
Peng et al. Trials           (2024) 25:34  
https://doi.org/10.1186/s13063-023-07886-w

STUDY PROTOCOL

Determining the effects of targeted 
high-definition transcranial direct current 
stimulation on reducing post-stroke upper limb 
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Abstract 

Background Stroke is one of the leading causes of death in the USA and is a major cause of serious disability 
for adults. This randomized crossover study examines the effect of targeted high‑definition transcranial direct current 
transcranial brain stimulation (tDCS) on upper extremity motor recovery in patients in the post‑acute phase of stroke 
recovery.

Methods This randomized double‑blinded cross‑over study includes four intervention arms: anodal, cathodal, 
and bilateral brain stimulation, as well as a placebo stimulation. Participants receive each intervention in a randomized 
order, with a 2‑week washout period between each intervention. The primary outcome measure is change in Motor 
Evoked Potential. Secondary outcome measures include the Fugl‑Meyer Upper Extremity (FM‑UE) score, a subset 
of FM‑UE (A), related to the muscle synergies, and the Modified Ashworth Scale.

Discussion We hypothesize that anodal stimulation to the ipsilesional primary motor cortex will increase the excit‑
ability of the damaged cortico‑spinal tract, reducing the UE flexion synergy and enhancing UE motor function. We 
further hypothesize that targeted cathodal stimulation to the contralesional premotor cortex will decrease activation 
of the cortico‑reticulospinal tract (CRST) and the expression of the upper extremity (UE) flexion synergy and spastic‑
ity. Finally, we hypothesize bilateral stimulation will achieve both results simultaneously. Results from this study could 
improve understanding of the mechanism behind motor impairment and recovery in stroke and perfect the tar‑
geting of tDCS as a potential stroke intervention. With the use of appropriate screening, we anticipate no ethical 
or safety concerns. We plan to disseminate these research results to journals related to stroke recovery, engineering, 
and medicine.

Trial registration ClinicalTrials.gov NCT05 479006. Registered on 26 July 2022.
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Introduction
Background and rationale {6a}
Approximately 9.4 million Americans over the age of 20 
live with the impairments associated with stroke, and 
795,000 people in the USA experience a new or recurrent 
stroke each year. This number is expected to double by 
the year 2050 [1]. Impairments lead to functional limita-
tions, which make vocational pursuit, independent living, 
and social interaction difficult or impossible. These facts 
and figures make the management of stroke impairments 
critically important [1].

Previous intervention for stroke rehabilitation has 
largely focused on functional impairments [2]; how-
ever, transcranial direct current stimulation (tDCS) is 
an emerging and promising intervention that can trans-
form a patient’s remaining motor control after stroke 
[1]. Anodal stimulation to the lesioned hemisphere can 
have a beneficial effect on motor function recovery [3–7]. 
Cathodal stimulation to the non-lesioned hemisphere 
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can also lead to improvement in upper extremity motor 
function for individuals in the post-acute phase of stroke 
recovery. To date, the mechanism and ideal target for this 
stimulation remains unclear [8].

Because inhibitory tDCS targeting Wernicke’s area in 
the right hemisphere has led to improvement in language 
comprehension in people with global aphasia following 
left-brain lesions [8], it follows that inhibitory tDCS to 
the non-lesioned side could diminish interhemispheric 
inhibition of the lesioned side, aiding in upper extrem-
ity motor recovery [8]. Following a stroke, people often 
exhibit a flexion synergy in the involved upper extrem-
ity. When they attempt to elevate their involved shoulder, 
they experience an involuntary and simultaneous acti-
vation of their elbow, wrist, and finger flexors [9]. These 
involuntary movements are associated with high levels of 
muscle tone known as spasticity. Prior studies suggest the 
expression of spasticity is due to recruitment of the retic-
ulospinal tract on the non-lesioned side of the brain, acti-
vated to compensate for corticospinal tract (CST) deficits 
on the lesioned side (Fig. 1b). This hypothesis is based on 
structural changes and functional connectivity changes 
occurring after stroke [9, 10]. The purpose of this study 
is to investigate the impact of facilitating the ipsilesional 
corticospinal tract via anodal stimulation and inhibiting 
the contralesional cortico-reticulospinal tract (CRST) via 
cathodal stimulation (Fig. 1).

