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Trials

The analysis of continuous data from n-of-1 
trials using paired cycles: a simple tutorial
Stephen Senn1*   

Abstract 

N-of-1 trials are defined and the popular paired cycle design is introduced, together with an explanation as to how 
suitable sequences may be constructed.

Various approaches to analysing such trials are explained and illustrated using a simulated data set. It is explained 
how choosing an appropriate analysis depends on the question one wishes to answer. It is also shown that for a 
given question, various equivalent approaches to analysis can be found, a fact which may be exploited to expand 
the possible software routines that may be used.

Sets of N-of-1 trials are analogous to sets of parallel group trials. This means that software for carrying out meta-
analysis can be used to combine results from N-of-1 trials. In doing so, it is necessary to make one important change, 
however. Because degrees of freedom for estimating variances for individual subjects will be scarce, it is advisable 
to estimate local standard errors using pooled variances. How this may be done is explained and fixed and random 
effect approaches to combining results are illustrated.

Introduction
This paper provides a simple tutorial on analysing contin-
uous data from n-of-1 trials [1] using paired cycles. This 
design (to be described below) leads to various simple 
possible analyses and is an efficient way to compare two 
treatments on a within-patient basis where the nature of 
the disease and other practical considerations make this 
possible. The general framework that will be applied is 
that in which data are treated as if sampled from some 
hyper-population with normally distributed values. This 
is the usual basis for ‘parametric analysis’, which is a com-
mon device for modelling data and is known to yield 
(usually) similar results to an alternative framework in 
which the treated units are regarded as being fixed but 
the population is that of all possible random allocations 
[2, 3]. However, this correspondence works best when the 

sample size is large, and this is often not the case when 
series of n-of-1 trials are being discussed. This reserva-
tion should be noted, and in particular if the paramet-
ric analysis yields highly significant results, it may be 
the case that a randomisation test would be incapable of 
yielding similar results [4]. This is not necessarily a rea-
son for abandoning the parametric approach. In data-
poor contexts, which often apply for the study of rare 
diseases, accepting the necessary assumptions may be the 
lesser of two evils. Nevertheless, the limitation should be 
born in mind.

The objectives of the tutorial are to provide simple jus-
tifications and instructions for various possible analyses 
of such trials and also explain for which purposes they 
are suited. Use of algebra is kept to a minimum, and 
graphical and tabular representation of data and analyses 
are stressed.

For readers who require more technical detail, a gen-
eral model for data from N-of-trials is presented and 
discussed in an appendix. It is explained how the way in 
which the overall treatment effect is regarded, either as a 
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mean effect for the subjects studied or as a mean effect 
of the hypothetical population of subjects of whom they 
might be considered to be a random sample, will affect 
the way that analysis proceeds.

The design
A common design for n-of-1 trials comparing two treat-
ments is to organise allocation in such a way that within 
any given pair of periods each treatment is used once [5–7]. 
Such pairs of periods have been referred to as cycles [8]. 
A possible scheme for a design in three cycles is given in 
Table 1. Patients would then be allocated at random to one 
of the eight possible sequences.

In general, if there are k possible cycles in which 
patients can be treated, there will be  2k possible 
sequences. A canonical set of possible sequences can be 
constructed as follows using the basic pair AB and BA. 
When moving between successive sequences in a list 
of sequences, for cycle 1, switch AB and BA after every 
sequence. For cycle 2, double the number of sequences 
before switching. For each successive cycle, double the 
sequences before switching.

This design is relatively simple to organise and efficient 
and lends itself to various simple analyses. As regards 
organisation, a simple way to implement randomisation 
to sequences is just to randomise patients independently 
for each cycle. As regards the second, the close tempo-
ral control that is offered by randomising in pairs makes 
it efficient. It could be argued that if carry-over is likely 
and one wishes to guard against it, various other designs 
might be preferable, but the solutions these offer depend 
on implausible modelling assumptions, and the best 
advice as regards carry-over is to ensure adequate wash-
out between treatments, if necessary limiting measure-
ment of the effect of each treatment towards the end of 
periods in which they are given [9]. As regards analysis, 

it is the purpose of this note to explain how this may be 
achieved. For advice on reporting n-of-1 trials, see the 
CENT statement [10].

Illustrative data for analysis
N-of-1 trials lend themselves to addressing a number 
of different questions that might arise naturally in con-
nection with studying the effects of treatments [11]. The 
questions are as follows:

Q1. Was there an effect of treatment in the trials?
Q2. What was the average effect of treatment in the tri-

als that were run?
Q3. Was the treatment effect identical for all patients in 

the trials?
Q4. What was the effect for individual patients in the 

trials?
Q5. What will be the effect of treatment when used 

more generally (in future)?
The suggested analyses will be organised in terms of 

these questions. We shall use the simple simulated data 
that were presented in Araujo et al. [8] to illustrate these 
analyses.

