster-
level covariates with 8 clusters (Appendix 3 Table 11), 
coverage was well below the nominal level and type 1 
error was elevated compared to the main effects only 
analysis (Appendix 2 Table 7).

Application to the BEGIN study
We applied our methods for CR in factorial trials to the 
BEGIN study, using the cluster-level covariate informa-
tion in Table 2. With 8 clusters and 4 treatment condi-
tions there are 8!

24
= 2520 possible schemes. Using the 

balance metric in  (3), we calculated the balance score 
for each of these possible 2520 allocation schemes. 
Based on a belief by the BEGIN investigators that clinic 
volume was an important predictor of weight loss, 

and the fact that mean BMI was similar across all clin-
ics, clinic volume was given a weight of 2 in  (3), while 
percent female and mean BMI were given weights of 1. 
Figure 1 displays a histogram of the balance scores for 
all 2520 possible schemes. The vertical red line in Fig. 1 
indicates the cutoff corresponding to the top 10% bal-
ance scores among the 2520 scores.

As mentioned above, for a given set of clinic matches, 
the treatment assignments can be labeled 4! = 24 dif-
ferent ways, so that our 2520 possible allocations cor-
respond to only 2520/24 = 105 unique balance scores. 
The allocations corresponding to the top 10 unique bal-
ance scores are listed in Table 6.

Note that in seven of the ten allocations in Table  6, 
clinics C7 and C8 are matched together. Clinics C7 
and C8 have the largest and smallest clinic volumes, 
respectively. Assigning them to the same treatment 
condition helps ensure balance across treatment 
conditions. Conversely, clinics C1 and C2 are only 
matched together in two of the ten allocations. Clinics 
C1 and C2 are the second and third largest clinics. Put-
ting them in different treatment conditions also helps 
ensure balance.

Discussion
In this paper, we presented a method for performing CR in 
factorial cluster randomized trials. We performed a simu-
lation study to assess the effectiveness of our method as 
compared to simple randomization in terms of estimating 
treatment effects in the setting of a 2 × 2 factorial trial. In 
all scenarios, bias of the treatment effect was essentially 0. 
However, by balancing prognostic covariates across treat-
ment arms, CR resulted in more precise estimates of the 
treatment effect as measured by MSE, a finding also noted 
by Kalish and Begg [20]. And by constraining the alloca-
tion space, CR eliminates the possibility of a highly imbal-
anced allocation which may significantly undermine the 
power of a trial as well as threaten its internal validity [10].

When covariates were not controlled for in the analy-
sis model, we found that both CR and simple randomi-
zation produced similar rates of power but coverage and 
Type 1 error rates were conservative under CR, a find-
ing that was also found in Li et al. [6], Watson et al. [10] 
and Zhou et al. [9]. When covariates were controlled for 
in the analysis, simulations again showed a clear ben-
efit of CR versus simple randomization across all perfor-
mance criteria in addition to coverage and type 1 error 
close to or at their nominal levels. Still, the question of 
whether or not one should control for covariates in the 
analysis model is not clear-cut. The rationale to control 
for cluster-level covariates even when performing CR is 
that including these covariates helps adjust for any resid-
ual imbalances not controlled for during randomization 
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and can also reduce residual variance. The trade-off is a 
reduction in the number of degrees of freedom for esti-
mating treatment effects. For example, when there are 8 
clusters and covariates are not included in the analysis 
model, there are 8− 3 = 5 degrees of freedom available 
to estimate treatment effects. Including 3 cluster-level 

covariates in the analysis model reduces this to only 2 
degrees of freedom.

In our simulations with 8 clusters, the loss of power 
when controlling for covariates was so substantial that 
controlling for covariates is not recommended due 
to the decrease in degrees of freedom for estimating 
treatment effects. This loss of power was exacerbated 

Fig. 1  Histogram of total balance scores for the 2520 possible allocation schemes for the Behavioral Nudges for Diabetes Prevention (BEGIN) cluster 
randomized trial with 8 clusters and 4 randomization conditions. The vertical red line indicates the cutoff corresponding to the top 10% of balance 
scores among the 2520 possible scores

Table 6  Clinic pairings associated with the top 10 unique balance scores sorted by total balance score, using data from the Behavioral 
Nudges for Diabetes Prevention (BEGIN) cluster randomized trial in Table 2

Clinic Balance score

Allocation C1 C2 C3 C4 C5 C6 C7 C8 Total Female Volume BMI

1 a b c b a c d d 2.79 1.56 0.29 0.94

2 a b c b c a d d 2.85 1.73 0.89 0.23

3 a a b c b c d d 2.92 1.35 1.18 0.39

4 a b c c a d d b 3.10 0.09 2.19 0.82

5 a b c c a b d d 3.11 2.22 0.44 0.45

6 a b b c a c d d 3.17 1.57 0.42 1.18

7 a b c d a d c b 3.29 0.28 2.16 0.85

8 a b c a c d d b 3.57 0.50 2.46 0.61

9 a b c a c b d d 3.58 2.63 0.70 0.25

10 a a b b c c d d 3.58 1.77 1.17 0.65
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when an interaction term was included in the model. 
With 12 clusters, the loss of power when controlling 
for covariates in the analysis model was minimal, and 
in some scenarios produced better power than not 
controlling for covariates. The loss of power when 
controlling for cluster-level covariates with a small 
number of clusters highlights another benefit of CR—
it allows to user to control for cluster-level covariates 
during the design stage in order to avoid highly imbal-
anced designs and obtain more precise inferences—
without the resulting decrease in degrees of freedom 
that would occur if covariates were controlled for in 
the analysis model.

