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Abstract 

Background Mediation analysis, often completed as secondary analysis to estimating the main treatment effect, 
investigates situations where an exposure may affect an outcome both directly and indirectly through intervening 
mediator variables. Although there has been much research on power in mediation analyses, most of this has focused 
on the power to detect indirect effects. Little consideration has been given to the extent to which the strength 
of the mediation pathways, i.e., the intervention-mediator path and the mediator-outcome path respectively, may 
affect the power to detect the total effect, which would correspond to the intention-to-treat effect in a randomized 
trial.

Methods We conduct a simulation study to evaluate the relation between the mediation pathways and the power 
of testing the total treatment effect, i.e., the intention-to-treat effect. Consider a sample size that is computed based 
on the usual formula for testing the total effect in a two-arm trial. We generate data for a continuous mediator 
and a normal outcome using the conventional mediation models. We estimate the total effect using simple linear 
regression and evaluate the power of a two-sided test. We explore multiple data generating scenarios by varying 
the magnitude of the mediation paths whilst keeping the total effect constant.

Results Simulations show the estimated total effect is unbiased across the considered scenarios as expected, 
but the mean of its standard error increases with the magnitude of the mediator-outcome path and the vari-
ability in the residual error of the mediator, respectively. Consequently, this affects the power of testing the total 
effect, which is always lower than planned when the mediator-outcome path is non-trivial and a naive sample size 
was employed. Analytical explanation confirms that the intervention-mediator path does not affect the power of test-
ing the total effect but the mediator-outcome path. The usual effect size consideration can be adjusted to account 
for the magnitude of the mediator-outcome path and its residual error.

Conclusions The sample size calculation for studies with efficacy and mechanism evaluation should account 
for the mediator-outcome association or risk the power to detect the total effect/intention-to-treat effect being lower 
than planned.
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Introduction
The analysis of well-designed randomized controlled 
trials can be used for more than estimating an average 
treatment effect that represents the total effect of an 
intervention on outcome. For example, trials supported 
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(NIHR) Efficacy and Mechanism Evaluation program are 
designed to provide evidence about the underlying causal 
mechanisms that result in treatment induced change in 
clinical outcomes [1]. The US National Institute of Men-
tal Health (NIMH) had also released an experimental 
medicine initiative [2] that all clinical trials had to dem-
onstrate a target mechanism [3].

Mediation analysis is one of the statistical tools for 
gaining insight into the mechanisms of treatment effects 
on outcomes. It is typically used to investigate the role 
of an intermediate outcome M as a mediator of the rela-
tionship between intervention X and clinical outcome Y. 
This study of mediation of treatment effects, or how and 
why an intervention works, can deliver improved under-
standing of interventions and how these should be imple-
mented in routine care [4, 5].

More specifically, the mediation model aims to decom-
pose the total treatment effects into an indirect effect 
through a mediator variable (the effect of X on Y due to 
M) and the direct effect (the effect of X on Y controlling 
for M). The direct effect includes any causal mechanism 
not operating through the mediator(s) of interest. Fur-
thermore, the total effect of X on Y equals the sum of the 
indirect and direct effects under some assumptions [6], 
which corresponds to the traditional intention-to-treat 
estimate.

Statistical methods for estimating and testing direct 
and indirect effects are well-developed [7–9]. They can 
be achieved via several methods including regression-
based tests, structural equation modeling [10], and 
bootstrapping. Bootstrap or resample methods have 
been shown to be preferable to the joint-significance 
method because they can provide asymmetric confi-
dence intervals [11, 12]. Furthermore, it has been shown 
that the power of testing the indirect/mediated effect 
can be higher than the power of testing the total effect 
or a direct effect under some parameter configurations 
[13, 14], for example, when the magnitudes of indirect 
effect and total effect are the same under complete 
mediation [10, 15, 16].

Nevertheless, mediation analyses are often second-
ary to the primary analysis of the total treatment effect 
[17]. It is implemented to understand the mechanisms by 
which an exposure affects an outcome through a medi-
ating variable [6, 7]. As part of the initial study design, 
mediators are selected on the basis of theory and prior 
research. Yet, the sample size calculation of the study 
often focuses only on the characteristics of the primary 
outcome. Information about the mediation pathways is 
not typically accounted for in the calculation of power/
sample size for the primary analysis [14].

The aim of this paper is to study the extent to which 
the strength of the mediation pathways, i.e., the 

intervention-mediator path and the mediator-outcome 
path respectively, may affect the power to detect the total 
effect, which would correspond to the intention-to-treat 
effect in a randomized trial. We conduct a simulation 
study to evaluate this in the context of a two-arm trial 
with a continuous mediator and a normal outcome. To 
our knowledge, this has not been explored by researchers 
in the field of mediation analysis and clinical trials.