It is supposed that a trial in asthma has been carried out 
comparing two treatments, A and B, each given as a sin-
gle dose. Twelve patients have been randomised in pairs 
of cycles as described above. The first ten have completed 
all three planned cycles of treatment. However, patient 11 
has only completed two cycles of treatment and patient 
12 has only completed 1. This has been done to illustrate 
a complication in analysis that may arise in practice. We 
thus have data from (10 × 3) + 2 + 1 = 33 cycles and there-
fore from 2 × 33 = 66 episodes. In all the analyses that fol-
low, we shall assume that the fact that some values are 
missing is uninformative and that reasonable inferences 
may be based on the values that remain.

Table 1 Set of sequences for a design using six periods arranged in three cycles. Pairs with A followed by B are shaded yellow. Pairs 
with B followed by A are shaded blue



Page 3 of 14Senn  Trials          (2024) 25:128  

The results are measurements of forced expiratory 
volume in one second,  FEV1, in mL taken 12 h after 
treatment. The data are presented in Table  2 sorted 
by treatment within cycle (that is to say A then B). 
The period in which A or B was administered is given 
within Table  2, and this reflects the randomisation 
used. The data are also available to download from 
https:// journ als. plos. org/ ploso ne/ artic le? id= 10. 1371/ 
journ al. pone. 01671 67# sec009. Note, however, that 
those data include values for cycles 3 from patients 11 
and 12 and cycle 2 from patient 12, which are assumed 
missing here.

A useful plot of the data is given in Fig.  1, which is a 
trellis plot. Each window represents the results for a 
given patient. The result for each cycle is represented by 
a blue circle plotting the value under B (Y axis) against 
that under A (X axis). The diagonal line represents equal-
ity between the two treatments. The average values over 
all cycles are represented by red asterisks. It is noticeable 
that the blue circles are generally above and to the left of 

the line of equality suggesting that B has a bigger effect 
than A.

Demonstrating that there can be a difference 
between treatments
Q1, ‘was there an effect of treatment in the trials?’, 
leads to a very simple analysis. The relevant null 
hypothesis is that there is no difference between treat-
ments for any of the patients. If that is the case, under 
the null hypothesis, it does not matter which patient 
is studied; the result may be expected to be the same. 
This renders the differences between A and B as being 
independent over patients by hypothesis. That being 
so, we can carry out a matched pair analysis on the 33 
cycles.

The data have been reduced to differences by cycle and 
patient and are presented in Table  3. These differences 
can be analysed by a one-sample t-test for which the sta-
tistics in Table 4 are produced.

Table 2 A simulated trial in asthma. Twelve patients have been randomised in three cycles to treatment A followed by B or B followed 
by A. The table gives the periods in which the patients received A or B and the  FEV1 in mL below. For example, patient 1 received 
treatment A in periods 1, 3, and 6 and treatment B in periods 2, 4, and 5

 Treatment
Patient A B A B A B

1 1 2 3 4 6 5

2394 2686 2515 2675 2583 2802

2 2 1 3 4 6 5

2746 2726 2592 2867 2743 2742

3 1 2 3 4 6 5

2668 2560 2542 2584 2491 2737

4 1 2 3 4 6 5

2397 2696 2411 2895 2499 2760

5 2 1 3 4 5 6

3179 3221 2952 3096 2600 3192

6 1 2 4 3 5 6

2643 2496 2759 2847 2651 2860

7 1 2 3 4 5 6

2678 2843 2492 2763 2801 2890

8 2 1 3 4 5 6

2887 2862 2875 3083 2689 2967

9 2 1 3 4 6 5

2490 2841 2648 3044 2688 2914

10 2 1 3 4 6 5

2268 2576 2413 2493 2344 2699

11 2 1 4 3 6 5

2617 2923 2629 2832

12 1 2 4 3 5 6

2627 2759

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167167#sec009
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0167167#sec009
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Note that although independence is guaranteed 
under  H0 by hypothesis, the same is not true under 
many alternative hypotheses. For example, it might be 
the case that some subjects would show a large treat-
ment effect but some would show no effect at all. It 
might be interesting to develop a test that was power-
ful for this sort of alternative hypothesis (for a sugges-
tion for parallel group trials, see Conover and Salsburg 
[12]). However, a simple analysis that does remove the 
treatment-by-patient interaction can be constructed by 

estimating the variance patient by patient comparing 
the cycle differences to the mean for that patient. This 
is discussed in the next section.

Putting bounds on the mean effect for the patients studied
We now consider how we may answer Q2 ‘what was the 
average effect of treatment in the trials that were run?’. Note 
that if we decide that this effect is not zero, we have also 
answered Q1. This issue will be discussed subsequently. For 
the moment, we address an analysis to answer Q2.

Fig. 1 Trellis plot of the results from the simulated example
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The critical value at the 5% level two-sided for a 
t-statistic with 32 degrees of freedom is 2.037. If this 
is multiplied by the standard error, the product is 
2.037 × 28.17  mL = 57.38  mL. If this is subtracted and 
added to the mean of 194.5 mL, then we obtain a 95% 
confidence interval for the mean effect (to one decimal 
place) of (137.2 mL, 251.9 mL).