Power for testing the main effect of treatment was 
reduced when including an interaction term in the model 
due to the additional degree of freedom required to esti-
mate this coefficient. While this reduction in power was 
modest with 12 clusters, it was substantial with 8 clus-
ters. Furthermore, when controlling for cluster-level 
covariates with 8 clusters (Appendix 3 Table  11), cov-
erage was low and type 1 error was elevated compared 
to the main effects only analysis (Appendix 2 Table  7). 
When designing a factorial CRT, investigators need to 
think carefully about whether estimating interaction 
terms are of scientific interest and, if so, the study needs 
to be powered accordingly. Unlike in our simulations 
where the magnitude of the main effect and interaction 
terms were the same, in many studies, the interaction 
term is expected  to be smaller in magnitude than the 
main effect.

As we decreased the size of the constrained allocation 
space, variance and MSE decreased, with very minor 
tradeoffs in coverage and type 1 error. When controlling 
for covariates in the analysis, the size of the allocation 
space did not affect coverage and type 1 error. Overall, 
these results suggest that using the top 10% of balance 
scores is sufficient for achieving balance, reducing MSE, 
and avoiding highly imbalanced designs.

Although we did not systematically vary the correla-
tions between cluster-level covariates in our simulation 
study, simulations using independent cluster-level covari-
ates provided results almost identical to those shown 
here, suggesting that the correlation structure among 
the cluster-level covariates has little effect on our meth-
ods. Ciolino et  al.  [11] also found in their simulation 
studies that the magnitude of the correlation between 
cluster-level covariates had negligible effects on their CR 
method.

When cluster-level covariates have small variance, as 
was the case in our simulations when σx = 0.5 , there is 
little benefit to controlling for covariates in the analysis 
model and a substantial loss of power. This can be seen 

by comparing Table  4 (top 10% of balance scores) and 
Appendix 2 Table  7 when σx = 0.5 and β = 1 . Here, 
power is 90% when not controlling for covariates but only 
54% when covariates are included in the analysis model. 
Only when σx = 2 and the degree of confounding is high 
is power better when controlling for covariates.

This finding is relevant to the BEGIN study, where 
there are only 8 clusters and the variability in the clus-
ter-level covariates is small. In our simulation studies, 
where the mean of the covariates was 1, the coefficient 
of variation in the cluster-level covariates ranged from 
0.7 when σx = 0.5 , to 1.4, when σx = 2 . In Table 2, the 
clinic volume coefficient of variation is 0.44. But the 
coefficient of variation for percent female is 0.08 and 
the coefficient of variation for mean BMI is only 0.01. 
These values suggest that the analysis model for the 
BEGIN study should not control for clinic-level covari-
ates unless the distribution of clinic-level covariates in 
the actual trial data is much different from the values in 
Table 2.

In BEGIN, two of the cluster-level covariates in 
Table 2, percent female and mean BMI, can be collected 
during the course of the study at the individual level 
and adjusted for in the analysis model as individual-
level covariates. However, variables at the clinic level 
can have a different effect than a similar covariate at the 
individual level. For example, a clinic where the mean 
BMI is high may have providers who are more likely to 
bring up weight loss with their patients so that predia-
betic patients at this clinic are more likely to lose weight 
over time compared to prediabetic patients at other 
clinics. BMI could have an opposite effect at the indi-
vidual level. For example, patients with high BMI may 
be less likely to lose weight over time than patients with 
lower BMI. Controlling for BMI at both the clinic level 
and the individual level may be important to reduce 
confounding, but one is not necessarily a substitute for 
the other.

Our simulation results under simple random sampling 
are averages over all possible allocations and uncon-
strained randomization retains the possibility to select a 
highly unbalanced design. As suggested by a reviewer, we 
performed additional simulations where the allocation 
space was based on the bottom 10% of balance scores. 
When not controlling for covariates, results (not shown) 
based on the bottom 10% of balance scores had worse 
bias, variance, MSE, and coverage than results using sim-
ple random sampling. Furthermore, the type 1 error rate 
exceeded the nominal level.

When controlling for covariates, results based on the 
bottom 10% of balance scores had worse bias, variance, 
MSE, and power than results based on simple random 



Page 12 of 19Siddique et al. Trials          (2024) 25:593 

sampling. But coverage and type 1 error rates were pre-
served at their nominal levels.

When randomizing 12 clinics using CR, we sampled 
from 20,000 of the 369,300 possible allocations. To evalu-
ate whether sampling from 20,000 allocations is suffi-
cient for approximating the entire randomization space, 
we repeated our simulations but sampled from 50,000 of 
the possible allocations. These results (not shown) were 
almost identical to the results in Table 5 and Appendix 2 
Table 8 suggesting that—at least for 12 clinics and 4 treat-
ment conditions—sampling from more than 20,000 of 
the total possible allocations does not affect our results.

An alternative to the model-based methods used in this 
manuscript are randomization-based methods. Work 
by Zhou et  al.  [9] in the multi-arm setting has shown 
that when baseline covariates are balanced through CR, 
covariate adjustment at the analysis stage is necessary for 
model-based tests to maintain nominal type 1 error rates 
but randomization-based tests do not require this adjust-
ment, a finding also reported by Li et al. [6] in two-group 
designs. Zhou et  al.  [9] also found that power is better 
under CR versus simple randomization in unadjusted 
analyses, although care must be taken when selecting the 
size of the constrained randomization space. Randomi-
zation tests are also more robust to violations of distri-
butional assumptions. For these reasons, developing and 
evaluating methods for randomization-based inference in 
factorial CRTs is a promising area of future research.

There are several limitations to our study. We evaluated 
our methods using a 2 × 2 factorial trial and it is not clear 
whether our methods would work equally well with a 2k 
or other larger factorial trial with additional treatment 
conditions. We evaluated our balance metric using sim-
ulated continuous covariates. Future work will evaluate 
how well our methods perform when binary or categori-
cal group-level covariates are used to constrain the rand-
omization set and the outcome is continuous or binary.

