
Rufibach et al. Trials          (2024) 25:353  
https://doi.org/10.1186/s13063-024-08186-7

METHODOLOGY Open Access

© The Author(s) 2024. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecom-
mons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Trials

Survival analysis for AdVerse events 
with VarYing follow-up times (SAVVY): summary 
of findings and assessment of existing 
guidelines
Kaspar Rufibach1*  , Jan Beyersmann2, Tim Friede3, Claudia Schmoor4 and Regina Stegherr5 

Abstract 

Background The SAVVY project aims to improve the analyses of adverse events (AEs) in clinical trials through the use 
of survival techniques appropriately dealing with varying follow-up times and competing events (CEs). This paper 
summarizes key features and conclusions from the various SAVVY papers.

Methods Summarizing several papers reporting theoretical investigations using simulations and an empirical 
study including randomized clinical trials from several sponsor organizations, biases from ignoring varying follow-up 
times or CEs are investigated. The bias of commonly used estimators of the absolute (incidence proportion and one 
minus Kaplan-Meier) and relative (risk and hazard ratio) AE risk is quantified. Furthermore, we provide a cursory 
assessment of how pertinent guidelines for the analysis of safety data deal with the features of varying follow-up time 
and CEs.

Results SAVVY finds that for both, avoiding bias and categorization of evidence with respect to treatment effect 
on AE risk into categories, the choice of the estimator is key and more important than features of the underlying data 
such as percentage of censoring, CEs, amount of follow-up, or value of the gold-standard.

Conclusions The choice of the estimator of the cumulative AE probability and the definition of CEs are crucial. When-
ever varying follow-up times and/or CEs are present in the assessment of AEs, SAVVY recommends using the Aalen-
Johansen estimator (AJE) with an appropriate definition of CEs to quantify AE risk. There is an urgent need to improve 
pertinent clinical trial reporting guidelines for reporting AEs so that incidence proportions or one minus Kaplan-Meier 
estimators are finally replaced by the AJE with appropriate definition of CEs.
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Background
In randomized clinical trials (RCT), an essential part of 
the benefit-risk assessment of treatments is the quantifi-
cation of the risk of experiencing adverse events (AEs), 
and comparing these risk between treatment arms. 
Methods commonly employed to quantify absolute 
adverse event (AE) risk either do not account for vary-
ing follow-up times, censoring, or for competing events 
(CEs), although appreciation of these are important in 
risk quantification, see, e.g., O’Neill [1] and Procter and 
Schumacher [2].

Analyses of AE data in clinical trials can be improved 
through the use of survival techniques that account for 
varying follow-up times, censoring, and CEs. Vary-
ing follow-up times refer to the fact that if patients are 
assessed for AEs in regular intervals it may happen, 
even in absence of censoring, that depending on when a 
patient entered the trial, the follow-up time at a report-
ing event varies between patients. Similar to an efficacy 
endpoint, censoring, or rather administrative censoring, 
refers to the fact that for some of the patients we may 
only have incomplete observations in the sense that we 
know that they did not experience an AE up to the cut-
off of the reporting timepoint, but that their observation 
time to have an AE continues beyond that. A thorough 
discussion of CEs in the context of AE risk quantification 
is provided below.

Precise definitions of estimators are also given below.
The AJE [3, 4] can be considered the non-parametric 

gold-standard method when quantifying absolute AE 
risk. The reason is that the AJE is the standard (non-
parametric) estimator that accounts for CEs, censor-
ing, and varying follow-up times simultaneously and, 
being non-parametric, does not rely on restrictive par-
ametric assumptions, such as constant hazards. Any 
other estimator of AE probability, such as incidence 
proportion, probability transform incidence density, or 
one minus Kaplan-Meier, delivers biased estimates in 
general.

To quantify that bias for all these methods in an ideal 
scenario, Stegherr et al. [5] ran a comprehensive simula-
tion study. Two key findings were (1) that ignoring CEs 
is more of a problem than falsely assuming constant haz-
ards by the use of the incidence density and (2) that the 
choice of the AE probability estimator is crucial for the 
estimation of relative effects, i.e., comparison between 
groups.

To illustrate and further solidify these simulation-based 
results with real data the SAVVY consortium, a collabo-
ration between nine pharmaceutical companies and three 
academic institutions meta-analyzed data from 17 rand-
omized controlled trials (RCT).