This particular calculation can be criticised. Whereas 
it is reasonable to assume by hypothesis that the treat-
ment effect is constant for all patients, when we are 
testing that this effect is zero for them all, as soon as 
we allow that the effect is not zero, it becomes plausible 
that it might vary from patient to patient, as discussed 
above. If we regard the patients as being fixed, that is 
to say that we are only making a statement about these 
patients, then we could claim that this source of vari-
ation would not contribute to the treatment estimate 
changing were we to repeat the experiment. However, it 
will contribute to the overall estimate of variation that 
we have used.

This source of variation can be eliminated by con-
structing variance estimates patient by patient. The cal-
culations are given in Table 5.

Here, the column labelled DF gives the degrees of free-
dom patient by patient and is equal to the number of 
cycles minus 1. The column labelled Variance gives the 
local estimate of the variance of the differences (B-A) 
patient by patient. For patient 12, the value is zero since 
the patient was only studied in one cycle and hence there 
is only one difference. The column headed Sum of Squares 
is obtained by multiplying the variance by the degrees of 
freedom. The overall sum of squares is 522,750.5  mL2, and 
if this is divided by the total DF, 21, we obtain 24,893  mL2, 
which is thus our estimate of the variance on the assump-
tion that variability does not vary from patient to patient.

The consequent calculations are summarised in 
Table 6.

Table 3 Differences (treatment B − treatment A) per cycle 
arranged by patient

Cycle 1 2 3

Patient

1 292.0 160.0 219.0

2 − 20.0 275.0 − 1.0

3 − 108.0 42.0 246.0

4 299.0 484.0 261.0

5 42.0 144.0 592.0

6 − 147.0 88.0 209.0

7 165.0 271.0 89.0

8 − 25.0 208.0 278.0

9 351.0 396.0 226.0

10 308.0 80.0 355.0

11 306.0 203.0 *

12 132.0 * *

Table 4 Summary statistics to perform a one-sample t-test 
based on differences per cycle

Statistic Value Explanation

n 33 Number of cycles

Mean 194.55 mL Mean of the 33 cycle differences

Variance 26188  mL2 Sample variance of the 33 cycle differences

SD 161.8 mL Standard deviation = √variance

SE 28.17 mL Standard error = SD/√n

DF 32 Degrees of freedom = n-1

t 6.91 t-statistic =194.55 mL/28.17 mL

P-value < 0.001 Probability under  H0 a t-statistic with 32 DF 
will be ≥ 6.91 or ≤ − 6.91

Table 5 Intermediate calculation to estimate the common 
within-patient variance. Note that the units of variances and 
sums of squares are  mL2 of  FEV1

Patient DF Variance Sum of squares

1 2 4372.3 8744.7

2 2 27260.3 54520.7

3 2 31572.0 63144.0

4 2 14233.0 28466.0

5 2 85601.3 171202.7

6 2 32767.0 65534.0

7 2 8356.0 16712.0

8 2 25166.3 50332.7

9 2 7758.3 15516.7

10 2 21636,3 43272.7

11 1 5304.5 5304.5

12 0 0.0 0.0

Total 21 522750.5

Table 6 Summary statistics to perform a one-sample t-test 
based on differences per cycle with the patient by treatment 
interaction removed from the variance estimate

Statistic Value Explanation

n 33 Number of cycles

Mean 194.55 mL Mean of the 33 cycles

Variance 24893  mL2 Sample variance of the 33 cycles

SD 157.8 mL Standard deviation = √variance

SE 27.47 mL Standard error = SD/√n

DF 21 Degrees of freedom = n-1-11

t 7.08 t-statistic =194.55 mL/27.47 mL

P-value < 0.001 Probability under  H0 a t-statistic 
with 21 DF will be ≥ 7.08 
or ≤ − 7.08
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Note that compared to the naïve test of the ‘Demon-
strating that there can be a difference between treat-
ments’ section, we have gained some reduction in 
variance at the expense of losing some degrees of free-
dom. The former will increase the power of the test, 
but the latter will reduce it. Thus, even if our objective 
is answering Q1, we might do better using the test for 
which the treatment-by-patient interaction has been 
removed from the error term. In general, it is not pos-
sible to say in advance of examining data which will 
be more powerful. If we can believe in the complete 
homogeneity of the treatment effect, the test of the 
‘Demonstrating that there can be a difference between 
treatments’ section will prove so. In the presence of 
considerable heterogeneity, the test of this section may 
do so.