Conclusions
Our findings provide evidence for the use of CR instead 
of simple randomization when performing factorial 
CRTs to avoid highly imbalanced designs and to obtain 
more precise inferences. Except when there are a small 
number of clusters per treatment condition, cluster-level 
covariates should be included in the analysis model to 
increase power and produce coverage and type 1 error 
rates at their nominal levels. When there are a small 
number of clusters, we recommend cluster-level covari-
ates should not be included in the analysis model due to 
the loss of power even though coverage and type 1 error 
rates will be conservative in the unadjusted analyses.

Appendix
Appendix 1 R code for covariate‑constrained 
randomization in the BEGIN 2 × 2 factorial trial
The R code below is to implement covariate con-
strained randomization in the BEGIN 2 × 2 factorial 
trial. The code below is for three potential cluster-level 
confounders and 4 randomization conditions.
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Appendix 2 Simulation results controlling for cluster‑level covariates in a main effects only analysis

Table 7  Simulation results for the effect of treatment with 8 clusters, based on a main effects only analysis model that controls for 
cluster-level covariates

Covariate Degree %Bias Var MSE Cov Power 95% CI Type 1 Mean balance
SD Confounding Width Error (min, max)

Covariate-constrained randomization: top 10% of balance scores

σx = 0.5 β = 0.0 0.07 2.19 2.19 0.93 0.54 10.20 0.07 2.13 (0.35, 3.58)

β = 0.5 0.07 2.19 2.19 0.93 0.54 10.20 0.07 2.13 (0.35, 3.58)

β = 1.0 0.07 2.19 2.19 0.93 0.54 10.20 0.07 2.13 (0.35, 3.58)

σx = 1 β = 0.0 0.07 2.19 2.19 0.93 0.54 10.20 0.07 2.13 (0.35, 3.58)

β = 0.5 0.07 2.19 2.19 0.93 0.54 10.20 0.07 2.13 (0.35, 3.58)

β = 1.0 0.07 2.19 2.19 0.93 0.54 10.20 0.07 2.13 (0.35, 3.58)

σx = 2 β = 0.0 0.08 2.19 2.19 0.93 0.54 10.20 0.07 2.13 (0.35, 3.58)

β = 0.5 0.08 2.19 2.19 0.93 0.54 10.20 0.07 2.13 (0.35, 3.58)

β = 1.0 0.08 2.19 2.19 0.93 0.54 10.20 0.07 2.13 (0.35, 3.58)

Covariate-constrained randomization: top 20% of balance scores

σx = 0.5 β = 0.0 − 0.20 2.34 2.34 0.93 0.52 10.77 0.07 2.56 (0.35, 3.79)

β = 0.5 − 0.20 2.34 2.34 0.93 0.52 10.77 0.07 2.56 (0.35, 3.79)

β = 1.0 − 0.20 2.34 2.34 0.93 0.52 10.77 0.07 2.56 (0.35, 3.79)

σx = 1 β = 0.0 − 0.21 2.34 2.34 0.93 0.52 10.77 0.07 2.56 (0.35, 3.79)

β = 0.5 − 0.21 2.34 2.34 0.93 0.52 10.77 0.07 2.56 (0.35, 3.79)

β = 1.0 − 0.21 2.34 2.34 0.93 0.52 10.77 0.07 2.56 (0.35, 3.79)

σx = 2 β = 0.0 − 0.20 2.34 2.34 0.93 0.52 10.77 0.07 2.56 (0.35, 3.79)

β = 0.5 − 0.20 2.34 2.34 0.93 0.52 10.77 0.07 2.56 (0.35, 3.79)

β = 1.0 − 0.20 2.34 2.34 0.93 0.52 10.77 0.07 2.56 (0.35, 3.79)

Covariate-constrained randomization: top 50% of balance scores

σx = 0.5 β = 0.0 0.11 3.27 3.27 0.93 0.48 12.00 0.07 3.34 (0.50, 4.80)

β = 0.5 0.11 3.27 3.27 0.93 0.48 12.00 0.07 3.34 (0.50, 4.80)

β = 1.0 0.11 3.27 3.27 0.93 0.48 12.00 0.07 3.34 (0.50, 4.80)

σx = 1 β = 0.0 0.09 3.27 3.27 0.93 0.48 12.00 0.07 3.34 (0.50, 4.80)

β = 0.5 0.09 3.27 3.27 0.93 0.48 12.00 0.07 3.34 (0.50, 4.80)

β = 1.0 0.09 3.27 3.27 0.93 0.48 12.00 0.07 3.34 (0.50, 4.80)

σx = 2 β = 0.0 0.08 3.27 3.27 0.93 0.47 12.00 0.07 3.34 (0.50, 4.80)

β = 0.5 0.08 3.27 3.27 0.93 0.47 12.00 0.07 3.34 (0.50, 4.80)

β = 1.0 0.08 3.27 3.27 0.93 0.47 12.00 0.07 3.34 (0.50, 4.80)

Simple randomization

σx = 0.5 β = 0.0 0.10 3.95 3.95 0.93 0.43 13.35 0.07 4.50 (0.49, 9.42)

β = 0.5 0.10 3.95 3.95 0.93 0.43 13.35 0.07 4.50 (0.49, 9.42)

β = 1.0 0.10 3.95 3.95 0.93 0.43 13.35 0.07 4.50 (0.49, 9.42)

σx = 1 β = 0.0 0.10 3.95 3.95 0.93 0.43 13.35 0.07 4.50 (0.49, 9.42)

β = 0.5 0.10 3.95 3.95 0.93 0.43 13.35 0.07 4.50 (0.49, 9.42)