In this article, we summarize the results of the empiri-
cal study, reported in two separate publications: Stegherr 
et al. [6] was concerned with estimation of AE risk in one 
treatment group and Rufibach et al. [7] with the compari-
son of AE risks between two groups in an RCT. A cur-
sory assessment of how relevant guidelines recommend 
to estimate AE risk is given with a call for updates. We 
conclude with a discussion.

Definition of key terms
The target of estimation, or estimand, for the compared 
estimators is the probability P(AE in [0, t]) . We will also 
call this quantity risk. In situations not additionally com-
plicated by varying follow-up times or censoring, i.e., 
when all patients are observed for the same amount of 
time, this probability can easily be estimated using the 
incidence proportion, see below. However, as soon as 
we have varying follow-up and/or censoring, the inci-
dence proportion will typically be a biased estimate of 
P(AE in [0, t]).

Scientific questions of the SAVVY project
The overarching scientific questions of SAVVY can be 
phrased as follows: 

1) For estimation of the probability of an AE, how 
biased are commonly used estimators, especially the 
incidence proportion and one minus Kaplan-Meier, 
in presence of censoring, varying follow-up between 
patients, CEs, and in the case of incidence densities a 
restrictive parametric model?

2) What is the bias of common estimators that quantify 
the relative risk of experiencing an AE between two 
treatment arms in a RCT?

3) Can trial characteristics be identified that help 
explain the bias in estimators?

4) How does the use of potentially biased estimators 
impact qualification of AE probabilities and relative 
effects in regulatory settings?

Within the SAVVY project, these questions were 
approached in two ways: first, in Stegherr et  al. [5], via 
simulation of clinical trial data. This approach has the 
advantage that the true underlying data generating mech-
anism is specified by the researcher and therefore known. 
This allows to exactly quantify the bias of a given estima-
tor, i.e., to answer 1) and 2) above (it would also allow to 
answer Question 4, but that was not addressed in Stegh-
err et al. [5]). Second, in Stegherr et al. [6] and Rufibach 
et al. [7], biases of commonly used estimators of absolute 
and relative AE risks were estimated by comparing them 
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to the best available estimator. Having real clinical trial 
data available also allows to answer Question 3 above, 
through meta-analytic methods.

Competing events and their connection to the ICH E9 
estimands addendum
In what follows, we will use competing event (apart 
from direct quotes) and consider it synonymous to 
competing risk.

An important but largely unrecognized aspect when 
quantifying AE risk is the likely presence of CEs. 
Gooley et al. [8] define a CE as

“We shall define a competing risk as an event 
whose occurrence either precludes the occurrence 
of another event under examination or fundamen-
tally alters the probability of occurrence of this 
other event”.

whereas the ICH E9(R1) estimands addendum [9] 
defines an intercurrent event as

“Events occurring after treatment initiation that 
affect either the interpretation or the existence of 
the measurements associated with the clinical 
question of interest”.

Here, another event under examination and measure-
ments associated with the clinical question of interest refer 
to a defined AE of interest. So, a CE in this context is any 
clinical event that precludes the occurrence of an AE, the 
most prominent example being death. The above two def-
initions appear to be, if not the same, then at least very 
related. However, the ICH E9(R1) addendum does not dis-
cuss CEs, so it is not entirely clear how to embed CEs into 
the addendum framework, i.e., whether and if yes which 
of the proposed strategies of the estimand addendum 
applies to the CE situation. More research and discussion 
is needed to align CEs (if necessary at all), and the analysis 
of complex time-to-event data with the addendum.

Stegherr et al. [6] and Rufibach et al. [7] took a pragmatic 
approach and defined events as “competing” that preclude 
the occurrence or recording of the AE under consideration 
in a time-to-first-event analysis. Specifically, one important 
CE is death before AE. In addition, any event that would 
both be viewed from a patient perspective as an event of 
his/her course of disease or treatment and would stop the 
recording of the interesting AE was viewed as a CE. Since 
all these CEs apart from death may be prone to some sub-
jectivity in the empirical analysis reported in Stegherr et al. 
[6] and Rufibach et al. [7], a variant of the estimators with a 
CE of death only was also considered. Since results were in 
line with the broader definition of CEs as given above, we 
omit the results for the death only variant here.

Estimation methods
A precise mathematical definition of all estimators of the 
probability of an AE that were compared in SAVVY is 
provided in Stegherr et al. [10], a prospectively published 
statistical analysis plan for the SAVVY project. A short 
introduction in all estimators is also provided in Stegherr 
et  al. [6]. In this overview article, we only provide very 
brief descriptions of the considered estimators.