However, there is another issue that arises. If we 
do not regard the patients as fixed, then we have not 
reflected the variation from patient to patient enough, 
since our estimate is based on using cycles as the unit 
of inference rather than patients. Furthermore, the mean 
over all cycles will not weigh the patient means equally 
because not all patients have been observed as often: 
the mean of 33 cycle differences will not be the same as 
the mean of 12-patient differences. Note that considera-
tions of this sort raise difficult issues. If we accept that 
the effect of treatment varies for different patients, then 
it would seem logical that this component of variation 
(the variation of the true effect from patient to patient) 
should contribute to our uncertainty about the true 
average effect more widely, since we accept that differ-
ent patients could have given us a different answer. The 
problem is, however, not only that we cannot regard 
patients recruited in a clinical trial as being a random 
sample of some target population we might have in mind 
but also that it is difficult to establish of what population 
they could be regarded as being a random sample. A pos-
sible strategy is to perform the analysis as if the patients 
were such a sample of such a population but to recognise 
that the attendant uncertainty will be underestimated by 
such an analysis.

We now put these concerns aside for the moment 
and consider an analysis that uses patients as the unit of 
inference.

Putting more general bounds on the treatment effect
One way of proceeding is to reduce the differences to a 
mean per patient and then perform an analysis using 
these 12-mean differences as our raw input. The data are 
presented in Table 7. We shall ignore the column labelled 
‘Standard error’ for the moment (we shall use this later). 
Instead, we just base our analysis on the 12 per patient 
estimates.

If we carry out a one-sample t analysis on these values, 
we can summarise the results as in Table 8.

The end result is very similar to that reached before. It 
is not surprising that the mean is scarcely different. The 
fact that the standard error is similar, however, reflects 
the fact that for this particular example the variation in 
effect from patient to patient over and above that to be 
expected by the random variation from cycle to cycle is 
small. Nevertheless, the analysis is conceptually differ-
ent to that previously provided as it has greater relevance 
to a different question: what can one say about the mean 
effect in general, not just for patients studied. This is a 
form of Q5 considered above, but note that the previous 
discussion in the ‘Putting bounds on the mean effect for 
the patients studied’ section highlighted some inferential 
problems and that the tentative nature of such answers 
should not be forgotten. We shall revisit this question in 
the ‘Meta-analytic approaches’ section.

There are now 11 degrees of freedom, and the critical 
value for the t-statistic is now slightly larger at 2.201. We 
thus have 2.201 × 28.72 mL = 63.21 mL as the value that 

Table 7 Summary statistics per patient that may be used for 
various analyses

Per patient estimate Standard error

223.7 91.09

84.7 91.09

60.0 91.09

348.0 91.09

259.3 91.09

50.0 91.09

175.0 91.09

153.7 91.09

324.3 91.09

247.7 91.09

254.5 111.56

132.0 157.77

Table 8 Summary statistics to perform a one-sample t-test 
based on differences per patient

Statistic Value Explanation

n 12 Number of patients

Mean 192.74 mL Mean of the 12 patient means

Variance 9895  mL2 Sample variance of the 12 patient means

SD 99.48 mL Standard deviation = √variance

SE 28.72 mL Standard error = SD/√n

DF 11 Degrees of freedom = n-1

t 6.71 t-statistic =192.7 mL/28.72 mL

P-value < 0.001 Probability under  H0 a t-statistic with 32 
DF will be ≥ 6.71 or ≤ − 6.71
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has to be subtracted from and added to the mean to get 
lower and upper 95% confidence limits. The resulting 
95% confidence interval is (129.5 mL, 255.9 mL).

Meta‑analytic approaches
A set of n-of-1 trials which we have been considering is 
analogous to a collection of results from independent 
clinical trials, which might be summarised in a meta-
analysis. There is an extensive theory of how such results 
should be analysed [13–15], and software routines exist 
within many major statistical packages that may be used 
to perform a meta-analysis. This means that tools are 
available that may be simply adapted to perform the anal-
ysis of a set of n-of-I trials.

There is one important change in data-preparation 
that is, however, necessary. Standard meta-analytic 
approaches assume that the standard errors used to cal-
culate the weights are themselves calculated without 
error. This is, of course, not true. Estimated standard 
errors are random variables, not known parameters. 
However, if the associated degrees of freedom are rea-
sonably large, this assumption does not matter. For n-of-1 
trials, however, there are typically few degrees of freedom 
per patient. In our example, there are no more than two 
per patient. Naively estimating the variances indepen-
dently is unwise [16, 17]. It is better to use a pooled vari-
ance to do so.

Thus, we impose an assumption that the within-patient 
variation between estimates per cycle is constant across 
patients. We then proceed to estimate the variance.

For this purpose, we can use the approach illustrated 
in Table  5 and Table  6. For each patient, the degrees of 
freedom are calculated as the number of cycles in which 

they were treated minus one. The values are shown in 
column two of Table 5. The sample variance of the esti-
mated treatment effect for each patient is calculated and 
given in column three. The product of the values in col-
umns two and three gives the sums of squares (corrected 
by the mean), which is shown in column four (if the avail-
able statistical software package has a standard function 
available for the corrected sum of squares, it may be easier 
simply to calculate column four directly). The sum of the 
values in column four is 522,750.5  mL2. Dividing the total 
sum of squares by the total degrees of freedom, 21, yields 
an estimated variance of 24,892.9  mL2, and the square 
root of this is 157.77 mL.