Objectives {7}
This study aims to determine how targeted high-defini-
tion transcranial direct current stimulation (THD-tDCS) 
changes the excitability of the contralesional cortico-
reticulospinal tract (CRST) and ipsilesional cortico-
spinal tract (CST), thus reducing the expression of the 
flexion synergy and spasticity.

Specifically, the study aims are as follows:

Aim one of this study is to evaluate the degree of 
change of excitability of the CST following anodal 
Targeted High-Definition transcranial direct current 
stimulation (THD-tDCS) over the ipsilateral primary 
motor cortex (iM1) (Fig. 1c). Specifically, we aim to 
determine whether this stimulation simultaneously 
reduces contralesional CRST hyperexcitability, while 
enhancing motor function in the involved upper 
extremity in participants in the post-acute phase of 
stroke recovery.
Aim two is to evaluate the degree of reduction in CRST 
hyperexcitability as evidenced by a reduction in spas-
ticity and flexion synergy in the involved upper extrem-
ity, following cathodal THD-tDCs over the contral-
esional dorsal premotor cortex (cPMd) in participants 
in the post-acute phase of stroke recovery (Fig. 1d).

Aim three combines the first two aims—to evalu-
ate the confluent effect of bilateral THD-tDCS, 
when given simultaneously using anodal stimula-
tion over iM1 and cathodal stimulation over cPMd 
(Fig.  1e), on the excitability of CST and CRST, as 
evidenced by a decrease in the expression of flex-
ion synergy and spasticity, as well as an improve-
ment in UE function.

Trial design {8}
This trial, conducted at the Carle Foundation Hospital, 
is an exploratory sham-controlled, double-blind, cross-
over study designed to evaluate the effect of THD-tDCS 
on upper motor function in participants in the post-acute 
phase of stroke recovery. The study has four intervention 
arms: anodal stimulation (Fig.  1c), cathodal stimulation 
(Fig. 1d), bilateral stimulation (both cathodal and anodal) 
(Fig. 1e), and sham/placebo (Fig. 1f ). Participants receive 
each intervention in a randomized order, with a 2-week 
washout period between each intervention.

Methods: participants, interventions, 
and outcomes
Study setting {9}
Participants include stroke patients with upper limb 
motor impairment at the Carle Foundation Hospital. 
Data will be collected at the Carle Foundation Hospital, 
Urbana, IL, USA.

Eligibility criteria {10}
Inclusion criteria are as follows: (i) stroke survivors 
aged between the ages of 18 and 90  years; (ii) exhibit-
ing paresis confined to one side, experiencing substan-
tial motor impairment of the upper extremity; and (iii) 
having sufficient cognition to provide informed consent. 
Exclusion criteria are as follows: (i) muscle abnormali-
ties, motor, or sensory impairment in the nonparetic 
upper extremity; (ii) severe atrophy or significant joint 
contracture; (iii) complete sensory losses in the paretic 
upper extremity or severe cognitive; (iv) affective dys-
function, severe concurrent medical problems, pace-
maker, metal implant in the head, or pregnancy; (v) or 
a known adverse reaction to transcutaneous magnetic 
stimulation (TMS) or tDCS. All assessment and inter-
vention procedures are conducted by a team of research 
assistants under the supervision of the principal or 
co-investigators.

Who will take informed consent? {26a}
Research personnel obtain informed consent from each 
participant, explaining the purpose and estimated length 
of the study, describing the purposes and procedure 
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behind each intervention and each assessment, and dis-
cussing each potential risk and benefit. Research person-
nel then explain how private health information (PHI) is 
used and the participant’s right to cancel the permission 
to use or share this information at any time, after which 
the participant signs a Health Insurance Portability and 
Accountability act (HIPA) form.

Additional consent provisions for collection and use 
of participant data and biological specimens {26b}
N/A. No biological specimens will be collected.

Interventions
Explanation for the choice of comparators {6b}
Participants will be compared to themselves at different 
visits in order to control for individual factors impact-
ing treatment efficacy. The sham comparator is a mock 
tDCS session in order to ensure that patients remain 
blinded to their study arm. In addition, there will be a 
2-week wash-out period between visits.

Intervention description {11a}
Electrodes are placed into a standard 10–20 EEG cap 
with a chin strap. Intervention dosage is 2 mA, applied 
for a duration of 20  min, which constitutes the opti-
mal safe dosage required to influence neuroplasticity 
according to the safety guidelines of HD-tDCS [11, 
12]. Research personnel estimate electrical fields in the 
brain using the Realistic Volumetric Approach to Simu-
late Transcranial Electric Stimulation (ROAST) toolbox 
[13].