Incidence proportion
By far the most commonly used estimator, e.g., in stand-
ard safety reporting that enters benefit-risk assessment 
for the approval of new medicines, to estimate the risk 
of an adverse event (risks are estimated for one AE at 
a time) up to a maximal observation timepoint τ is the 
incidence proportion [4]. It simply divides the number of 
patients with an observed AE on [0, τ ] in group A by the 
number of patients in group A. The incidence proportion 
is an estimator of the probability that an AE happens in 
the interval [0, τ ] , and that this AE is observed, i.e., not 
censored. This illustrates that the incidence proportion is 
not properly dealing with censored observations. How-
ever, it correctly accounts for CEs; see Allignol et al. [4] 
for an exemplary illustration of that feature.

Incidence density
To account for the differing follow-up times between 
patients, researchers and guidelines (see Table  4) often 
advocate to use the incidence density or incidence rate, 
where the number of AEs in the nominator is divided by 
the total patient-time at risk instead of simply the num-
ber of patients. As such, the incidence density does not 
directly estimate the probability of an AE, but rather the 
AE hazard. As described in Stegherr et al. [10], this haz-
ard estimator can easily be transformed to indeed esti-
mate the probability of an AE. However, it only does so 
assuming that the AE hazard is constant, i.e., the prob-
ability-transformed incidence density is a fully paramet-
ric estimator. In addition, as such it does not correctly 
account for CEs, but it can be modified to do so, leading 
to the probability transform incidence density accounting 
for CEs.

One minus Kaplan‑Meier
Researchers are often aware of the inability of the inci-
dence proportion to properly deal with varying follow-
up times and censoring. As a remedy, they (and many 
guidelines, see Table  4) then advocate to consider time 
to AE and estimate the probability of an AE by reading 
off the one minus Kaplan-Meier estimator at a timepoint 
of interest, e.g., the end of observation time τ or at an 
earlier timepoint. While indeed, this estimator properly 



Page 4 of 10Rufibach et al. Trials          (2024) 25:353 

accounts for varying follow-up times and censoring 
the question remains how to deal with CEs. Numerous 
papers have been written [4, 8] and providing technical 
arguments explaining why the Kaplan-Meier estimator is 
a biased estimator of the probability of an AE. Intuitively, 
one minus the Kaplan-Meier estimator estimates the dis-
tribution function of the time of interest, that is, it tends 
towards one as we move to the right on the time axis. 
However, if we add up the probability of an AE and the 
probability of a CE in a truly CE scenario that also must 
be equal to one, implying that the probability of an AE is 
strictly smaller than one. As a consequence, the Kaplan-
Meier estimator to estimate the probability of an AE will 
be biased upwards.

Aalen‑Johansen estimator
Finally, there is an estimator that at the same time 
accounts for (random or independent) censoring, 
respects varying follow-up times, accounts for CEs in the 
right way, and is fully nonparametric and therefore free 
of bias introduced by any of these processes: the AJE [3]. 
It is therefore considered the gold standard estimator. In 
the empirical analysis of the 17 RCTs in the SAVVY pro-
ject, it served as a benchmark against which all estima-
tors were measured against. The term bias was therefore 
used for deviations of the estimators from this bench-
mark estimator, or gold standard. For an evaluation of 
the true bias, i.e., the deviation of estimators to the true 
underlying value, we refer to Stegherr et al. [5].

Table 1 in Stegherr et al. [6] concisely summarizes the 
properties of each considered estimator with respect to 
whether it accounts for censoring and CEs and whether it 
makes a parametric assumption, and we therefore repro-
duce it here in Table 1 for the estimators discussed here.

Quantification of bias—the SAVVY project
One of the goals of the SAVVY project is to quantify the 
bias of standard estimators of the probability of an AE. 
Based on simulations, i.e., comparing estimated to true 
underlying values from which the data was simulated, 
this has been done in Stegherr et al. [5]. Key findings in 
this study were that ignoring CEs is more of a problem 
than falsely assuming constant hazards. The one minus 

Kaplan-Meier estimator may overestimate the true AE 
probability by a factor of four at the largest observation 
time. Moreover, the choice of the AE probability estima-
tor is crucial for group comparisons.