Note that since patient 12 was only treated in one cycle, 
it is impossible anyway to estimate a variance for them. 
However, using the data from other patients, we assume 
that the estimated standard deviation for them is the 
same as for all patients and is thus 157. 77 mL. Since the 
estimate for this patient is only based on one cycle, the 
standard error for them is the same as the standard devi-
ation, since, trivially, 157.77 mL√

1
= 157.77 mL . In general, if 

a patient was treated in k cycles, we have SE = s√
k
 , where 

s is the estimated pooled standard deviation (157.77 mL 
for this example). For patient 11, we have k = 2, and for 
patients 1 to 10, k = 3. Substituting these values of k 
yields the standard errors given in Table 7.

We can now apply standard meta-analytic approaches 
to the data in Table 7. There is a wide choice of packages 
to do this. Here, we illustrate the analysis using the meta 
package of Guido Schwarzer’s [18]. The results of using 
the metagen( ) and forest( ) functions are displayed in 
Fig. 2.

Fig. 2 Results of analysis using the meta package
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This provides both a fixed and a random effects analy-
sis. For the latter, there are a number of possible meth-
ods, and the DerSimonian and Laird [19] approach has 
been chosen. For this example, the results of fixed and 
random effects analyses are very similar. Furthermore, 
the point estimate of 194.55 mL is identical to that 
reached for the matched pairs analysis of the 33 cycles. 
This is no coincidence. Since the standard errors patient 
by patient have been calculated using the same variance, 
the difference between them merely reflects the numbers 
of cycles for which information was obtained. The meta-
gen( ) function is a generic inverse variance meta-analysis 
function. It weighs results proportionately to the inverse 
of the square of the standard error, that is to say propor-
tionately to the number of cycles.

The standard error is different however. This is based 
on 21 degrees of freedom rather than 32. The extent 
to which results vary from patient to patient has been 
removed from the estimate of the variance. The differ-
ence is 11 degrees of freedom, and these are the degrees 
of freedom that correspond to the treatment-by-patient 
interaction. As has been pointed out elsewhere, this 
point is frequently misunderstood [20]. More generally, 
both a fixed and random effect interaction fit a treat-
ment-by-trial interaction (in this case, the analogy of 
trial is patient). It is what they do with it that makes the 
difference.

The estimate of the treatment-by-trial interaction may 
be used to answer Q3: ‘Was the treatment effect identical 
for all patients in the trials?’ The relevant variance is given 
as τ2 = 1376 (to the nearest square mL) and the associated 
P-value as p = 0.32. Thus, using the conventional thresh-
old of 5% for statistical significance, the result is not ‘sig-
nificant’. However, this non-significance does not prove 
that there is no heterogeneity and, furthermore, whether 
or not there is heterogeneity is not the issue in choosing 
between fixed and random effects analyses. It is the pur-
pose which guides the choice [20].

The random effects meta-analysis estimate has a 
slightly wider confidence interval. This is because it pro-
vides an estimate of the treatment effect that would apply 
were it the case that the patients that have been studied 
were no longer fixed but could be regarded as a random 
sample from a wider but ‘similar’ population. Thus, the 
differences in effect that the interaction measures are 
no longer regarded as being fixed but as having values 
that might vary from one occasion to another. Thus, this 
uncertainty is incorporated in the confidence intervals. 
In favour of the random effects analysis is the fact that 
it addresses a more important question. Against it is the 
fact that, to answer this question, strong assumptions 
(the similarity of patients studied with those in the target 
population) have to be made.

Estimates of effects for individual patients
Q4 in our list of five questions was ‘What was the effect 
for individual patients in the trials?’ It may surprise 
some that superior estimates of the effects from indi-
vidual patients can be obtained by also using the results 
from others. However, a little reflection shows that 
using results from others is exactly what happens when 
data from parallel group trials provide predictions of 
the effect of treatments. Thus, we use often estimates of 
average effects to predict effects for individual patients. 
Therefore, a series of n-of-1 trials will provide two sorts 
of information for a given individual, namely personal 
and global, the former only using a given patient’s data 
and the latter all the data. Each of these is an unbi-
ased estimate of the effect for a patient, and they may 
be combined to produce a so-called shrunk estimate as 
follows

where w is a weight between 0 and 1. The greater the 
value of w, the more attention we pay to the informa-
tion from the given patient. The estimate is referred to as 
shrunk because the result will lie between personal and 
global and so may be regarded as having shrunk towards 
the latter compared to the former. An alternative term is 
best linear unbiased predictor (BLUP) [21].

Just as we combine information from a meta-analy-
sis by weighing the trial proportionately to the inverse 
of the variances of their estimates, we weigh these 
two sorts of information inversely according to their 
variances.

A plot of the shrunk estimates is provided in Fig.  3, 
which exhibits strong shrinkage. The reason that this 
is so is because there is little evidence of differences 
in the effect of treatment from one patient to another, 
what observed differences there are being largely due to 
within-patient variation, that is to say random variation 
of observed effects  from cycle to cycle. For patients 1 
to 10, the degree of shrinkage is the same, so that their 
points line on a straight line. Patients 11 and 12 are 
labelled because they have different (stronger) shrink-
age, since their results are based on two cycles and one 
cycle respectively rather than on three.