In the next section, we describe the set-up of our simu-
lation study. We provide an analytical explanation to the 
simulation finding and propose to account for the magni-
tude of the mediator-outcome path and its residual error 
in the consideration of effect size for sample size compu-
tation. We discuss the limitations of our investigation and 
make suggestions to conclude our work.

Method
Consider a two-arm trial setting with a continuous out-
come Y and a continuous mediator M. We want to 
examine the relation between the model parameters 
of mediation analysis and the power of the test of total 
effect. The set-up of our investigation is as follows.

As in the usual two-arm trial setting, we consider the 
sample size per arm according to the following formula 
for a two-tailed test:

where Zz is the critical value of the normal distribution at 
z value, α and β are the type one and type two error rate 
respectively, and δ is the standardized effect size under 
the alternative hypothesis.

For illustration purpose, we consider a simulation 
study for a two-arm study that aims to have 80% power to 
detect δ = 0.5 at α = 0.05 significance level. The required 
sample size per arm is n = 63 without accounting for the 
presence of missing outcome.

Let X be the randomization variable that takes value of 
1 if a patient is randomized to the experimental arm and 
0 if to the control arm. Without loss of generality, we set 
63 subjects to have X = 0 and 63 subjects to have X = 1 
instead of adding a layer of variability in our simulation 
from using a randomization procedure. We simulate 
mediator, M, and outcome data, Y, respectively, accord-
ing to the following models, which is commonly consid-
ered in a simple mediation analysis:

The parameters im and iy are the model inter-
cepts, parameter a describes the relation between the 

n = 2
Z1−α/2 + Z1−β

δ

2

(1)M = im + aX + ǫm

(2)Y = iy + c′X + bM + ǫy
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randomization variable X and the mediator M, parameter 
b describes the relation between the M and Y adjusting 
for X, and parameter c′ describes the relation between X 
and Y adjusting for M. The error terms ǫm and ǫy reflect 
the variability in M that is not explained by X and the 
variability in Y that is not explained by its relations with 
X and M, respectively.

Mathematically, an indirect effect (i.e., the effect of X 
on Y due to M) is defined as the product of coefficients a 
and b, while c′ is known as a direct effect of X on Y that is 
not mediated through M. The total effect can be defined 
as the sum of the indirect effect and the direct effect 
under some assumptions [6], i.e., ab+ c′.

In our simulation, we set im = 0.4, iy = −0.4 ; these val-
ues will not affect the finding. We simulate the error terms 
ǫy ∼ N (0, σ 2

y ) with σ 2
y = 1 as we assume a standardized 

treatment effect and ǫm ∼ N (0, σ 2
m) with σ 2

m = {0.5, 1} for 
the investigation of the power of testing total effect. We 
consider scenarios with varying values of a, b, c′ , where 
the total effect is kept at 0.5, with b = {0, 0.1, 0.2, 0.3, 0.4} , 
c′ = {0, 0.1, 0.2, 0.3, 0.4, 0.5} , and a = {0, (0.5− c′/b)} and 
some scenarios with a null total effect where a = c′ = 0 
and b = {0.1, 0.2, 0.3, 0.4} . The way we simulate the data is 
such that the difference between the two dataset with dif-
ferent σ 2

m but same a, b, c′ is in the values of the mediator.
For each simulated dataset, we fit the following simple 

linear regression model,

and test the null hypothesis, H0 : c = 0 against alter-
native, HA : c �= 0 at 5% significance level. For each 
combination of σ 2

m, a, b, c
′ , we repeat the data gener-

ating step and the testing step 100,000 times to com-
pute the frequency of rejecting H0 . This frequency is 
the type one error rate of the test of the total effect for 
scenarios with a null effect; it is the power of the test 
for all other scenarios where there is a direct effect or 
indirect effect or both. The maximum margin error is 
1.96

√
0.5(1− 0.5)/100000 = 0.0031 in our simulation. 

All simulations are conducted on R 4.2.2.

Simulation results
The empirical type one error rate for scenar-
ios with a = c′ = 0 and b = {0.1, 0.2, 0.3, 0.4} is 
{0.0538, 0.0532, 0.0528, 0.0524} when σ 2

m = 0.5 and 
{0.0537, 0.0532, 0.0532, 0.0525} when σ 2

m = 0.5 respec-
tively. These are close to the nominal value of 0.05 plus 
the maximum margin error.