To confirm these results in real clinical trial data, three 
academic institutions and nine pharmaceutical compa-
nies collaborated within the SAVVY consortium. In order 
not to have to share the trial data, macros to compute the 
above estimators were developed centrally. Companies 
then ran these macros on trial data of their choice and 
only returned high-level results (estimated values of AE 
probabilities for each estimator and some basic trial char-
acteristics) to the central data analysis unit hosted at one 
of the academic institutions. The central data analysis 
unit then meta-analyzed these results to quantify biases 
for estimators and impact on regulatory decision-mak-
ing. A statistical analysis plan for these analyses was pub-
lished [10]. Results for estimation of the probability of an 
AE in one arm are reported in Stegherr et al. [6] and for 
the comparison between two groups in Rufibach et al. [7].

In this overview paper, we focus attention on summa-
rizing results for the most commonly used estimators of 
AE risks, namely the incidence proportion and one minus 
Kaplan-Meier in comparison to the gold standard AJE. 
Furthermore, we report results for the maximal evalu-
ation time as defined in the above two papers, i.e., the 
latest time at which a dataset has an observation, either 
event or censored. Results for shorter evaluation times 
were in line with those for the maximal evaluation time.

Results
Ten organizations provided 17 trials including 186 types 
of AEs (median 8; interquartile range [3,  9]). Twelve 
(71.6% out of 17) trials were from oncology, nine (52.9%) 
were actively controlled, and eight (47.1%) were placebo 
controlled. The trials included between 200 and 7171 
patients (median = 443; interquartile range [411, 1134]). 
Median follow-up of the treatment group was 927 days 
(interquartile range [449, 1380]).

For one of the 17 trials, details of the trial and the anal-
ysis of one of the AEs by the different methods investi-
gated in this paper are presented in Stegherr et al. [5].

Note that for RRs only those AEs were considered 
where neither the estimated AE probability in the experi-
mental arm nor the estimated AE probability in the 
control arm is 0 ( n = 156 for incidence proportion and 
n = 155 for one minus Kaplan-Meier). This also applies 
to the categories in Table 2.

Empirical bias of common estimators of absolute risk 
with respect to the gold‑standard AJE
For the comparison of the AE probabilities, Stegh-
err et  al. [6] focused on the experimental arm. Median 

Table 1 Overview whether the estimators deal with the possible 
sources of bias, reproduced from Stegherr et al. [6]

Accounts 
for 
censoring

Makes no constant 
hazard assumption

Accounts 
for CEs

Incidence proportion No Yes Yes

1-Kaplan-Meier Yes Yes No

gold-standard AJE Yes Yes Yes
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follow-up was 927 days (interquartile range [449, 1380]). 
The median of the gold-standard AJE was 0.092 (mini-
mum 0 and maximum 0.961), i.e., the estimated probabil-
ity of an AE was 9.2% on average over all 186 AEs over 
all trials. The one minus Kaplan-Meier estimator was on 
average about 1.2-fold larger than the AJE and the prob-
ability transform of the incidence density ignoring CEs 
was even two-fold larger. The average empirical bias (i.e., 
the difference between the considered estimator and the 
gold-standard AJE) using the incidence proportion was 
less than 5%. Assuming constant hazards using incidence 
densities was hardly an issue provided that CEs were 
accounted for. However, beyond these average biases 
it was striking how extreme the bias could become: For 
one minus Kaplan-Meier, in our empirical analysis using 
real clinical trial data, we observed an overestimation of 
the AE probability up to a factor of five, whereas for the 
incidence proportion we observed underestimations of 
up to a factor of three. This is in line with the findings of 
the simulation study in Stegherr et al. [5] and illustrates 
that using too simplistic estimators for the probability of 
an AE can be truly misleading. To evaluate what study 
characteristics impact the bias, a meta-regression was 
performed. For that, the response variable was defined 
as the AE probability estimates obtained with the differ-
ent estimators divided by the AE probability obtained 
with the gold-standard AJE, considered on the log-scale. 
Covariates were the proportion of censoring, the evalua-
tion time point τ (i.e., the maximal time to event in years 
– AE, CE or censoring – observed), and the size of the 
AE probability estimated by the gold-standard AJE. The 
meta-regression showed that the bias depended primarily 
on the amount of censoring and on the amount of CEs.