Criteria for discontinuing or modifying allocated 
interventions {11b}
Participants have the option to think about the trial 
before they consent, and to withdraw at any time with-
out any consequences to withdrawal. This study was 
approved by the Institutional Review Board (IRB) at 
Carle Foundation Hospital (IRB # 23CNI3891). Writ-
ten, informed consent and HIPPA authorization are 
obtained from each participant.

Fig. 1 Neural mechanism and the experimental design in this study. a The two main motor areas involved in stroke recovery: the primary motor 
cortex and the dorsal premotor area. b Motor descending pathways in stroke recovery. c The first intervention involves stimulating the iM1 area 
using anodal stimulation. d The second intervention involves stimulating the cPMd using cathodal stimulation. e The third intervention combines 
anodal stimulation of the iM1 area and cathodal stimulation of the cPMd. f The sham condition without any stimulation intervention
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Strategies to improve adherence to interventions {11c}
All intervention protocols are performed in one dedi-
cated human subject laboratory housed within the 
Carle Research Institute. A member of the research 
team contacts participants to schedule appoint-
ments, and telephones participants the day before each 
appointment. If participants are late to their appoint-
ment, they are contacted to determine any need to 
reschedule. So far, the study has experienced no loss 
to follow-up, as participants are enthusiastic about the 
study and eager to return. As part of our effort to pro-
mote continued interest in the study, we strive to create 
a welcoming environment for participants and ensure 
that they understand they are an integral part of the 
findings.

Relevant concomitant care permitted or prohibited 
during the trial {11d}
Participants continue their existing health care regi-
mens. Since the pre-intervention and post-intervention 
assessments are measured on the same day, the partici-
pant’s current treatment regimen does not impact on 
study results, although may impact carry-over between 
sessions.

Provisions for post‑trial care {30}
The lead investigators’ phone numbers are provided to 
participants, and they are advised to contact the team 
if they experience any side effects. This has not yet 
occurred. The physician co-investigators are willing to 
provide care for any participant experiencing adverse 
effects, although any cost of care may be billed to the par-
ticipant or the participant’s insurance.

Outcomes {12}
Primary outcome measure
In this study, the primary outcome measure is transcra-
nial magnetic stimulation (TMS) induced motor evoked 
potentials (MEP) latency and status [14, 15]. These 
allow the research team to determine the location of the 
ipsilesional corticospinal tract and the contralesional 
cortico-reticulospinal tract [14, 16]. Electromyography 
(EMG) electrodes are applied to the biceps brachii, tri-
ceps brachii, brachialis, and deltoid muscles to record 
muscle response to TMS. Researchers apply the paired-
pulse TMS (Magstim® BiStim2, The Magstim Company 
Ltd., Spring Gardens, Whitland, UK) to the approximate 
location of the corticospinal tract origin in ipsilesional 
motor cortex associated with the biceps brachii and the 
brachialis muscles in the paretic arm. Researchers also 
apply the TMS to the approximate location of the origin 
of the cortico-reticulospinal tract utilizing a figure-eight 
coil [14]. Researchers utilize a paired-pulse TMS with a 

conditioning pulse at 65% stimulator maximum inten-
sity and follow with a testing pulse at 85% stimulator 
maximum intensity. This procedure avoids any need to 
pre-activate the muscle which could cause bias of back-
ground EMG [16]. Researchers use paired pulse inter-
vals of 25  ms [14]. Researchers place the center of the 
coil tangentially to the skull with the handle at 45° from 
the parasagittal plane: posterior-anterior orientation for 
ipsilesional M1 and anterior–posterior orientation for 
contralesional PMd (Fig. 1a) [17, 18]. Researchers define 
the M1 stimulation location as being on the grid point 
that results in the largest response in the target muscle. 
This target is found for the ipsilesional M1 and contrale-
sional M1 hemisphere through stimulation of a 5 × 5 grid 
of 1 cm spaced sites on the scalp over motor areas of each 
hemisphere (centered at C3/4 of 10–20 EEG system) [15]. 
The target of the contralesional PMd is identified using 
a reference point of 1 cm medial and 2.5 cm anterior of 
the M1 target at the contralesional hemisphere [17, 19]. 
Previous research suggests [20] the participant is consid-
ered MEP + if MEPs of any amplitude are observed at a 
consistent latency on at least 5 out 10 trials. If not, the 
participant is considered MEP − . At least eight additional 
pulses with an inter-stimulus interval of 2–3 s are applied 
to the target to obtain an accurate estimate MEP latency. 
Researchers then calculate the average latency and ampli-
tude of MEP within all positive trials.