Figure 1a and b show the power of the test of the total 
effect following the simple linear regression when the 
underlying data generating mechanism has σ 2

m = 0.5 
and σ 2

m = 1 , respectively. When a = b = 0 and c′ = 0.5 , 
the power of 80% is obtained for the scenarios with 

(3)Y = i + cX + ǫ

σ 2
m = {0.5, 1} as expected, as the direct effect is equiv-

alent to the total effect in the absence of an indirect 
effect, ab. When there is an indirect effect, i.e., a  = 0 
and b  = 0 , comparing the power for the scenarios with 
the same combination of a, b, c′ but different σ 2

m , we see 
that the power of the test of the total effect is higher 
when σ 2

m = 0.5 than when σ 2
m = 1 . Moreover, the power 

of most cases are below 80% when there is an indirect 
effect.

Within each plot, for scenarios with the same b > 0 , we 
see that varying a and c′ have little impact on the power, 
but this power is less than 80% even though the true total 
effect is 0.5. We also see that the power for scenarios 
with different b decreases with the magnitude of b. These 
observations are consistent across the scenarios with 
σ 2
m = {0.5, 1} .

Analytical explanation
At first glance, the observations about the power when 
there is an indirect effect are unanticipated as the sample 
size of the design was computed to detect a total effect 
size of 0.5 with a power of 80%, and σ 2

y = 1 in the simu-
lation. Upon inspecting the estimated total effect and its 
standard error across the simulated replications, we find 
that the estimate of total effect from the simple linear 
model (3) is unbiased across the considered scenarios, 
but the mean of its standard error increases with the 
magnitude of b (the magnitude of increase is larger when 
σ 2
m = 1 than when σ 2

m = 0.5 for the scenarios with the 
same combination of a, b, c′ ). In other words, the stand-
ard error of the estimated c in model (3) varies with the 
magnitude of b and σ 2

m.
Why is that the case? When we regress Y on X, the 

total variability in Y is decomposed into the variability 
explained by the treatment group X (i.e., experimentation 
error) and a nuisance source of variation in the outcome. 
Recall that the outcome is generated from models (1) and 
(2). Under such a data generating mechanism, the nui-
sance source of variation consists of the variability in the 
mediator and the residual error. Mathematically, we can 
substitute Eq. (1) into (2), resulting in

where i′ = iy + bim is an intercept and ǫ = bǫm + ǫy is 
the variability in the outcome not explained by X, i.e., the 
aforementioned nuisance source of variation in the sim-
ple linear regression model. It is obvious that ǫ has zero 
mean and a variance of σ 2 = b2σ 2

m + σ 2
y  , which is differ-

ent to the commonly used mathematical form of variance 
in the simple regression model.

Y = iy + c′X + b(im + aX + ǫm)+ ǫy

= i + (c′ + ab)X + ǫ

= i + cX + ǫ
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With backward calculation and given a total sample 
size, we can compute the power to detect an effect size of

when the outcome data follows the mediation analy-
sis models, where µ is the unstandardized effect size 
as considered in the usual sample size calculation. For 
δ = µ/σy = 0.5, σ 2

y = 1 , and varying values of b and σ 2
m , 

Table  1 shows the true standardized effect size and the 
analytical power for the scenarios that we considered in 
the simulation. Comparing the corresponding power to 
the one in Fig. 1, the empirical power from the simulation 

(4)δ′ =
µ/σy

√

b2σ 2
m + σ 2

y

is closed to the analytical power. This confirms that when 
the true data generating mechanism follows the media-
tion analysis models, the power (or equivalently the 
required sample size) depends on the magnitude of b 
path and the variability in the residual error of the media-
tor, i.e., σ 2

m , but not the intervention-mediator path.

Discussion
We have shown that a mediator plays an imperative role 
in the power of a study. Without accounting for the mag-
nitude of b path and the variability in the residual error of 
the mediator in the sample size calculation, the power of 
a study can be much smaller than expected. This means 
a larger sample size is required to detect an effect size 

Fig. 1 Empirical power of rejecting the null hypothesis following a simple linear regression analysis. The data generating mechanisms 
in the scenarios of plot (a) has σ 2

m = 0.5 , and plot (b) σ 2
m = 1 . All scenarios have σ 2

y = 1 , total effect c = 0.5 , and n = 63 . The larger variability 
observed between the power for b = 0.2 is due to the Monte Carlo simulation error

Table 1 Power to detect an effect size of δ′ = 0.5√
b2σ 2

m+1

 given the sample size per arm, n = 63

b = 0 b = 0.1 b = 0.2 b = 0.3 b = 
0.4

σ 2
m = 0.5, δ′ 0.500 0.499 0.495 0.489 0.481

Power 0.801 0.799 0.794 0.784 0.770

σ 2
m = 1, δ′ 0.500 0.498 0.490 0.479 0.464

Power 0.801 0.797 0.786 0.767 0.741
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of ab+ c′ for the required power. To our knowledge, 
this finding has not been reported in the literature and 
hence not being known by researchers, especially those 
who design for clinical trials. Our investigation con-
firms that one can compute the required sample size in 
the usual way but with a larger standard error to account 
for b and σ 2

m . More specifically, the considered effect size 
shall be adjusted following Eq. (4). The role of the inter-
vention-mediator path is trivial in the sample size/power 
calculation.