Finally, according to the European Commission’s guide-
line on summary of product characteristics (SmPC) [11] 
and based on the recommendations of the Council for 
International Organizations of Medical Science (CIOMS) 
Working Groups III and V [12], the AE risk is classified 
into frequency categories which are defined by “very 
rare,” “rare,” “uncommon,” “common,” and “very com-
mon” when the risk is < 0.01%, < 0.1%, < 1%, < 10%, ≥ 
10%, respectively. Stegherr et  al. [6] (Table  2) assigned 
these categories to AE probability estimates from all esti-
mators (and all 186 AEs) and compared them to the cat-
egories resulting from the AJE. As an example, systematic 
overestimation of the one minus Kaplan-Meier resulted 
in upgrading of 2/6 AEs from “uncommon” to “common” 
and 14/86 from “common” to “very common.”

Empirical bias of probability‑based estimators of relative 
risk with respect to the gold‑standard AJE
Naively, one could ask the question whether when 
we have biased estimates of the AE probability in two 

groups, that go in the same direction in both groups, and 
want to compare them, the bias “cancels out.” To assess 
this hypothesis, Rufibach et  al. [7] extended the work 
from Stegherr et  al. [6] to quantify the bias when com-
paring AE risks between groups in a randomized trial. 
The focus of Rufibach et al. [7] is not to define what a fit-
for purpose estimand to quantify safety risk could be, but 
rather to evaluate statistical properties of commonly used 
estimators in the presence of varying follow-up and CEs. 
A thorough discussion of effect measures to quantify 
the relative risk is given there as well (Section 2.7-Effect 
Measures). Without going into causal or estimand 
details, the effects to be compared between groups are 
to be understood as total effects, comparing patients’ AE 
risk in this world and in the presence of CEs. The estima-
tors that were finally assessed are

• The risk ratio (RR) RR = q̂E/q̂C for estimators q̂E and 
q̂C of AE probabilities calculated at a specific evalu-
ation time within each treatment arm (E for experi-
mental, C for control)

• The hazard ratio (HR) for both, the AE of interest and 
the CE

In the one-sample case, estimates of AE probabilities 
were benchmarked on the gold-standard AJE. This, 
because the latter is a fully nonparametric estimator 
that accounts for censoring, does not rely on a constant 
hazard assumption, and accounts for CEs, as discussed 
above. So, as a straightforward extension for the com-
parison of AE probabilities between two arms using the 
RR, we benchmark the latter on the RR estimated using 
the AJE in each arm, with variance derived using the 
delta rule. The gold-standard for estimates of the HR will 
be the HR from Cox regression. This is because the latter 
is typically used to quantify a treatment effect not only 
for efficacy, but also for time-to-first-AE type endpoints. 
Variances of comparisons of different estimators of the 
RR and HR will be received via bootstrapping, because 
of the dependency of estimators computed on the same 
dataset; see Stegherr et al. [5].

For the one-sample case of estimation of absolute AE 
risk direction of biases can be derived analytically: inci-
dence proportion systematically under- and one minus 
Kaplan-Meier systematically overestimates the true AE 
risk. However, there is no such derivation possible for 
direction of the bias for the RR or HR. Rufibach et al. [7] 
found the RR based on the incidence proportion overes-
timates the RR computed using the gold-standard AJE 
by up to a factor of three, and one minus Kaplan-Meier 
underestimates up to a factor of four, see Fig. 1. Interest-
ingly, dividing the two biased estimates of the AE prob-
ability based on the incidence proportion, which both 
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tend to underestimate the true AE probability, leads to 
an estimate of the RR that on average performs compa-
rably to the AJE. Apart from shedding light on estima-
tion quality of the incidence proportion and one minus 
Kaplan-Meier to estimate the RR, we conclude that dif-
ferent patterns of under- or overestimation of absolute 
AE probabilities can lead to similar performance for RR. 
This implies that in general, one cannot conclude how an 
estimator of the relative AE risk performs based on look-
ing how these same estimators perform on estimation of 
arm-wise AE probabilities.

As discussed in Stegherr et  al. [6], one reason for the 
good performance of the incidence proportion might be 
a high amount of CEs before possible censoring. How-
ever, not only the proportion of censoring but also the 
timing of the censoring is relevant.

Meta-analyses confirmed the above impressions. 
Meta-regressions showed that (1) the key difference 

between estimators lies in the value of the average RR 
and (2) the impact of covariates is overall limited, com-
pared to the average RR the estimated coefficients are 
close to 1. This emphasizes that the choice of the esti-
mator is key and that this holds true over a wide range 
of possible data configurations quantified through the 
considered covariates.