Secondary outcome measure
The Fugl-Meyer upper extremity assessment (FMA-UE) 
is a stroke-specific performance-based impairment index 
with a potential score ranging from 0 to 66, with 66 repre-
senting a normal function. The assessment evaluates upper 
extremity motor function, sensation, passive joint motion, 
and joint pain and has been shown to have excellent valid-
ity and reliability [21, 22]. The FM-UE is often applied 
in research as an indicator of stroke severity and motor 
recovery and is considered the “gold standard” against 
which other measures are compared. The FMA-UE is per-
formed before and after each tDCS session. A subset of the 
FMA-UE, portion A, is more reflective of the presence of 
abnormal muscle synergistic activity and is separately cal-
culated as an outcome measure. Previous studies have vali-
dated that the minimally clinically significant difference in 
the FMA-UE assessment is 5 points [21, 22].

Other outcome measures
The Modified Ashworth Scale (MAS) grades muscle 
tone or spasticity on a scale of 0 to 4, with 0 represent-
ing no increase in muscle tone and 4 indicating that the 
muscle causes joint rigidity either in flexion or in exten-
sion. The MAS is the primary clinical measure of spas-
ticity following stroke; however, a variety of authors have 
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reported inconsistent inter-rater reliability and validity 
of the tool with ranges between poor and excellent. The 
MAS is assessed for the biceps brachii, triceps brachii, 
anterior deltoid, and flexor digitorum muscles of the fin-
gers before and after each tDCS session [23]. This assess-
ment has been utilized in numerous research studies as a 
measure of spasticity in patients with upper motor neu-
ron lesions [23].

Participant timeline {13}
Table  1 displays the timing of the tDCS intervention 
arms, as well as the timing of each outcome measure. 
The post-allocation period is repeated at each visit with 
a different tDCS intervention (anodal, cathodal, sham, or 
bilateral), for a total of four visits.

Sample size {14}
Study personnel aim to enroll up to 30 participants (15 
female) in the event of a potential attrition rate of 15%. 
Based on our preliminary data [24], we estimated that 
the targeted effect size for our study is 0.42 (SD: 0.13). 
The power analysis was performed by using GLMMPSE 
Sample Size Software (https:// sampl esize shop. org/) [25]. 
Based on our preliminary data from a pilot trial (Clini-
calTrials.gov Identifier: NCT05174949) [24] and the 
proposed basic statistical analysis on the primary and 
secondary outcomes (see the “Statistical methods” sec-
tion), we determined the sample size of 26 will give 80% 
power at the 5% significance level for the targeted effect 
size. We will include a total of 30 stroke participants (15 
female) for this clinical trial study to account for an attri-
tion rate of 15% based on our previous experience in sim-
ilar multiple-visit brain stimulation research.

Recruitment {15}
The primary source of recruitment for this study is the 
Carle Foundation Hospital. The Carle clinical research 
team recruit participants who meet inclusion and exclu-
sion criteria based on their medical history. Study per-
sonnel then establish an initial visit for these referrals. 
Other means of referral include word of mouth or Carle 
Health referrals.

Assignment of interventions: allocation
Sequence generation {16a}
The randomization order is also generated by a random 
sequence generator provided by REDCap (Research Elec-
tronic Data Capture) [26, 27].

Concealment mechanism {16b}
The blinded team members will leave the room when 
the intervention is performed. The participants are also 
blinded to the intervention. The interventions for sham, 
anodal, cathodal, and bilateral stimulation require the 
same process and length of time and are indistinguish-
able from the participant’s perspective.

Implementation {16c}
The randomization order is also generated by a random 
sequence generator provided by REDCap (Research 
Electronic Data Capture) [26, 27]. If participants express 
interest in participating in the study, a sub-investigator 
will contact them by phone and schedule an appoint-
ment. On this visit, research staff will explain the study to 
them and go through the consent process. After consent 
is obtained from the participant, the assessments and 
interventions are performed by trained research staff. 

