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Abstract 

Background  The past few decades have seen remarkable developments in dose-finding designs for phase I cancer 
clinical trials. While many of these designs rely on a binary toxicity response, there is an increasing focus on leverag-
ing continuous toxicity responses. A continuous toxicity response pertains to a quantitative measure represented 
by real numbers. A higher value corresponds not only to an elevated likelihood of side effects for patients but also to 
an increased probability of treatment efficacy. This relationship between toxicity and dose is often nonlinear, neces-
sitating flexibility in the quest to find an optimal dose.

Methods  A flexible, fully Bayesian dose-finding design is proposed to capitalize on continuous toxicity information, 
operating under the assumption that the true shape of the dose-toxicity curve is nonlinear.

Results  We conduct simulations of clinical trials across varying scenarios of non-linearity to evaluate the operational 
characteristics of the proposed design. Additionally, we apply the proposed design to a real-world problem to deter-
mine an optimal dose for a molecularly targeted agent.

Conclusions  Phase I cancer clinical trials, designed within a fully Bayesian framework with the utilization of continu-
ous toxicity outcomes, offer an alternative approach to finding an optimal dose, providing unique benefits compared 
to trials designed based on binary toxicity outcomes.

Keywords  Dose-response model, Continuous toxicity outcomes, Bayesian adaptive designs, Phase I cancer clinical 
trials

Background
Phase I cancer clinical trials are a critical first step in the 
study of novel cancer therapeutic approaches. One of the 
primary goals of the phase I studies is to determine the 
dose of a new drug or therapeutic agent for use in subse-
quent phase II trials [1–4]. In these trials, one of the fun-
damental assumptions is that toxicity is a precondition 

for anti-tumor activity to eliminate fast-growing cancer 
cells [5]. This means that patients must endure some 
degree of treatment-related toxicity to have a reason-
able chance of a favorable response. More precisely, the 
purpose of the cancer phase I clinical trial is to estimate 
the maximum tolerated dose (MTD) of a new drug asso-
ciated with an acceptable level of dose-limiting toxicity 
(DLT) [6].

The use of model-based adaptive clinical trial designs in 
phase I clinical trials has received much attention because 
it allows adaptations of trials and statistical designs of 
ongoing clinical trials [7–9]. Most designs developed 
in the literature consider binary toxicity outcomes, but 
recently, there has been increasing recognition of the 
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need to identify the MTD by incorporating continuous 
toxicity information. One motivation for this is that some 
binary toxicity outcomes are obtained by dichotomizing 
continuous data, inevitably incurring losses of informa-
tion and statistical power in clinical trial designs [10–12]. 
This convention imposes an additional burden of find-
ing an optimal cutpoint for the continuous data and may 
require more subjects than if the endpoint variable were 
utilized in its original continuous form [13].

The other motivation is that various continuous meas-
ures of toxicity arise during phase I studies, which can 
be beneficial for examining dose-response relationships 
more precisely. For example, if one aims to consider all 
grades of toxicities from multiple adverse events when 
allocating doses, it may be necessary to derive a continu-
ous toxicity score, such as the normalized equivalent 
toxicity score [14, 15], or use a weighted average form as 
discussed by [16], and utilize such scores as the continu-
ous toxicity response.

Additionally, in pursuit of efficiency and speed in drug 
development, trialists are increasingly relying on the use 
of real-world data to assess the potential risks and bene-
fits of new drugs, and much of this data may be originally 
measured on a continuous scale [17]. One example is the 
drug concentration in plasma from patients [18, 19]. It is 
widely known that overly high anti-cancer drug concen-
trations may be a risk factor for many side effects, such 
as cytokine release syndrome [20–22], and therefore, the 
drug exposure may represent a toxic reaction, depending 
on what is known about the mechanism of action of the 
drug. Another example is a logarithmic transformation of 
the number of white blood cells, which serves as a con-
tinuous toxicity response [23]. Furthermore, any quantity 
measured in real numbers, as a measurable indicator of 
the severity of some toxicity status related to new drug 
exposure, may be used as a surrogate endpoint, provided 
that a higher value of the quantity leads to a higher prob-
ability of side effects for patients as a price for a higher 
chance of treatment effect [24, 25].