β = 1.0 0.10 3.95 3.95 0.93 0.43 13.35 0.07 4.50 (0.49, 9.42)

σx = 2 β = 0.0 0.10 3.95 3.95 0.93 0.43 13.35 0.07 4.50 (0.49, 9.42)

β = 0.5 0.10 3.95 3.95 0.93 0.43 13.35 0.07 4.50 (0.49, 9.42)

β = 1.0 0.10 3.95 3.95 0.93 0.43 13.35 0.07 4.50 (0.49, 9.42)

Note: SD standard deviation, %Bias percent bias, Var variance, MSE mean squared error, Cov coverage of the 95% confidence interval, CI confidence interval, Type 1 Error 
proportion of type 1 errors under a nominal type 1 error rate of 0.05, Balance covariate balance
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Table 8  Simulation results for the effect of treatment with 12 clusters, based on a main effects only analysis model that controls for 
cluster-level covariates

Covariate Degree %Bias Var MSE Cov Power 95% CI Type 1 Mean balance
SD Confounding Width Error (min, max)

Covariate-constrained randomization: rop 10% of balance scores

σx = 0.5 β = 0.0 − 0.18 0.90 0.90 0.95 0.99 4.42 0.05 1.26 (0.11, 1.92)

β = 0.5 − 0.18 0.90 0.90 0.95 0.99 4.42 0.05 1.26 (0.11, 1.92)

β = 1.0 − 0.18 0.90 0.90 0.95 0.99 4.42 0.05 1.26 (0.11, 1.92)

σx = 1 β = 0.0 − 0.18 0.90 0.90 0.95 0.99 4.42 0.05 1.26 (0.11, 1.92)

β = 0.5 − 0.18 0.90 0.90 0.95 0.99 4.42 0.05 1.26 (0.11, 1.92)

β = 1.0 − 0.18 0.90 0.90 0.95 0.99 4.42 0.05 1.26 (0.11, 1.92)

σx = 2 β = 0.0 − 0.18 0.90 0.90 0.95 0.99 4.42 0.05 1.26 (0.11, 1.92)

β = 0.5 − 0.18 0.90 0.90 0.95 0.99 4.42 0.05 1.26 (0.11, 1.92)

β = 1.0 − 0.18 0.90 0.90 0.95 0.99 4.42 0.05 1.26 (0.11, 1.92)

Covariate-constrained randomization: top 20% of balance scores

σx = 0.5 β = 0.0 − 0.06 0.93 0.93 0.95 0.99 4.51 0.05 1.54 (0.19, 2.24)

β = 0.5 − 0.06 0.93 0.93 0.95 0.99 4.51 0.05 1.54 (0.19, 2.24)

β = 1.0 − 0.06 0.93 0.93 0.95 0.99 4.51 0.05 1.54 (0.19, 2.24)

σx = 1 β = 0.0 − 0.06 0.93 0.93 0.95 0.99 4.51 0.05 1.54 (0.19, 2.24)

β = 0.5 − 0.06 0.93 0.93 0.95 0.99 4.51 0.05 1.54 (0.19, 2.24)

β = 1.0 − 0.06 0.93 0.93 0.95 0.99 4.51 0.05 1.54 (0.19, 2.24)

σx = 2 β = 0.0 − 0.06 0.93 0.93 0.95 0.99 4.51 0.05 1.54 (0.19, 2.24)

β = 0.5 − 0.06 0.93 0.93 0.95 0.99 4.51 0.05 1.54 (0.19, 2.24)

β = 1.0 − 0.06 0.93 0.93 0.95 0.99 4.51 0.05 1.54 (0.19, 2.24)

Covariate-constrained randomization: top 50% of balance scores

σx = 0.5 β = 0.0 − 0.06 1.02 1.02 0.95 0.98 4.69 0.05 2.09 (0.23, 3.06)

β = 0.5 − 0.06 1.02 1.02 0.95 0.98 4.69 0.05 2.09 (0.23, 3.06)

β = 1.0 − 0.06 1.02 1.02 0.95 0.98 4.69 0.05 2.09 (0.23, 3.06)

σx = 1 β = 0.0 − 0.06 1.02 1.02 0.95 0.98 4.69 0.05 2.09 (0.23, 3.06)

β = 0.5 − 0.06 1.02 1.02 0.95 0.98 4.69 0.05 2.09 (0.23, 3.06)

β = 1.0 − 0.06 1.02 1.02 0.95 0.98 4.69 0.05 2.09 (0.23, 3.06)

σx = 2 β = 0.0 − 0.06 1.02 1.02 0.95 0.98 4.69 0.05 2.09 (0.23, 3.06)

β = 0.5 − 0.06 1.02 1.02 0.95 0.98 4.69 0.05 2.09 (0.23, 3.06)

β = 1.0 − 0.06 1.02 1.02 0.95 0.98 4.69 0.05 2.09 (0.23, 3.06)

Simple randomization

σx = 0.5 β = 0.0 − 0.04 1.19 1.19 0.95 0.95 5.03 0.05 2.99 (0.30, 8.60)

β = 0.5 − 0.04 1.19 1.19 0.95 0.95 5.03 0.05 2.99 (0.30, 8.60)

β = 1.0 − 0.04 1.19 1.19 0.95 0.95 5.03 0.05 2.99 (0.30, 8.60)

σx = 1 β = 0.0 − 0.04 1.19 1.19 0.95 0.95 5.03 0.05 2.99 (0.30, 8.60)

β = 0.5 − 0.04 1.19 1.19 0.95 0.95 5.03 0.05 2.99 (0.30, 8.60)

β = 1.0 − 0.04 1.19 1.19 0.95 0.95 5.03 0.05 2.99 (0.30, 8.60)