We do not need to go into the theory of this more 
deeply; it is covered, for example, in the paper by 
Araujo et al. [8], already cited, and also in Senn (2019) 
[22]. Fortunately, this sort of question is addressed in 
various meta-analytic packages. For example, the meta-
for package [23] within R has a blup( ) function that 
will do this. It is, of course, necessary to have prepared 
the data in the way described at the beginning of this 
section.

shrunk = w × personal + (1− w)global,
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Linear mixed effect and non‑linear mixed effect models
Most of the analyses shown so far can be regarded as 
special cases of so called linear mixed effects models 
[21, 24, 25]. For example, an alternative if we have a 
model with treatment, patient, and cycle within patient 
as fixed effects, will produce an analysis equivalent to 
the matched pairs approach using the 33 cycles. If, in 
addition, we declare the treatment by patient interac-
tion as random, an analysis that is very similar to the 
random effects meta-analysis will be produced. Such 
models provide a powerful, flexible framework for 
analysis but do require greater statistical skill in their 
handling and are not covered in this simple tutorial. 
For more information about their application to n-of-1 
trials, see the papers by Araujo et al. [8], Zucker et al. 
(2010) [7], and Van Den Noortgate and Onghena [26].

For other outcomes, for example binary outcomes, 
non-linear mixed effect models may be used. Their appli-
cation to crossover trials is covered in Senn (2002) [9], 
Senn (2021) [27], and Jones and Kenward (2015) [28].

Analysis when there is only one patient
The techniques discussed so far are applicable when 
results can be obtained from a number of patients, which 

means that these results can be combined not only for 
the purpose of examining average effects of treatment 
but also for the purpose of producing superior shrunk 
estimates for individual patients. It is sometimes the case, 
however, that the rarity of the disease or other practical 
difficulties mean that very few patients, and in the limit 
only one, can be recruited.

Given the possibility of treating the patient for many 
cycles, a reasonable analysis could still be carried out, 
although if degrees of freedom are few, there might be an 
advantage in abandoning the idea of pairing in cycles and 
using a completely randomised design. Such a design was 
famously considered by RA Fisher [29] in testing Muriel 
Bristol’s ability to taste whether the tea she was given 
has milk in first or tea in first. Eight cups were used, and 
this gives 8!

(4!4!)
= 70 possible sequences. Using four pairs 

of cups would only yield  24 = 16 possible allocations and 
make guessing all cups less impressive. However, this 
approach would lead us beyond the theme of this paper 
and will not be considered here. For possible approaches 
to this sort of trial, see, for example, the book by Dugard 
et al. [4].

However, if a design in paired periods is used and if 
only a few cycles are available, a severe difficulty presents 

Fig. 3 Shrunk estimates for  FEV1 in mL based on a weighted combination of global and personal estimates versus the naïve estimate based 
on personal information only. The diagonal line is the line of equality
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itself. Suppose that, as was the case in our simulated 
example, only three cycles can be used. In that case, not 
only will the mean effect be estimated poorly, the vari-
ance of the effect will be estimated extremely poorly, 
since only two degrees of freedom will be available. This 
is what might be called a matter of second-order effi-
ciency [30]: the effect is on the estimate of variability not 
on the variability of the estimate. This has a catastrophic 
effect on calculating confidence intervals or significance. 
For the simulated example, by estimating the variance 
from all the patients, we had a variance estimate with 21 
degrees of freedom. The 97.5% quantile on the t-distribu-
tion with 21 degrees of freedom is 2.080. On the other 
hand, with only two degrees of freedom, it is 4.303, more 
than twice as large. Hence, other things being equal, con-
fidence intervals for treatment effects would be more 
than doubled were we to use the local (to each patient) 
values for estimating the variance.

One possibility is to try and use an external esti-
mate for the variance of the effect, even if it is accepted 
that the estimate of the effect itself must be limited 
to the patient. This is very much in the spirit of post-
hoc ANOVA tests, where variances are often pooled 
across treatments even if only two of them are being 

compared. This habit originated in agriculture where 
degrees of freedom are scarce and, not always logically, 
is often used in multi-armed parallel group trials, pool-
ing the variance from all treatments, even when only 
two are being compared, despite the fact that degrees of 
freedom are abundant [11, 31].

Even if a treatment is being trialled for the first time, it 
may be the case that the disease has been studied previ-
ously. One solution would be to use a suitable variance 
estimate from such studies to calculate the standard error 
for the n-of-1 trial. Care needs to be taken to match like 
with like. It has to be a within-patient variance, and a trap 
must be avoided. The variance of the difference between 
two observations on a given subject is twice the within-
subject variances as usually defined by statisticians. It 
might be appropriate to cap the number of degrees of 
freedom for such a historical variance at some relatively 
low number, say 10, even where many subjects have been 
studied and pool accordingly with the data from the 
n-of-1 trial.