Over the past few decades, there has been a remarkable 
development in adaptive dose-finding designs for phase I 
studies using binary toxicity outcomes, such as the con-
tinual reassessment method [26], the escalation with 
overdose control (EWOC) [3], and the Bayesian logistic 
regression model [27], along with their several extensions 
[28–32]. Refer to [4] for a survey of these methods. A 
theoretical framework using the binary toxicity response 
can be found in [33].

However, the utilization of continuous toxicity out-
comes for optimal dose finding has garnered relatively 
little attention compared to its counterpart based on 
binary toxicity outcomes. Since the earliest research 
work by Eichhorn in the 1970s [34], only a handful of 

research studies have been published [35], and there is 
no established theoretical framework available to develop 
a model-based design in the literature. Recently,  Chen 
et al. [15] proposed a variant version of EWOC, named 
EWOC-NETS, based on a pseudo-Bernoulli likelihood 
[36], where the binary toxicity response is replaced with 
a continuous fractional response derived from a toxic-
ity score system. One drawback of EWOC-NETS is that 
the dose-finding does not follow the fully Bayesian para-
digm, thus failing to describe the uncertainty of the MTD 
in a fully Bayesian manner. More recently, Lee et al. [16] 
introduced a fully Bayesian design based on constrained 
linear regression, called the two-parameter linear dose-
finder. In this design, the authors aimed to leverage all 
grade information of toxicities according to the Com-
mon Toxicity Criteria for Adverse Events (CTCAE) [37] 
within a fully Bayesian framework. Although the design 
provides a fully Bayesian dose-finding algorithm, it falls 
short in describing the non-linear shape of the dose-tox-
icity curve, and its application is confined to analyzing 
grade information based on CTCAE.

In this paper, our objective is to bridge the existing gap 
by introducing a novel, fully Bayesian dose-finding algo-
rithm that provides flexibility in describing the dose-tox-
icity curve and wider applicability, based on continuous 
outcomes. The incorporation of a continuous response 
within our framework accommodates various scenarios, 
such as using a continuous toxicity score [16], measuring 
drug concentration in plasma from patients [18], a bio-
marker response from a molecularly targeted agent [38], 
and so on.

Methods
This section presents a general modeling framework 
and performance evaluation metrics for dose-finding 
designs that utilize continuous toxicity responses, which 
are widely applicable in the context of phase I cancer tri-
als. Following this, we introduce a new fully Bayesian 
design aiming to estimate the MTD or an optimal dose 
under a specific setting where the dose-response curve is 
non-linear.

Continuous toxicity response
We start by characterizing some basic concepts that 
define a continuous toxicity response in the dose-
response modeling framework. To that end, we first need 
to “clinically” understand two fundamental concepts: 
MTD and DLT, which are central to dose-finding prob-
lems in phase I trials. The mathematical definitions of 
MTD and DLT will be discussed in the next subsection.

The aims of typical phase I oncology trials are to deter-
mine MTD, assess the safety and tolerability, and inves-
tigate the pharmacokinetics and pharmacodynamics of 
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a new drug. The United States National Cancer Institute 
defines MTD as the highest dose of a drug that does not 
cause unacceptable side effects (Visit the website www.​
cancer.​gov/- for the definition). The determination of the 
MTD is based on the occurrence of DLT. DLT refers to 
drug-induced toxicity associated with side effects of a 
drug that are serious enough to prevent an increase in 
dose. A clinical trial protocol must specify the criteria 
for DLT, often defined as any severe or life-threatening 
adverse event [4].

Throughout the paper, x represents a dose of a new 
anti-cancer drug. We denote Y(x) to represent the con-
tinuous toxicity response of a patient against dose x. 
Technically, the dose x is an input with a positive real 
number (that is, x ∈ (0,∞) ), and the response Y(x) is an 
output assuming a real number. Allowing the response 
Y(x) to attain a negative real number is important for 
the generality of the dose-finding problems because, in 
many pharmaceutical applications, Y(x) may represent 
a change from baseline or a log-transformation of some 
continuous measurement. Eventually, for each patient, 
the outcome of the trial is represented by the ordered 
pair (x,Y (x)) ∈ (0,∞)× R.