As noted by the reviewers, alternative way can consider 
the variance inflation factor (VIF) for the sample size cal-
culation, in a similar way to the sample size calculation of 
cluster-randomized studies [18]. Specifically, the VIF in 
our context here is

where the second term describes the proportion of a 
measure’s total variance that is due to the mediator-out-
come path. The first step is to compute the sample size 
for a study as usual, assuming the absence of a mediator. 
The required sample size for the study that considers the 
presence of a mediation can then be obtained by multi-
plying the VIF with the sample size obtained from the 
former step. Furthermore, one may proceed with sensi-
tivity analysis by considering a range of VIF when there 
is lack of information about the individual parameters, 
b, σ 2

m and σ 2
y  , at the design stage.

Here, we consider a simple setting with a single out-
come and a single mediator, without accounting for the 
presence of measurement errors in both the outcome and 
mediator. In clinical practice, mediators are likely to be 
measured with an error but not the outcome. The pres-
ence of measurement error will increase the variability 
in a mediator. Non-differential measurement error may 
be captured in σ 2

m as each observation is assumed to 
have the same likelihood of being measured incorrectly, 
while accounting for a differential measurement error 
might not be straight forward, depending on the mod-
eling assumption of the underlying mechanism. For this 
reason, we suggest to use historical information with care 
when planning the sample size of prospective trials. One 
may conduct a meta-analysis on b, σ 2

m and σ 2
y  to inform 

the range of VIF and evaluate the required sample size of 
prospective trials accordingly. Future research may inves-
tigate the utility of historical information on the mediator 
alongside the idea of sample size re-estimation.

In scenarios where there is more than one mediators in 
the mechanism of action of intervention, one may extend 
the sample size calculation approach to account for the 
variability in the extra mediators. For example, one may 

VIF = 1+
b2σ 2

m

b2σ 2
m + σ 2

y

,

follow the parallel or sequential mediator model in [13] 
and compute the total variability and the standardized 
treatment effect accordingly for the sample size calcula-
tion. In the scenarios where there are multiple mecha-
nism of actions, we propose to proceed in a similar way 
to the scenarios where there are multiple outcome, e.g., 
consider the largest required sample sizes after comput-
ing the required sample sizes for each mediator model 
with or without adjustment for multiplicity.

Another limitation of our work is related to the interac-
tion between the mediator and randomization in model (2). 
We assume such interaction is trivial in our investigation. 
In theory, one can introduce an extra term to model (2) 
and derive the total variability in the outcome accordingly, 
for computing the required sample size. In this case, it will 
require the knowledge of the coefficient of the interaction 
term at the design stage of a study. Alternatively, one may 
start with the required sample size as in our presentation 
and explore the sensitivity of the power to the presence of 
an interaction term, e.g., by a simulation study. Adjustment 
to the sample size can then be made accordingly.

In the literature of mediation analysis, it has been 
shown that in the absence of a direct effect, the power 
of testing ab is higher than the power of testing the total 
effect, i.e., c in model (3). For example, some authors [13] 
have identified scenarios when this observation holds 
and when it does not. Some researchers argue that this 
is because a and b are two coefficients and ab is a prod-
uct; the characteristics of the product of two coefficients 
are not the same as that of the usual coefficient [15]. 
Here, we did not test ab using the commonly considered 
approaches as the assumption of having a trivial direct 
effect at the design stage of a clinical study is unrealistic; 
the model of the primary analysis rarely includes a medi-
ator as one covariate. Whether there is a direct effect or 
not, the required sample size calculation is still depend-
ing on the magnitude of b and σ 2

m and one should account 
for these in their clinical study.

Conclusion
Mediation analysis is often implemented as secondary 
analysis in clinical studies that evaluates mechanism of 
action of interventions. The sample size calculation for 
studies with efficacy and mechanism evaluation should 
account for the mediator-outcome association or risk the 
power to detect the total effect/intention-to-treat effect 
being lower than planned.
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