A key finding of Rufibach et  al. [7] was that catego-
rization of evidence based on RR crucially depends on 
the estimator one uses to estimate the RR. We there-
fore reproduce Table 1 in their paper here in a version 
trimmed down to incidence proportion and one minus 
Kaplan-Meier; see Table  2. Overall, we find quite a 
number of switches to neighboring categories, more so 
than for estimators of the absolute AE risk in one arm. 
Reasons for switches are wider CIs of the AJE as well 
as RR estimates/CI bounds that are close to the cutoffs 
between categories. As the incidence proportion on 
average estimates the RR well, we see a similar number 
of switches to a higher ( n = 8 , below the diagonal in 
Table 2) and lower ( n = 9 ) evidence category. Not sur-
prisingly, for one minus Kaplan-Meier that underesti-
mates the RR with respect to the gold-standard AJE, we 
see relevantly more switches to a lower than higher evi-
dence category, namely n = 41/n = 16 , 32/8, and 28/6, 
respectively.

In summary, the choice of the estimator of the RR 
does have a relevant impact on the conclusions. Note 
that there is no universally accepted standard how one 
should combine a point estimate and its associated var-
iability, in our case RR, into evidence categories. As an 
example, Rufibach et al. [7] used a categorization moti-
vated by the methods put forward by the IQWiG [13] 
for severe AEs (Table  14) to be used for the German 
benefit-risk assessment.

Fig. 1 Ratio of RRs estimated with estimator of interest 
and the gold-standard AJE

Table 2 The impact of the choice of relative effect estimators, incidence proportion, and one minus Kaplan-Meier, for AE probabilities 
on qualitative conclusions. Diagonal entries are set in bold face. Deviations from the gold-standard AJE are the off-diagonal entries. 
Off-diagonal zeros are omitted from the display

Gold‑standard Aalen‑Johansen

(0) no effect (a) minor (b) considerable (c) major

Incidence proportion (0) no effect 84 5

(a) minor 3 10 2

(b) considerable 1 2 12 2

(c) major 1 1 33
One minus Kaplan-Meier (0) no effect 84 9 4 8

(a) minor 3 6 3 3

(b) considerable 2 1 7 5

(c) major 1 1 18
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Empirical bias of hazard‑based estimators of relative risk 
with respect to the gold‑standard AJE
As for hazard-based inference, it is important to note 
that, even if the event of interest is AE, effects on all 
other CEs is generally recommended for any (hazard-
based) analysis of CEs [14]. Rufibach et al. [7] found that 
the hazard of AE is generally larger for the experimental 
compared to the control arm, meaning that the instan-
taneous risk of AE is typically higher in the experimen-
tal arm of an RCT, not unexpectedly. For the hazards of 
CEs, for both variants, i.e., considering death only as CE 
or including more reasons as described above, what we 
find is that the hazard in the experimental arm is gener-
ally lower than in the control arm, i.e., there is an effect of 
the experimental treatment on the CE. If we simply cen-
sored at CEs, we would thus introduce arm-dependent 
censoring, a feature that may lead to biased effect esti-
mates [15, 16]. The ratio of the incidence densities of the 
AE in the two arms underestimates with respect to the 
Cox regression HR while for the other two endpoints on 
the median they turn out to be approximately unbiased 
compared to the Cox HR, with a tendency to overesti-
mation when accounting for all CEs. To appreciate the 
differences between the two estimators of the RR based 
on hazards, i.e., the incidence density ratio and the gold-
standard Cox regression HR, recall the properties of the 
two methods: Both properly account for censoring and 

they properly estimate event-specific hazards, or rather 
the relative effect based on these. The only difference 
between the two methods is what they assume about the 
shape of the underlying hazard: the incidence density 
assumes them to be constant up to the considered follow-
up time, which also implies that they are proportional.

The impact of the use of the different estimators on the 
conclusions derived from the comparison of treatment 
arms was again investigated by the use of categories. 
These are typically derived from comparing the confi-
dence interval (CI) of the RR to thresholds. In contrast to 
the usual IQWiG procedure, however, they did not only 
categorize the benefit of a therapy, but also the harm, 
where they did not distinguish between a positive and a 
negative treatment effect. Four categories were possible: 
(0) “no effect” if 1 is included in the CI, (a) “minor” (“ger-
ing”) if the upper bound of the CI is in the interval [0.9, 1] 
for a RR< 1 or the lower bound in the interval [1, 1.11] 
for a RR> 1 , (b) “considerable” (“beträchtlich”) if the 
upper bound of the CI is in the interval [0.75, 0.9] for a 
RR< 1 or the lower bound in the interval [1.11, 1.33] for a 
RR> 1 , and (c) “major” (“erheblich”) if the upper bound is 
smaller than 0.75 for a RR< 1 or the lower bound greater 
than 1.33 for a RR> 1 . The same categorization was used 
for the HR instead of RR.