We denote an open interval (xmin, xmax) ⊂ (0,∞) to 
represent an admissible dose range that clinicians want to 
explore during the trial. The dose range is determined by 
clinicians and remains fixed during the trials. Although 
clinicians expect that MTD would belong to the inter-
val (xmin, xmax) (i.e., MTD ∈ (xmin, xmax) ), MTD is an 
unknown quantity, and we do not know whether it will 
indeed fall within this interval (i.e., it could happen that 
MTD /∈ (xmin, xmax) ). Statistically, MTD is the param-
eter of main interest in phase I studies. Given no toxic-
ity information from any patient, all we can do is widen 
the range of the interval (xmin, xmax) to increase the prob-
ability of MTD falling within the dose range. This comes 
at the price of decreasing the power of a model, as com-
monly encountered in many statistical problems.

Phase I trial designs for cytotoxic agents are based on 
the assumptions that (a) the clinical benefit of the agent 
increases with increasing dose, (b) the toxicity of the 
agent increases with increasing dose, and (c) there is a 
dose with acceptable toxicity that offers clinical ben-
efit [39]. With these assumptions in mind, we posit five 
assumptions that define the continuous toxicity response 
Y(x). Later on, we will see that these assumptions are 
essential in bringing the clinical concepts of MTD and 
DLT to a statistical model-based design:

A1. A side effect caused by the toxicity response Y(x) 
is negligible for doses x ∈ (0, xmin).
A2. A side effect caused by the toxicity response Y(x) 
is mild at the dose xmin.

A3. A side effect caused by the toxicity response 
Y(x) becomes more and more serious as the dose 
increases over the interval (xmin, xmax).
A4. A side effect caused by the toxicity response Y(x) 
at the dose xmax is life-threatening or close to death.
A5. A side effect caused by the toxicity response Y(x) 
is too fatal for doses x ∈ (xmax, 0).

The assumptions above are common features 
describing a toxicity response used in many phase I 
clinical trials [5, 27, 40]. Many binary toxicity outcomes 
may be obtained by dichotomizing a continuous tox-
icity outcome ( DLT if  Y (x) > η; ,   non-DLT otherwise , 
provided a constant η ) [35]. Regarding the statements 
in the assumptions, the terms “mild,” “life-threatening,” 
and “death,” indicating the severity of toxicity, can refer 
to the United States National Cancer Institute’s Com-
mon Toxicity Criteria (CTCAE) [37]. However, these 
terms can be generalized depending on the context 
of the therapeutic area or the safety guidelines from 
regulatory agencies for drug approval, as long as the 
monotonic relationship between the response Y(x) and 
dose x holds.

The following are some important implications based 
on the assumptions. The first assumption (A1) means 
that patients are expected to have no treatment effect 
when they are assigned a dose x ∈ (0, xmin) . Thus, doses 
x ∈ (0, xmin) are not going to be explored in phase I 
clinical trials. The second assumption (A2) implies that 
the dose xmin is safe enough for many patients; hence, 
dose x1 = xmin + ε ∈ (xmin, xmax) with some small value 
ε > 0 can be used as an initial dose for the first patient. 
The value of ε may depend on the unit of the dose. The 
third assumption (A3), called a monotonic dose-toxicity 
assumption, is the basic principle underlying cytotoxic 
anticancer agents or a combination of a biologic with 
a cytotoxic drug being developed for cancer chemo-
therapy. The maximum dose xmax in the fourth assump-
tion (A4) is the supreme dose of the range, and dose 
xmax − ε ∈ (xmin, xmax) with some small value ε > 0 can 
be explored as the highest dose in phase I studies. Simi-
lar to the first assumption, the fifth assumption (A5) 
means that the interval (xmax,∞) is out of the range of 
the studies.