σx = 2 β = 0.0 − 0.04 1.19 1.19 0.95 0.95 5.03 0.05 2.99 (0.30, 8.60)

β = 0.5 − 0.04 1.19 1.19 0.95 0.95 5.03 0.05 2.99 (0.30, 8.60)

β = 1.0 − 0.04 1.19 1.19 0.95 0.95 5.03 0.05 2.99 (0.30, 8.60)

Note: SD standard deviation, %Bias percent bias, Var variance, MSE mean squared error, Cov coverage of the 95% confidence interval, CI confidence interval, Type 1 Error 
proportion of type 1 errors under a nominal type 1 error rate of 0.05, Balance covariate balance
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Appendix 3 Simulation results based on data generating and analysis models that include an interaction term

Table 9  Simulation results for the main effect of treatments and their interaction with 8 clusters, based on an analysis model that does 
not control for cluster-level covariates

Main effects Interaction

Covariate Degree %Bias Cov Power Type 1 %Bias Cov Power Mean balance

SD Confounding Error (min, max)

Covariate-constrained randomization: top 10% of balance scores

σx = 0.5 β = 0.0 0.07 0.95 0.93 0.06 0.00 0.95 0.93 2.13 (0.35, 3.58)

β = 0.5 0.00 0.95 0.91 0.05 0.01 0.95 0.91 2.13 (0.35, 3.58)

β = 1.0 − 0.06 0.96 0.85 0.04 0.02 0.96 0.84 2.13 (0.35, 3.58)

σx = 1 β = 0.0 0.08 0.95 0.93 0.06 0.00 0.95 0.93 2.13 (0.35, 3.58)

β = 0.5 − 0.06 0.96 0.85 0.04 0.02 0.96 0.84 2.13 (0.35, 3.58)

β = 1.0 − 0.19 0.98 0.58 0.02 0.04 0.98 0.59 2.13 (0.35, 3.58)

σx = 2 β = 0.0 0.07 0.95 0.93 0.06 0.00 0.95 0.93 2.13 (0.35, 3.58)

β = 0.5 − 0.19 0.98 0.58 0.02 0.04 0.98 0.59 2.13 (0.35, 3.58)

β = 1.0 − 0.45 0.99 0.19 0.01 0.09 0.99 0.20 2.13 (0.35, 3.58)

Covariate-constrained randomization: top 20% of balance scores

σx = 0.5 β = 0.0 − 0.27 0.95 0.93 0.05 0.22 0.95 0.93 2.56 (0.35, 3.79)

β = 0.5 − 0.29 0.95 0.91 0.05 0.22 0.95 0.91 2.56 (0.35, 3.79)

β = 1.0 − 0.31 0.96 0.85 0.04 0.22 0.96 0.84 2.56 (0.35, 3.79)

σx = 1 β = 0.0 − 0.27 0.95 0.93 0.05 0.22 0.95 0.93 2.56 (0.35, 3.79)

β = 0.5 − 0.31 0.96 0.85 0.04 0.23 0.96 0.84 2.56 (0.35, 3.79)

β = 1.0 − 0.36 0.98 0.60 0.02 0.24 0.97 0.61 2.56 (0.35, 3.79)

σx = 2 β = 0.0 − 0.27 0.95 0.93 0.05 0.22 0.95 0.93 2.56 (0.35, 3.79)

β = 0.5 − 0.34 0.98 0.60 0.02 0.23 0.97 0.61 2.56 (0.35, 3.79)

β = 1.0 − 0.42 0.99 0.21 0.01 0.24 0.98 0.22 2.56 (0.35, 3.79)

Covariate-constrained randomization: top 50% of balance scores

σx = 0.5 β = 0.0 − 0.06 0.95 0.93 0.05 − 0.22 0.95 0.93 3.34 (0.50, 4.80)

β = 0.5 − 0.06 0.95 0.91 0.05 − 0.31 0.95 0.91 3.34 (0.50, 4.80)

β = 1.0 − 0.06 0.96 0.85 0.04 − 0.40 0.96 0.85 3.34 (0.50, 4.80)

σx = 1 β = 0.0 − 0.06 0.95 0.93 0.05 − 0.22 0.95 0.93 3.34 (0.50, 4.80)

β = 0.5 − 0.07 0.96 0.85 0.04 − 0.41 0.96 0.85 3.34 (0.50, 4.80)

β = 1.0 − 0.07 0.97 0.62 0.03 − 0.59 0.97 0.62 3.34 (0.50, 4.80)

σx = 2 β = 0.0 − 0.08 0.95 0.93 0.05 − 0.21 0.95 0.93 3.34 (0.50, 4.80)

β = 0.5 − 0.08 0.97 0.62 0.03 − 0.58 0.97 0.62 3.34 (0.50, 4.80)

β = 1.0 − 0.09 0.97 0.26 0.02 − 0.95 0.98 0.26 3.34 (0.50, 4.80)

Simple randomization

σx = 0.5 β = 0.0 − 0.06 0.94 0.93 0.05 − 0.14 0.95 0.93 4.50 (0.49, 9.42)

β = 0.5 − 0.12 0.95 0.91 0.05 − 0.07 0.95 0.92 4.50 (0.49, 9.42)

β = 1.0 − 0.18 0.95 0.86 0.05 0.01 0.95 0.87 4.50 (0.49, 9.42)

σx = 1 β = 0.0 − 0.06 0.94 0.93 0.05 − 0.14 0.95 0.93 4.50 (0.49, 9.42)

β = 0.5 − 0.18 0.95 0.86 0.05 0.01 0.95 0.87 4.50 (0.49, 9.42)

β = 1.0 − 0.30 0.95 0.67 0.05 0.16 0.95 0.66 4.50 (0.49, 9.42)

σx = 2 β = 0.0 − 0.06 0.94 0.93 0.05 − 0.14 0.95 0.93 4.50 (0.49, 9.42)