Rufibach et al. [7] have considered two effect measures 
to quantify the RR of an AE in two arms: the RR based 

Table 3 Conclusions of the RR calculated with the gold-standard Aalen-Johansen estimator compared to the conclusions of the HR 
calculated with the Cox model. The table shows the analysis of those n = 94 AEs that were observed with an absolute frequency of 
≥ 10 in each arm. Off-diagonal zeros are omitted from the display

HR Cox for AE

(0) no effect (a) minor (b) considerable (c) major

RR gold-standard Aalen-
Johansen

(0) no effect 42 3 3 1

(a) minor 9 2 1

(b) considerable 4 1 3 2

(c) major 2 4 17

Table 4 Coverage of relevant time-to-event aspects for quantification of AE risk for an opportunistic sample of safety guidelines. “x” 
means that this aspect is mentioned in the respective guideline

Guideline Acknowledges 
varying FU

Proposes 
incidence 
density

Acknowledges constant 
hazard assumption

Proposes life‑table/one 
minus Kaplan‑Meier

Acknowledges 
CEs

ICH E3 [19] x x

ICH E9 [20] x x x

SmPC [11] x x

CIOMS [18] x x x x

FDA premarketing [21] x x x x

CONSORT Harm 2022 update [22] x
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on AE probabilities and the HR computed from Cox 
regression. Rufibach et  al.’s [7] analyses revealed that all 
the considered estimators are overall inferior to the two 
gold standards that were considered, either the RR based 
on the arm-wise AJE or the HR based on Cox regres-
sion. A question that remains is whether the qualitative 
conclusions drawn based on the two gold standards are 
relevantly different when relying on the criteria put for-
ward by the IQWiG (Table  14 in their general methods 
document [13]); see Table 9 in Rufibach et al. [7], which 
we reproduce here as Table 3. Quite some different clas-
sifications based on the two estimators of the RR were 
observed. However, this is not a surprise, as the estimand 
the two methods look at is not the same (see Varadhan 
et al. [17] for an exposition of this issue): Cox HR quanti-
fies a relative effect based on an endpoint of AE hazard, 
whereas RR based on gold-standard Aalen-Johansen is 
based on a comparison of probabilities at a evaluation 
time; see Rufibach et al. [7] for an extended discussion of 
this issue.

Overall conclusions from the empirical analysis
To conclude this section, based on theoretical and empir-
ical evidence, Stegherr et  al. [6] clearly recommend the 
AJE as the non-parametric, unbiased estimator in the 
presence of both CEs and censoring. If a parametric 
analysis based on incidence densities is considered, they 
strongly recommend to incorporate incidence densities 
of CEs as they detail in their paper. This is also prefer-
able over the one minus Kaplan-Meier approach. A con-
clusion of the empirical study of the SAVVY project not 
discussed here was also that ignoring CEs appeared to be 
worse than assuming constant hazards. This illustrates 
the importance of careful consideration of CEs when 
aiming at properly estimating and comparing AE risks.

Analysis of safety in key guidelines
To understand the landscape of existing guidelines on 
safety reporting which, ideally, at some point will be 
updated based on the conclusions from SAVVY, we 
reviewed an opportunistic sample of these and collected 
results in Table  4. Many of these guidelines mention at 
least that varying follow-up times may be relevant to 
quantify AE risk. For example, the CIOMS Working 
Group VI handbook [18], which forms the basis of sev-
eral guidance, already admits that “ICH Guideline E3 
mentions survival analysis methods for analysing safety 
data, but it appears that this has often not been followed 
in practice”. Looking at Table 4 two aspects are remark-
able: first, the heterogeneity in how related guidelines 
treat the issues of varying follow-up, use of the incidence 
density, constant hazard assumption for the latter, pro-
posing life-table or one minus Kaplan-Meier techniques; 

second, the complete absence of any consideration of 
CEs, although at least death seems to be quite an obvious 
CE in estimation of AE risk, with many others potentially 
relevant. Taken together with the frequent mentioning of 
life-table/one minus Kaplan-Meier methods to account 
for varying follow-up time, this is specifically concerning 
given the findings in Stegherr et al. [6] and Rufibach et al. 
[7] about the bias of one minus Kaplan-Meier in the pres-
ence of CEs.