The maximum tolerated dose
In this subsection, we aim to mathematically define 
MTD and DLT based on a continuous toxicity response 
Y(x) assuming (A1)–(A5). This inevitably requires 
some probabilistic statements. The definition of MTD 
based on continuous toxicity response was first con-
ceptualized by authors [34], and recently, Lee et al. [16] 

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/maximum-tolerated-dose
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/maximum-tolerated-dose
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modernized the definition for a more practical phase I 
clinical trial, accommodating multiple adverse events 
in determining MTD.

For cytotoxic anticancer agents, one fundamental 
assumption is usually made: the probability of a tox-
icity response increases with dose. (This is associated 
with the third assumption (A3) of Y(x).) A mathemati-
cal description of this assumption is as follows. We 
assume that clinicians have some prior knowledge 
about a threshold value η > 0 , such that any value Y(x) 
greater than η may cause the occurrence of DLT in 
patients assigned with dose x. Intuitively, what clini-
cians want to control is the “probability” of the occur-
rence of DLT at dose x, denoted as Pr[Y (X) ≥ η|X = x] . 
Clinically, this probability represents the proportion 
of patients who experience DLT at dose x. With these 
formulations, the fundamental assumption implies 
that the probability Pr[Y (X) ≥ η|X = x] monotoni-
cally increases with dose x. For the safety of patients, 
in most cases, this probability is controlled by upper-
bounding it, so that the number of patients with DLT 
can be probabilistically restricted. The following 
defines the MTD:

Definition 1  Given prespecified values η > 0 , γ ∈ (0.5, 1) , 
and an open interval (xmin, xmax) ⊂ (0,∞) , the MTD is 
defined to be the largest value of x which satisfies the follow-
ing inequalities

Throughout the paper, we shall denote the MTD as ξ . 
Then, the MTD ξ based on Definition 1 can be re-writ-
ten as follows:

Here, the variables η > 0 , γ ∈ (0.5, 1) , and (xmin, xmax) 
are pre-specified by clinicians at the planning stage of 
the design.

The medical interpretations of the variables are as 
follows:

•	 Maximum toxicity level η > 0 : the toxicity level 
that defines the DLT (i.e., Y (X) ≥ η ) and non-DLT 
(i.e., Y (X) < η ). The determination of the threshold 
value η depends on the specific applications.

•	 Homogeneity constant γ ∈ (0.5, 1) : the degree 
of clinicians’ prior belief in the homogeneity of 
patients’ toxic reaction against doses to be assigned 
during phase I clinical trials. A higher value of γ 
implies a stronger homogeneity of the toxic reac-
tions of patients.

(1)
Pr[Y (X) < η|X = x] ≥ γ and xmin < x < xmax.

(2)
ξ = argsup

x∈(xmin,xmax)
{x ∈ R | Pr[Y (X) ≥ η|X = x] ≤ 1− γ }.

•	 Dose range (xmin, xmax) ⊂ (0,∞) : The minimum 
dose xmin and the maximum dose xmax . These are 
typically inferred from pre-clinical studies.

We detail some modeling considerations concerning 
the variables. The clinical meaning of the maximum tox-
icity level η depends on the context of the applications 
using the continuous toxicity response Y(x). For exam-
ple, if Y(x) is based on a continuous toxicity score as dis-
cussed by [16], then η represents the maximum toxicity 
score. If Y(x) represents the pharmacokinetic exposure of 
a new drug, then η is associated with the maximum toler-
ated concentration [18, 41].

On the other hand, the homogeneity constant γ 
may have a closer relationship with the characteris-
tics of patients undergoing treatment with a specific 
agent. Specifically, it indicates whether these patients 
exhibit homogeneity or heterogeneity in their response 
to a dose x of the new agent [16]. Mathematically, as 
inferred from the inequality (2), the value θ = 1− γ 
serves as the least upper bound for the probability 
of DLT occurrences among patients across the dose 
range (xmin, xmax) . This constant, denoted as θ = 1− γ 
in [42], is known as the target toxicity level [43]. Clini-
cally, target toxicity level θ is the target probability of 
DLT at MTD, representing the acceptable likelihood of 
a patient experiencing a DLT at MTD [42]. Normally, θ 
is set relatively high when the DLT is reversible or non-
fatal condition, and low if it is life-threatening [40]. As a 
default value, we recommend θ = 0.01 (or equivalently, 
γ = 0.99 ) when dealing with a completely novel agent 
[16, 34]. With this choice, the safety of patients is prior-
itized, allowing at most one out of a hundred patients to 
exhibit DLT. If the agent under consideration has been 
used before but with variations in schedule, route of 
administration, or concomitant drugs, the default value 
for γ is often not explicitly defined. Its determination 
becomes highly dependent on the specific therapeutic 
area. Some authors suggest that γ typically falls within 
the range of 0.6 to 0.9 (or equivalently, θ ranging from 
0.1 to 0.4). For more details, refer to the Chapter on 
Phase I Trials in [44], or page 40 in [45].