Table 1 Schedule of enrollment, interventions, and assessments

Study period

Enrolment Allocation Post-allocation Close-out

Timepoint  − t1 0 t1 t2 t3 t4 t5 tx

Enrollment:
Vitals X

Informed consent X

Allocation X

INTERVENTIONS:
TMS (anodal, cathodal, sham, or bilateral) X

Washout X

Assessments:
TMS X X

FM‑UE X X X

MAS X X

Monitor 10–15 min for adverse effects X

https://samplesizeshop.org/
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The allocation sequence is generated by a member of the 
team who is not involved in subjective outcome measures 
including the Fugl-Meyer and MAS.

Assignment of interventions: blinding
Who will be blinded {17a}
Trial participants and the team members performing 
assessments are double-blinded.

Procedure for unblinding if needed {17b}
The team members performing data analysis are not 
blinded. There will be no need for unblinding partici-
pants and the team members performing assessments, 
who will not be involved in the data analysis and will not 
be informed of the order of treatment.

Data collection and management
Plans for assessment and collection of outcomes {18a}
A trained clinical investigator who is not involved in the 
intervention or randomization procedure will perform 
the assessments. Assessments will be performed at base-
line and before and after the intervention at each visit.

Plans to promote participant retention and complete 
follow-up {18b}
All intervention protocols are performed in the lab. A 
member of the research team will contact participants to 
schedule appointments. Participants receive a phone call 
the day before their appointment to confirm the meet-
ing. If participants are late to their appointment, they 
are contacted to see if they are still coming or wish to 
reschedule. So far, the study has had a high retention rate. 
Participants are typically enthusiastic about the study and 
eager to return. As part of our effort to promote contin-
ued interest in the study, we strive to create a welcoming 
environment for participants and ensure that they under-
stand and are included in the process.

Data management {19}
All participant information, outcome measure record-
ings, consent forms, and HIPAA forms are stored in 
the secure data management program, Research Elec-
tronic Data Capture (REDCap) [26, 27]. REDCap is a 
secure, web-based software platform designed to sup-
port data capture for research studies, providing (1) an 
intuitive interface for validated data capture, (2) audit 
trails for tracking data manipulation and export pro-
cedures, (3) automated export procedures for seamless 
data downloads to common statistical packages, and (4) 
procedures for data integration and interoperability with 
external sources.

Confidentiality {27}
Any paper versions of outcome measures, consent forms, 
or HIPAA forms are stored in a locked office. The raw/
unprocessed data are coded with a unique participant 
identifier and will be stored in REDCap. Carle Research 
Institute uses REDCap (Research Electronic Data Capture) 
software https:// redcap. carle. org/ REDCap/ for building 
and managing online surveys and databases. Study data 
may be stored and accessed via REDCap. REDCap access 
and maintenance is provided by the Carle Research Insti-
tute. REDCap is password-protected. Raw data on the 
computer cluster is accessible only to study investigators.

Plans for collection, laboratory evaluation, and storage 
of biological specimens for genetic or molecular analysis 
in this trial/future use {33}
N/A. No biological specimens are collected in this study.

Statistical methods
Statistical methods for primary and secondary outcomes 
{20a}
All outcome measures are continuous and correlated in 
a pretest/posttest format, requiring analysis with longi-
tudinal linear modeling for correlated data analysis. We 
utilize generalized estimating equations (GEE) in SAS 
9.4. GEE analysis is beneficial as it offers an unbiased 
estimation of population-averaged regression coeffi-
cients despite possible misspecification of the correlation 
structure even when the data is not normally distrib-
uted. Intervention type (anodal, cathodal, bilateral, and 
sham) and the time point (before or after stimulation) 
are defined as fixed factors. The study participants are 
defined as random factors. Carry-over effects will be 
examined using an extension of Grizzle’s classic crosso-
ver design [28]. All analyses are conducted using SAS 9.4 
(Carey, NC) with an alpha = 0.05.

Interim analyses {21b}
Interim analyses are performed bi-weekly by study inves-
tigators to monitor data quality, completeness, and con-
firmation of backup. The results of interim analyses are 
made directly available to the Program Officer at the 
funding agency on request. No stopping guidelines have 
been designated due to the low-risk nature of the trial. 
Any need for trial termination will be determined by the 
principal investigator.