Such an approach is illustrated in Fig. 4. It is assumed 
that only patient number 5 of those previously consid-
ered is being measured. However, information on vari-
ability of results is available from other historical patients 

Fig. 4 Illustration of technique of pooling a prior variance with the variance from a given patient (in this case patient number 5). The 95% 
confidence limits are shown. Information from the other patients is assumed to be available, and various possible weights in terms of ‘prior 
degrees of freedom’ are considered. The point estimate is unaffected, but depending on prior degrees of freedom assumed, the estimated variance 
and the critical value of the t-distribution will change
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(here, the data from the remaining 11 patients has been 
used). These data are combined with those from patient 
5 to form a weighted variance, where the weights are the 
two degrees of freedom available for patient 5 and the 
assumed ‘prior degrees of freedom’ varying from 0 to 10 
for the remaining patients (note that this is a deliberate 
choice and is not the same as the actual degrees of free-
dom used in estimating this prior variance). The result-
ing ‘posterior degrees of freedom’ will be the sum of the 
two and thus vary from 2 to 12. The critical value of the 
t-distribution is calculated accordingly, as is the standard 
error and hence the confidence limits are obtained.

If the prior degrees of freedom are 0, then the result 
is equivalent to just using the data from patient 5. Prior 
information is not used to calculate the point esti-
mate, which thus remains unchanged. The variance will 
change, and this might increase or decrease depending 
on whether the variance for the patient under considera-
tion is smaller or larger than that from the historic data. 
Here, patient 5 had a larger than average value. Whether 
the variance and hence the standard error increases or 
reduces, the critical value of the t-distribution for calcu-
lating the 95% limits will shrink towards the asymptotic 
value of 1.96 that applies to the normal distribution. For 
two (posterior) degrees of freedom, the value is 4.30, and 
for 12, it is 2.18.

Of course, this is all very speculative, but desperate 
remedies may be needed when data are scarce.

Conclusions
N-of-1 trials encourage us to look at treatment effects at 
the lowest level, that of patients themselves. Of course, this 
is the level at which decisions are made, and so, ideally, it is 
the level at which we should like to estimate effects of treat-
ment. Nevertheless, random variability will still affect our 
estimates, and combining local and global information will 
often lead to worthwhile improvements in precision. The 
scarcity of data may make some compromise as regards 
standards inevitable, but what should not be compromised 
are the standards employed in explaining what has been 
done. Assumptions should be stated, and the aim should be 
to make it as clear as possible what choices have been made 
and how they have been implemented.

It is hoped that this tutorial has succeeded in explain-
ing how this may be done.

Software
Example programs in SAS®, R®, and Genstat® can be 
found on the DIAMOND website [32]. The 24th edition 
of Genstat® has a number of procedures for analysing 
n-of-1 trials [33]. See also Artur Araujo’s report [34] on 
analysing n-of-1 trials for useful code in R.

Appendix
A general model for outcomes from n-of-1 trials arranged 
in cycles can be expressed as follows.

where Yirs is the measured outcome for occasion s, s = 1, 
2 of cycle r, r = 1, 2…ki for patient i, i = 1, 2⋯n. Here, 
λi ∼ N(Λ, φ2)is a random effect for patient i, βir ∼ N(0, γ2) is 
a random effect for cycle rwithin patient i, εirs ∼ N(0, σ2) is 
a random error term for occasion sof cycle r for patient i, 
and τi ∼ N(Τ, ψ2) is a random treatment effect for patient i, 
with Zirs = − 1

2
,
1

2
 , depending on whether the patient was 

assigned A or B on that occasion in that cycle. All sto-
chastic terms are assumed independent of each other.

It is worth drawing attention here to a potential point 
of confusion. If we study the variation of the differ-
ence between treatments A and B for a given patient, 
the variance of these differences will be expected 
to be 2σ2 because each within cycle difference has a 
contribution from two errors, εir1, εir2. Because in a 
matched pairs analysis, 2σ2is estimated directly, but 
in a linear model, one would estimate the variance of 
the εirsterms, which is σ2, there is a danger that readers 
may misunderstand what an author means by referring 
to a within-cycle variance. If variance terms are picked 
up from a paper for planning purposes, there is a dan-
ger of miscalculation of the necessary sample size by 
either a factor of two or of one half. The moral is it is 
best to be explicit, and indeed, in an earlier version of 
this article (as noticed by a referee), both conventions 
were used.