β = 0.5 − 0.30 0.95 0.67 0.05 0.16 0.95 0.66 4.50 (0.49, 9.42)

β = 1.0 − 0.54 0.95 0.32 0.05 0.46 0.95 0.32 4.50 (0.49, 9.42)

Note: SD standard deviation, %Bias percent bias, Cov coverage of the 95% confidence interval, Type 1 Error proportion of type 1 errors under a nominal type 1 error rate 
of 0.05, Balance covariate balance
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Table 10  Simulation results for the main effect of treatments and their interaction with 12 clusters, based on an analysis model that 
does not control for cluster-level covariates

Main effects Interaction

Covariate Degree %Bias Cov Power Type 1 %Bias Cov Power Mean balance

SD Confounding Error (min, max)

Covariate-constrained randomization: top 10% of balance scores

σx = 0.5 β = 0.0 − 0.16 0.95 1.00 0.05 0.31 0.95 1.00 1.26 (0.11, 1.92)

β = 0.5 − 0.17 0.95 1.00 0.05 0.31 0.95 1.00 1.26 (0.11, 1.92)

β = 1.0 − 0.18 0.96 0.99 0.03 0.31 0.96 0.99 1.26 (0.11, 1.92)

σx = 1 β = 0.0 − 0.16 0.95 1.00 0.05 0.31 0.95 1.00 1.26 (0.11, 1.92)

β = 0.5 − 0.18 0.96 0.99 0.03 0.31 0.96 0.99 1.26 (0.11, 1.92)

β = 1.0 − 0.21 0.98 0.92 0.01 0.30 0.98 0.93 1.26 (0.11, 1.92)

σx = 2 β = 0.0 − 0.16 0.95 1.00 0.05 0.31 0.95 1.00 1.26 (0.11, 1.92)

β = 0.5 − 0.22 0.98 0.92 0.01 0.31 0.98 0.93 1.26 (0.11, 1.92)

β = 1.0 − 0.27 0.99 0.47 0.01 0.31 0.99 0.48 1.26 (0.11, 1.92)

Covariate-constrained randomization: top 20% of balance scores

σx = 0.5 β = 0.0 0.05 0.95 1.00 0.05 0.29 0.95 1.00 1.54 (0.19, 2.24)

β = 0.5 0.06 0.95 1.00 0.05 0.25 0.96 1.00 1.54 (0.19, 2.24)

β = 1.0 0.08 0.96 0.99 0.04 0.21 0.96 0.99 1.54 (0.19, 2.24)

σx = 1 β = 0.0 0.05 0.95 1.00 0.05 0.29 0.95 1.00 1.54 (0.19, 2.24)

β = 0.5 0.08 0.96 0.99 0.04 0.21 0.96 0.99 1.54 (0.19, 2.24)

β = 1.0 0.11 0.98 0.92 0.02 0.13 0.98 0.93 1.54 (0.19, 2.24)

σx = 2 β = 0.0 0.05 0.95 1.00 0.05 0.29 0.95 1.00 1.54 (0.19, 2.24)

β = 0.5 0.10 0.98 0.92 0.02 0.14 0.98 0.93 1.54 (0.19, 2.24)

β = 1.0 0.16 0.99 0.49 0.01 -0.02 0.99 0.49 1.54 (0.19, 2.24)

Covariate-constrained randomization: top 50% of balance scores

σx = 0.5 β = 0.0 0.01 0.95 1.00 0.05 − 0.22 0.95 1.00 2.09 (0.23, 3.06)

β = 0.5 0.01 0.95 1.00 0.05 − 0.19 0.95 1.00 2.09 (0.23, 3.06)

β = 1.0 0.00 0.96 0.99 0.04 − 0.16 0.96 0.99 2.09 (0.23, 3.06)

σx = 1 β = 0.0 0.01 0.95 1.00 0.05 − 0.23 0.95 1.00 2.09 (0.23, 3.06)

β = 0.5 0.00 0.96 0.99 0.04 − 0.16 0.96 0.99 2.09 (0.23, 3.06)

β = 1.0 − 0.01 0.97 0.92 0.03 − 0.09 0.97 0.93 2.09 (0.23, 3.06)

σx = 2 β = 0.0 0.01 0.95 1.00 0.05 − 0.23 0.95 1.00 2.09 (0.23, 3.06)

β = 0.5 − 0.01 0.95 1.00 0.05 − 0.23 0.95 1.00 2.09 (0.23, 3.06)

β = 1.0 − 0.03 0.98 0.52 0.02 0.05 0.98 0.52 2.09 (0.23, 3.06)

Simple Randomization

σx = 0.5 β = 0.0 − 0.02 0.95 1.00 0.05 0.17 0.95 1.00 2.99 (0.30, 8.60)

β = 0.5 − 0.06 0.95 1.00 0.05 0.12 0.95 1.00 2.99 (0.30, 8.60)

β = 1.0 − 0.10 0.95 0.99 0.05 0.06 0.95 0.99 2.99 (0.30, 8.60)

σx = 1 β = 0.0 − 0.02 0.95 1.00 0.05 0.17 0.95 1.00 2.99 (0.30, 8.60)

β = 0.5 − 0.10 0.95 0.99 0.05 0.06 0.95 0.99 2.99 (0.30, 8.60)

β = 1.0 − 0.17 0.95 0.92 0.05 − 0.04 0.95 0.92 2.99 (0.30, 8.60)

σx = 2 β = 0.0 − 0.02 0.95 1.00 0.05 0.17 0.95 1.00 2.99 (0.30, 8.60)

β = 0.5 − 0.17 0.95 0.92 0.05 − 0.04 0.95 0.92 2.99 (0.30, 8.60)