The dose range (xmin, xmax) depends on the unit of the 
drug (e.g., gram, milligram, or microgram) and is mostly 
inferred from animal studies, meta-analysis, or previous 
clinical studies with similar drug molecules, etc.

Figure 1 provides a visual depiction of the MTD ξ (2) 
from two distinct perspectives of toxicity outcomes: 
continuous (left panel) and binary (right panel). In 
both panels, the x-axis represents the dose x, while the 
y-axis corresponds to the continuous and binary toxic-
ity responses in the left and right panels, respectively. 
The binary responses are obtained by dichotomizing 
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the continuous responses using the threshold value of 
the maximum toxicity level η . On the left panel, the 
curve illustrates the dose-toxicity relationship, repre-
sented by a monotonic function. The right panel pre-
sents the probability of DLT at a given dose x, denoted 
as Pr[Y (X) ≥ η|X = x] in Eq. (1). In reality, the precise 
shapes of these curves remain unknown. However, a 
crucial consideration in phase I cancer studies is that, 
due to the assumption of a monotonic relationship for 
anti-cancer drugs, the true curves are expected to mono-
tonically increase over the dose range (xmin, xmax) . The 
green-shaded intervals represents safe doses that fulfill 
the condition on the right-hand side of Eq. (2). In con-
trast, the red intervals consists of highly toxic doses that 
could potentially induce DLT in patients. Ultimately, the 
primary objective of phase I clinical trials is to estimate 
the MTD ξ , which corresponds to the upper limit of the 
green interval.

A fully sequential adaptive design
The present subsection aims to provide an algorithmic 
description of a framework of adaptive dose-finding 
design for finding MTD ξ (2). We explain fully sequen-
tial adaptive design (FSAD), which is the default setting 
in this paper. FSAD is characterized as follows:

1. Patients are introduced to the trials individually 
and sequentially.
2. Each patient is assigned an optimal estimate of 
MTD ξ (2) based on the accumulated patients’ infor-
mation at interim.

To operate FSAD, some essential ingredients are 
needed. Suppose that we have a total of N patients who 
can participate in a phase I clinical trial. Let (xi, yi) denote 

the ordered pair (dose, continuous toxicity response 
against the dose) for the i-th patient ( i = 1, · · · ,N  ). Let 
Fn = {(xi, yi)}

n
i=1 represent the accrued information 

from n patients ( n = 1, · · · ,N  ). Due to the accumula-
tion of patients’ information during the trial, it holds that 
F1 ⊂ F2 ⊂ · · · ⊂ FN , where the notation ⊂ represents 
the subset relationship.

Finally, we need a dose-finding rule (also called a design 
adaptation rule [4]), which is defined as a mapping from 
the information space F  to the dose range (xmin, xmax):

Dose-finding rule D(·) (3) receives the cumulative 
information set Fn ∈ F  from the first n patients as input, 
and prints out the dose xn+1 = D(Fn) for the (n+ 1)

-th patient that belongs to the interval (xmin, xmax) . The 
output xn+1 is an optimal dose for the (n+ 1)-th patient. 
Generally, good operating characteristics of adaptive 
designs is determined by dose-finding rule D(·) (3), 
which is the drive engine of adaptive clinical trial designs.