If we reduce everything to within-cycle differences first, 
then the random patient and cycle terms are eliminated, 
and only σ 2, γ 2are relevant to calculating our estimates. 
We can have

as an estimate of T . Since Zir2 − Zir1 = 1,−1 depending 
on whether A is given on the first occasion in a cycle or 
the second, this is simply the sum of all the within-cycle 
differences for treatment B minus treatment A divided by 
the total number of cycles. If we have the same number 
of cycles, k, per patient, this simplifies to

What the appropriate variance of this estimator is 
depends on what we consider it is an estimate of, that 
is to say, what we consider Τ to be. For example, if we 

(1)Yirs = �i + βir + εirs + Zirsτi,

(2)τ̂ =
n
i=1

ki
r=1

Yir2−Yir1
Zir2−Zir1

n
i=1 ki

(3)τ̂ =
∑n

i=1

∑k
r=1

Yir2−Yir1
Zir2−Zir1

nk
.
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take it to be an estimate of the mean treatment effect 
for these patients, then this is fixed for the sample. We 
shall refer to this as the local purpose. We then have 
that the variance is

Note, as discussed above, the appearance of the factor 
2 because variances of within cycle differences have a 
contribution from each of two error terms.

In the balanced case where ki = k, ∀ i, then we have

On the other hand, if we take Τ to be the mean treat-
ment effect in a population of patients from whom the 
patients studied may be taken to be a random sample, 
then we have

with, in the balanced case,

We refer to this as the global purpose. Note that for 
the global purpose, (a) this estimator is only optimal in 
the unbalanced case or if ψ2 = 0, and (b) whether or not 
this is optimal, the variance for the global is only the 
same as for the local purpose if ψ2 = 0.

An alternative approach to estimation starts with the 
individual patient estimates,

For the global purpose, these have variances

where σ 2
d = 2σ 2 , with the subscript d standing for 

difference.
These estimates may then be combined in a weighted 

sum to produce an estimate

where

(4)Var
(

τ̂
)

= 2σ 2

∑n
i=1 ki

.

(5)Var
(

τ̂
)

= 2σ 2

nk
.

(6)Var
(

τ̂
)

= ψ2

n
+ 2σ 2

∑n
i=1 ki

,

(7)Var
(

τ̂
)

= ψ2

n
+ 2σ 2

nk
.

(8)τ̂i =
∑ki

r=1
Yir2−Yir1
Zir2−Zir1

ki
.

(9)Var
(

τ̂i
)

= ψ2 +
σ 2
d

ki
, .

(10)T̂global =
∑n

i=1
wiτ̂i,

that is to say, with weights inversely proportional to the 
variance and summing to one. Note that (9), (10), and 
(11) define an estimate that has the same general form as 
a random effects meta-analysis estimator, the only practi-
cal difference being that σ2should be estimated globally, 
rather than individually patient by patient. The variance 
of (10) is given by

Note also that if ki = k, ∀ i, i = 1⋯n, we have from (10) 
that T̂global =

∑n
i=1 τ̂i
n  and from (12) that 

Var
(

T̂global

)

= Var(τ̂)
n .

In the ‘Estimates of effects for individual patients’ sec-
tion, the formula for shrunk estimates was given as

If we assume that a suitably large number of patients 
have been studied, then the global estimate as a predic-
tion for the long-term average may be assumed to have 
a variance of ψ2, whereas the local estimate for patient i 
may be assumed to have a variance of 2σ

2

ki
 . These two esti-

mates should be weighed proportionately to the inverse 
of their variances, so we have

Since wis the weight for the personal element and ψ2 is 
the variation in the true treatment effect from patient to 
patient, we can see that, other things being equal, as this 
variation becomes more important, more weight is given 
to the global estimate. Similarly, since 1 − w is the weight 
for the global estimate, we can see that as the within 
patient variation σ2 gets larger, then more weight will be 
given to the global estimate, although this can be reduced 
by increasing the number of cycles ki in which the patient 
is observed.

Finally, we have as a formula for the variance of the 
shrunk estimate,

(11)
wi =

1

ψ2+ σ2
d
ki

�n
i=1





1

ψ2+ σ2
d
ki





,

(12)Var
(

T̂global

)

= 1
∑n

i=1
1

Var(τ̂i)

.

(13)shrunk = w × personal + (1− w)global.

(14)w = ψ2

ψ2 + 2σ 2

ki

, 1− w =
2σ 2

ki

ψ2 + 2σ 2

ki

.

(15)Var(shrunk) = 2ψ2σ 2

kiψ2 + 2σ 2
.
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Note that if we have no local information on patient i so 
that ki = 0, we have that (15) is equal to ψ2, which, since we 
must rely on global information only, is to be expected. On 
the other hand, as ψ2 → ∞, we have that (15) → 2σ 2

ki
 which 

is the personal variance, which again is only to be expected, 
since the results from other patients contribute no infor-
mation. In general, however, (15) is lower than either the 
global or the personal variance. Thus, an advantage of the 
shrunk estimate is the reduction in variance that it brings.

A further point to note is that the formula does not 
allow for uncertainty in the global estimate itself. The 
uncertainty in using the global estimate as a prediction 
of the effect for a given patient reflects the variation of 
the individual patient effects from the supposed true 
average global value. In practice, this global value itself 
is subject to uncertainty and, as a referee has pointed 
out, since the values from an individual also contribute 
to the global estimate, there will also be a small correla-
tion between the two, which is also in practice ignored. 
In short, this approach works best when one has data 
from many patients. See also my paper on sample size 
determination [22] for further discussion.
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