Methods for additional analyses (e.g., subgroup analyses) 
{20b}
The false discovery rate (FDR) correction will be used to 
decrease the probability of a type I error. All statistical 
analyses will be performed using SAS/STAT® software.

https://redcap.carle.org/REDCap/
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Methods in analysis to handle protocol non-adherence 
and any statistical methods to handle missing data {20c}
If a participant indicates that they no longer wish to par-
ticipate, they will be removed from the study and will not 
be included in data analysis.

Plans to give access to the full protocol, participant-level 
data, and statistical code {31c}
Any source code developed during this study will be 
made publicly available through the American Heart 
Association Precision Medicine Platform. The study 
protocol and final results can be accessed through Clini-
calTrials.gov. There are no plans in place to grant public 
access to participant-level data.

Oversight and monitoring
Composition of the coordinating center and trial steering 
committee {5d}
The principal investigator will be responsible for moni-
toring the trial and ensuring participants’ safety through-
out the trial. Research staff are responsible for data 
management. The neurologist who refers participants to 
the study will be responsible for chart review and diag-
nosis of medical conditions. There is no patient and pub-
lic involvement. There is no Trial Steering Committee.

Composition of the data monitoring committee, its role, 
and reporting structure {21a}
Data monitoring will be performed by the study inves-
tigators and the principal investigators due to the low 
risk of this study (Risk Determination: Minimal Risk 
(Approved Categories 1b, 4, 5), Carle Foundation Hos-
pital Intuitional Review Board, August 16, 2023, IRB 
# 23CNI3819). Raw data will be reviewed biweekly by 
research personnel to ensure that it is being collected and 
stored according to the study protocol. Any data quality 
issues will be reported to the lead investigator.

Adverse event reporting and harms {22}
Potential adverse effects of tDCS are listed in the consent 
form and include tingling or warm sensation at the begin-
ning of stimulation, mild, brief headache, redness of the 
skin under the EMG or intervention electrodes, fatigue, 
dizziness, or nausea after participating in the experiment. 
All of these effects are expected to fade soon after the 
experiment is completed. If participants experience any 
adverse effects, they report them to the principal investiga-
tor, who determines how to proceed. All adverse events are 
reported to the institutional review board (IRB) as well as 
the funding agency. The PI holds bi-weekly meetings with 
team members to review all reportable new information.

Frequency and plans for auditing trial conduct {23}
Project management group will meet monthly to review 
trial conduct. The annual report will be made to IRB and 
the sponsor for reviewing the progress of the trial every 
year within the trial period.

Plans for communicating important protocol amendments 
to relevant parties (e.g., trial participants, ethical 
committees) {25}
If an amendment is made to the trial protocol it will 
be reported to the Carle Foundation Hospital IRB and 
participants will be informed and re-consented before 
continuing.

Dissemination plans {31a}
The results of this proof-of-concept trial will be reported 
in a peer-reviewed journal and presented at national con-
ferences and seminars. In addition, results will be dis-
seminated through ClinicalTrials.gov, in accordance with 
institutional policies that ensure compliance with AHA 
policies on clinical trial registration and reporting. Data 
will be available upon request after the results of the trial 
are accepted for publication.

Discussion
This study will add to a growing body of research 
regarding the use of targeted high-definition tDCS to 
aid in the recovery of motor function for stroke partici-
pants. Specifically, this study will compare the role of 
the contralesional premotor cortex and corticoreticu-
lospinal tract to that of the ipsilesional primary motor 
cortex and corticospinal tract in post-stroke motor 
recovery. The effectiveness of anodal stimulation over 
the ipsilesional primary motor cortex is well-docu-
mented, but the benefit of adding cathodal stimula-
tion to the contralesional side is more controversial [8]. 
This study will add to our knowledge of how targeted 
high-definition tDCS, especially the cathodal stimula-
tion targeting contralesional dorsal premotor cortex 
and bilateral stimulation, might be useful as part of a 
treatment for stroke survivors and may support the 
explanation that the mechanism by which the excitabil-
ity change of contralesional dorsal premotor cortex is 
related to the expression of CRST hyperexcitability and 
motor impairments post-stroke.

Trial status
Protocol version: 23 July 2022, Version n. 1

Date of recruitment: 1 Oct 2022.
End of recruitment: estimated to be June 2025.
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