Algorithm  1 describes four steps to implement FSAD. 
A pictorial description is displayed in Fig. 2. Starting from 
the initial dose x1 ∈ (xmin, xmax) , we observe the continu-
ous toxicity response y1 = Y (x1) for the first patient, which 
then forms the information set F1 = {(x1, y1)} . Based on 
F1 , we select an optimal dose for the second patient by 
x2 = D(F1) , completing the first cycle. The second cycle 
starts by introducing the dose x2 to the second patient, and 
we record his or her response y2 , leading to the accrued 
information F2 = {(x1, y1), (x2, y2)} . We then find an opti-
mal dose for the third patient, that is, x3 = D(F2) . This 
cycle continues until we reach the N-th patient, who will be 
assigned the dose xN = Dα(FN−1) based on the accrued 
information FN−1 = {(xi, yi)}

N−1
i=1  . The final estimate xN is 

then regarded as an optimal estimate of the MTD ξ (2).

(3)D(·) : F −→ (xmin, xmax).

Fig. 1  Pictorial illustration of determining an MTD from two different perspectives: continuous toxicity response (left panel) and binary toxicity 
response (right panel)
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Algorithm 1 Fully sequential adaptive design

Normally, for safety, the initial dose x1 is set to a dose 
very close to the minimum dose xmin (i.e., x1 = xmin + ǫ 
with sufficiently small ǫ > 0 ), and we expect that the 
sequence of doses (xn) slowly converges to the targeted 
MTD ξ (2) as the trials progress. Here, the dose sequence 
(xn) does not need to be monotonic (that is, the inequali-
ties x1 ≤ x2 ≤ · · · ≤ xN are not required) because we 
may de-escalate the dose if some previous doses are 
overly toxic.

In practice, patients are often treated in a cohort 
size of three. In this case, FSAD (Algorithm 1) can be 
can be easily generalized to cohort sequential adaptive 
design (CSAD). Suppose that there are in total N cohort 
groups and patients are enrolled in a cohort of size of 
C, where C is a fixed positive integer (if C = 1 , then 
CSAD reduces to FSAD; C = 3 is often used for CSAD). 
Therefore, we have in total N · C patients who can par-
ticipate in a phase I clinical trial. Algorithm for CSAD 
can be obtained by (1) assigning dose xn to C patients 

in the n-th cohort; (2) recording C-dimensional vector 
of continuous toxicity responses yn,1:C = (yn1, · · · , ynC) 
from C patients in the n-th cohort; (3) formulating 
the information set FN = {(xi, yi,1:C)}

N
i=1 ; and (4) find-

ing an optimal dose for the (n+ 1)-th cohort based on 
the accumulated cohorts’ information at interim by 
xn+1 = D(Fn).

Diagnosis of a dose‑finding rule
Now, the fundamental question is this: given a dose-
finding rule D(·) (3) under FSAD (Algorithm  1), how 
can we evaluate the algorithm’s utility for actual phase 
I clinical trials? Due to the small-sample nature of the 
problem, perhaps the best approach is to examine this 
through conducting clinical trial simulations as follows. 
The basic idea here is to assess the “self-sequential 
learning ability” by replicating a large number of phase 
I clinical trials and observing their clinical operating 
characteristics. To achieve this, we begin by specifying 

Fig. 2  Pictorial description of the fully sequential adaptive design (Algorithm 1). xn represents the dose for the n-th patient, yn is the continuous 
toxicity response for the n-th patient, Fn = {(xi , yi)}

n
i=1 represents the cumulative information up to n patients, and D(·) is the dose-finding rule. 

Due to the accumulation of patient information, the subset relationship holds: F1 ⊂ F2 ⊂ · · · ⊂ FN
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three variables (N , x1, ξ0) as follows: setting the sample 
size N to be small enough (e.g., N = 20 or 25 patients); 
determining the initial dose x1 to be sufficiently close 
to the minimum dose xmin ; and fixing the MTD to a 
“true” value denoted as ξ0 (2). The subscript “0” is used 
to indicate the “truth.”