β = 1.0 − 0.32 0.95 0.54 0.05 − 0.26 0.95 0.54 2.99 (0.30, 8.60)

Note: SD standard deviation, %Bias percent bias, Cov coverage of the 95% confidence interval, Type 1 Error proportion of type 1 errors under a nominal type 1 error rate 
of 0.05, Balance covariate balance
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Table 11  Simulation results for the main effect of treatments and their interaction with 8 clusters, based on an analysis model that 
controls for cluster-level covariates

Main effects Interaction

Covariate Degree %Bias Cov Power Type 1 %Bias Cov Power Mean balance

SD Confounding Error (min, max)

Covariate-constrained randomization: top 10% of balance scores

σx = 0.5 β = 0.0 0.36 0.86 0.31 0.13 0.18 0.86 0.31 2.13 (0.35, 3.58)

β = 0.5 0.36 0.86 0.31 0.13 0.18 0.86 0.31 2.13 (0.35, 3.58)

β = 1.0 0.36 0.86 0.31 0.13 0.18 0.86 0.31 2.13 (0.35, 3.58)

σx = 1 β = 0.0 0.36 0.86 0.31 0.13 0.17 0.86 0.31 2.13 (0.35, 3.58)

β = 0.5 0.36 0.86 0.31 0.13 0.17 0.86 0.31 2.13 (0.35, 3.58)

β = 1.0 0.36 0.86 0.31 0.13 0.17 0.86 0.31 2.13 (0.35, 3.58)

σx = 2 β = 0.0 0.37 0.86 0.31 0.13 0.18 0.86 0.31 2.13 (0.35, 3.58)

β = 0.5 0.37 0.86 0.31 0.13 0.18 0.86 0.31 2.13 (0.35, 3.58)

β = 1.0 0.37 0.86 0.31 0.13 0.18 0.86 0.31 2.13 (0.35, 3.58)

Covariate-constrained randomization: top 20% of balance scores

σx = 0.5 β = 0.0 − 0.61 0.86 0.30 0.13 0.15 0.86 0.30 2.56 (0.35, 3.79)

β = 0.5 − 0.61 0.86 0.30 0.13 0.15 0.86 0.30 2.56 (0.35, 3.79)

β = 1.0 − 0.61 0.86 0.30 0.13 0.15 0.86 0.30 2.56 (0.35, 3.79)

σx = 1 β = 0.0 − 0.61 0.86 0.30 0.13 0.15 0.86 0.30 2.56 (0.35, 3.79)

β = 0.5 − 0.61 0.86 0.30 0.13 0.15 0.86 0.30 2.56 (0.35, 3.79)

β = 1.0 − 0.61 0.86 0.30 0.13 0.15 0.86 0.30 2.56 (0.35, 3.79)

σx = 2 β = 0.0 − 0.61 0.86 0.30 0.13 0.15 0.86 0.30 2.56 (0.35, 3.79)

β = 0.5 − 0.61 0.86 0.30 0.13 0.15 0.86 0.30 2.56 (0.35, 3.79)

β = 1.0 − 0.61 0.86 0.30 0.13 0.15 0.86 0.30 2.56 (0.35, 3.79)

Covariate-constrained randomization: top 50% of balance scores

σx = 0.5 β = 0.0 − 0.41 0.86 0.30 0.14 − 0.98 0.86 0.29 3.34 (0.50, 4.80)

β = 0.5 − 0.41 0.86 0.30 0.14 − 0.98 0.86 0.29 3.34 (0.50, 4.80)

β = 1.0 − 0.41 0.86 0.30 0.14 − 0.98 0.86 0.29 3.34 (0.50, 4.80)

σx = 1 β = 0.0 − 0.42 0.86 0.30 0.14 − 0.97 0.86 0.29 3.34 (0.50, 4.80)

β = 0.5 − 0.42 0.86 0.30 0.14 − 0.97 0.86 0.29 3.34 (0.50, 4.80)

β = 1.0 − 0.42 0.86 0.30 0.14 − 0.97 0.86 0.29 3.34 (0.50, 4.80)

σx = 2 β = 0.0 − 0.43 0.86 0.30 0.14 − 0.96 0.86 0.29 3.34 (0.50, 4.80)

β = 0.5 − 0.43 0.86 0.30 0.14 − 0.96 0.86 0.29 3.34 (0.50, 4.80)

β = 1.0 − 0.43 0.86 0.30 0.14 − 0.96 0.86 0.29 3.34 (0.50, 4.80)

Simple randomization

σx = 0.5 β = 0.0 − 0.66 0.87 0.28 0.13 − 0.92 0.87 0.28 4.50 (0.49, 9.42)

β = 0.5 − 0.66 0.87 0.28 0.13 − 0.92 0.87 0.28 4.50 (0.49, 9.42)

β = 1.0 − 0.66 0.87 0.28 0.13 − 0.92 0.87 0.28 4.50 (0.49, 9.42)

σx = 1 β = 0.0 − 0.66 0.87 0.28 0.13 − 0.92 0.87 0.28 4.50 (0.49, 9.42)

β = 0.5 − 0.66 0.87 0.28 0.13 − 0.92 0.87 0.28 4.50 (0.49, 9.42)

β = 1.0 − 0.66 0.87 0.28 0.13 − 0.92 0.87 0.28 4.50 (0.49, 9.42)

σx = 2 β = 0.0 − 0.66 0.87 0.28 0.13 − 0.92 0.87 0.28 4.50 (0.49, 9.42)

β = 0.5 − 0.66 0.87 0.28 0.13 − 0.92 0.87 0.28 4.50 (0.49, 9.42)

β = 1.0 − 0.66 0.87 0.28 0.13 − 0.92 0.87 0.28 4.50 (0.49, 9.42)