Overall, it appears somewhat surprising that all guide-
lines exhibit awareness of the varying follow-up time 
issue and even discuss potential remedies, but that in 
routine reporting of safety and quantification of AE risks 
the incidence proportion appears still to be the over-
whelmingly preferred approach.

Implementation
All methods introduced in the SAVVY project have been 
implemented in the R package savvyr [23]. This package 
is available from CRAN.

Discussion
Main conclusion of the SAVVY project
The main conclusion from the SAVVY project is that com-
monly used methods such as incidence proportions, inci-
dence densities (with and without ignoring CEs), and one 
minus Kaplan-Meier are all biased and therefore inappropri-
ate to quantify AE risk in the presence of varying follow-up 
times, CEs, and censoring. Estimators are biased for esti-
mation for absolute as well as relative AE risks. It is impor-
tant to note that this bias is a statistical property of any of 
these estimators and independent of the purpose we use 
any of these estimators for, i.e., whether we quantify the risk 
for a prespecified or emerging AE, or estimate AE risk in a 
given therapeutic area, or want to detect a different AE sig-
nal between two treatment arms. Taking together, Stegherr 
et al. [5], Stegherr et al. [6], and Rufibach et al. [7] provide 
theoretical (i.e., based on simulated) as well as empirical 
(based on data from 17 RCTs) evidence for the bias of all 
estimators apart from the gold-standard AJE, and also quan-
tify this bias. This supports decade-long theoretical investi-
gations into the bias of, e.g., the one minus Kaplan-Meier 
estimator in this field. We are of the strong opinion that all 
relevant stakeholders, among them clinicians, statisticians, 
and regulators, should collaborate to finally implement fit-
for-purpose methods to quantify AE risk, and update per-
tinent guidelines. In our opinion, the implementation of the 
ICH E9(R1) estimands addendum—so far primarily for effi-
cacy—offers a window of opportunity to push for a change 
also in reporting safety information. In drug development, 
safety contributes as much to the benefit-risk assessment 
of a medicine as efficacy, so the same estimand, estimation, 
and reporting standards should apply to both.
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SAVVY—template for sharing of summary data
A special feature of SAVVY was the way data from the 
17 RCTs was shared and analyzed: In a big collaborative 
effort, data had been gathered within 10 sponsor organi-
zations (nine pharmaceutical companies and one aca-
demic trial center). In order to avoid challenges with data 
sharing, SAVVY used an approach familiar from Health 
Informatics, see, e.g., Budin et  al. [24]. A standardized 
data structure was defined [10] based on which SAS and 
R macros were developed by the academic project group 
members. These macros where then shared with all par-
ticipating sponsor organizations and run by them locally 
on their individual trial data. Only aggregated data neces-
sary for meta-analyses were forwarded to the academic 
group members to centrally run meta-analyses.

This appears to be an approach that could also be 
applied in other applications, as long as the analysis of 
interest can be done on summary data provided by single 
organizations.

Limitations
There may be trials where varying follow-up times and/
or competing events do not necessarily (relevantly) bias 
the estimation of AE risks, for example, in trials with 
complete and identical follow-up for all patients. In such 
cases, the incidence proportion might be a good enough 
estimator.

AJE is clearly identified as the most unbiased estimator 
of AE risk in the presence of varying follow-up times and 
CEs, which is already clear from its theoretical proper-
ties. Theoretically, compared to a parametric counterpart 
(e.g., an estimator assuming both, the AE and CE hazard 
are constant), as a completely nonparametric estimator 
AJE will have larger variance. However, as discussed in 
Stegherr et al. [5], the increase in variance is small.

Next steps for the SAVVY project and the analysis of safety 
data
Work within the SAVVY project continues. Concrete 
plans are an analysis restricted to the oncology trials 
within the 17 RCTs, discussing in more detail the issue 
of CEs in a typical oncology clinical trial. Collaborations 
with clinicians in other therapeutic areas to define AEs of 
interest for which “proper” estimation of their risk would 
be informative and what clinical events to define as com-
peting are envisaged.

SAVVY’s long-term vision is indeed to further familiar-
ize trialists with the AJE and have this method be recom-
mended in future revisions of pertinent guidelines. This 
in connection with developing pragmatic approaches 
how to properly identify and define CEs in therapeutic 
areas.
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