Note: SD standard deviation, %Bias percent bias, Cov coverage of the 95% confidence interval, Type 1 Error proportion of type 1 errors under a nominal type 1 error rate 
of 0.05, Balance covariate balance
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Table 12  Simulation results for the main effect of treatments and their interaction with 12 clusters, based on an analysis model that 
controls for cluster-level covariates

Main effects Interaction

Covariate Degree %Bias Cov Power Type 1 %Bias Cov Power Mean balance

SD Confounding Error (min, max)

Covariate-constrained randomization: top 10% of balance scores

σx = 0.5 β = 0.0 − 0.16 0.95 0.98 0.05 0.36 0.95 0.98 1.26 (0.11, 1.92)

β = 0.5 − 0.16 0.95 0.98 0.05 0.36 0.95 0.98 1.26 (0.11, 1.92)

β = 1.0 − 0.16 0.95 0.98 0.05 0.36 0.95 0.98 1.26 (0.11, 1.92)

σx = 1 β = 0.0 − 0.16 0.95 0.98 0.05 0.36 0.95 0.98 1.26 (0.11, 1.92)

β = 0.5 − 0.16 0.95 0.98 0.05 0.36 0.95 0.98 1.26 (0.11, 1.92)

β = 1.0 − 0.16 0.95 0.98 0.05 0.36 0.95 0.98 1.26 (0.11, 1.92)

σx = 2 β = 0.0 − 0.17 0.95 0.98 0.05 0.36 0.95 0.98 1.26 (0.11, 1.92)

β = 0.5 − 0.17 0.95 0.98 0.05 0.36 0.95 0.98 1.26 (0.11, 1.92)

β = 1.0 − 0.17 0.95 0.98 0.05 0.36 0.95 0.98 1.26 (0.11, 1.92)

Covariate-constrained randomization: top 20% of balance scores

σx = 0.5 β = 0.0 − 0.06 0.95 0.98 0.05 0.18 0.95 0.98 1.54 (0.19, 2.24)

β = 0.5 − 0.06 0.95 0.98 0.05 0.18 0.95 0.98 1.54 (0.19, 2.24)

β = 1.0 − 0.06 0.95 0.98 0.05 0.18 0.95 0.98 1.54 (0.19, 2.24)

σx = 1 β = 0.0 − 0.05 0.95 0.98 0.05 0.18 0.95 0.98 1.54 (0.19, 2.24)

β = 0.5 − 0.05 0.95 0.98 0.05 0.18 0.95 0.98 1.54 (0.19, 2.24)

β = 1.0 − 0.05 0.95 0.98 0.05 0.18 0.95 0.98 1.54 (0.19, 2.24)

σx = 2 β = 0.0 − 0.06 0.95 0.98 0.05 0.18 0.95 0.98 1.54 (0.19, 2.24)

β = 0.5 − 0.06 0.95 0.98 0.05 0.18 0.95 0.98 1.54 (0.19, 2.24)

β = 1.0 − 0.06 0.95 0.98 0.05 0.18 0.95 0.98 1.54 (0.19, 2.24)

Covariate-constrained randomization: top 50% of balance scores

σx = 0.5 β = 0.0 − 0.11 0.95 0.96 0.05 − 0.24 0.95 0.96 2.09 (0.23, 3.06)

β = 0.5 − 0.11 0.95 0.96 0.05 − 0.24 0.95 0.96 2.09 (0.23, 3.06)

β = 1.0 − 0.11 0.95 0.96 0.05 − 0.24 0.95 0.96 2.09 (0.23, 3.06)

σx = 1 β = 0.0 − 0.11 0.95 0.96 0.05 − 0.24 0.95 0.96 2.09 (0.23, 3.06)

β = 0.5 − 0.11 0.95 0.96 0.05 − 0.24 0.95 0.96 2.09 (0.23, 3.06)

β = 1.0 − 0.11 0.95 0.96 0.05 − 0.24 0.95 0.96 2.09 (0.23, 3.06)

σx = 2 β = 0.0 − 0.11 0.95 0.96 0.05 − 0.24 0.95 0.96 2.09 (0.23, 3.06)

β = 0.5 − 0.11 0.95 0.96 0.05 − 0.24 0.95 0.96 2.09 (0.23, 3.06)

β = 1.0 − 0.11 0.95 0.96 0.05 − 0.24 0.95 0.96 2.09 (0.23, 3.06)

Simple randomization

σx = 0.5 β = 0.0 0.00 0.95 0.93 0.05 0.10 0.95 0.93 2.99 (0.30, 8.60)

β = 0.5 0.00 0.95 0.93 0.05 0.10 0.95 0.93 2.99 (0.30, 8.60)

β = 1.0 0.00 0.95 0.93 0.05 0.10 0.95 0.93 2.99 (0.30, 8.60)

σx = 1 β = 0.0 0.00 0.95 0.93 0.05 0.10 0.95 0.93 2.99 (0.30, 8.60)

β = 0.5 0.00 0.95 0.93 0.05 0.10 0.95 0.93 2.99 (0.30, 8.60)

β = 1.0 0.00 0.95 0.93 0.05 0.10 0.95 0.93 2.99 (0.30, 8.60)

σx = 2 β = 0.0 0.00 0.95 0.93 0.05 0.10 0.95 0.93 2.99 (0.30, 8.60)

β = 0.5 0.00 0.95 0.93 0.05 0.10 0.95 0.93 2.99 (0.30, 8.60)

β = 1.0 0.00 0.95 0.93 0.05 0.10 0.95 0.93 2.99 (0.30, 8.60)

Note: SD standard deviation, %Bias percent bias, Cov coverage of the 95% confidence interval, Type 1 Error proportion of type 1 errors under a nominal type 1 error rate 
of 0.05, Balance covariate balance
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