Next, we define a data generating distribution 
for simulating toxicity responses yn given doses xn 
( n = 1, · · · ,N  ). Conceptually, this distribution takes 
the form of a conditional distribution, denoted as 
Pξ (y|x) , parameterized by the MTD ξ ∈ (xmin, xmax) . 
With this assumption, we can implement Step 2 in 
Algorithm  1 by recording the response yn ∼ Pξ0(y|xn) 
( n = 1, · · · ,N  ). Here, we assume that the N responses 
( y1, · · · , yN  ) are conditionally independent given the 
parameter ξ and covariates ( x1, · · · , xN  ). Steps 3 and 4 
in Algorithm 1 remain unchanged. These modifications 
to Algorithm  1 operate on a single simulated phase I 
clinical trial, and the outcome will be the information 
set FN = {(xi, yi)}

N
i=1 obtained from N patients. The dose 

assigned to the last patient, xN  , is then considered the 
final estimate of the MTD.

The distribution Pξ (y|x) describes the relation-
ship between toxicity and dose. In most model-based 
designs, the underlying distribution Pξ (y|x) is assumed 
to be parsimonious; otherwise, the doses for the first 
few patients could be suboptimal due to the small sam-
ple size. This may violate individual ethics—doing what 
is best for current patients in the trial. For that reason, 
the Bernoulli distribution is conventionally used if y 
represents a binary toxicity response [3, 26, 27], and 
the Gaussian distribution is often used if y is a continu-
ous toxicity response [16, 34], while allowing only few 
number of parameters to describe some dynamics (e.g., 
slope, intercept, curvature, interpatient variability, etc.) 
of the dose-toxicity relationship. Therefore, one may 
rewrite the distribution Pξ (y|x) more concretely as 
P(ξ ,φ)(y|x) , where φ represents some statistical nuisance 
parameter(s) describing such dynamics. However, for 
readability, we will keep using the notation Pξ (y|x) until 
this subsection.

The eventual success of model-based dose-finding 
design relies on a dose-finding rule D(·) (3) that ena-
bles the design to generate the sequence of doses (xn) 
by cycling through the steps in Algorithm 1. We hope 
that the sequence (xn) converges to the true MTD ξ0 
as n grows. Inappropriate choices of the dose-finding 
rule will lead to very slow convergence of the sequence 
or, in the worst scenario, it will never converge to the 
truth.

With cn-th patient, Fn = {(xi, yi)}
n
i=1 , we can gen-

erate the following four sequences of performance 

metrics to assess the utility of a proposed dose-finding 
rule D(·) : F −→ (xmin, xmax):

•	 Number of patients with DLT (NPD): 
NPD(n) = n

i=1
1(yi ≥ η).

•	 Number of patients overdosed (NPO): 
NPO(n) =

∑
n

i=1
1(xi > ξ0).

•	 Bias to MTD (BTM): BTM(n) = xn − ξ0.
•	 Square root of the relative mean squared error 

(RMSE): RMSE(n) = |xn − ξ0|/ξ0.

The notation 1(·) represents the indicator function. 
NPD and NPO are intended to measure the safety of 
a treatment as drug dose, whereas BTM and RMSE 
evaluate estimation accuracy of a dose-finding rule. 
Specifically, NPD, NPO, and BTM are metrics tailored 
to phase I studies, while RMSE is generally reported 
when the parameter of interest is positive [46]. Gen-
erally, smaller values of NPD and NPO indicate better 
clinical safety. As for BTM, a smaller negative value is 
desired because we normally expect xn to be smaller 
than the true MTD ξ0 but close enough to ξ0 . Lastly, 
the smaller the square root of the RMSE, the better 
the estimation accuracy. (In this paper, we will simply 
denote the metric as “RMSE” instead of “SRMSE” to 
avoid lengthy notation.)

By evaluating the four metrics - NPD(n) , NPO(n) , 
BTM(n) , and RMSE(n) - at each value of n = 1, 2, 3, · · · ,∞ , 
we can access asymptotic aspects of a dose-finding rule 
D(·) . According to the law of large numbers, NPD(n)/n 
and NPO(n)/n converge almost surely to the probability 
of DLT (that is, Pr[Y > η] ) and the probability of over-
dosing event (that is, Pr[X > ξ0] ) as n goes to infinity, 
respectively. By using the law of total expectation, we have 
Pr[Y > η] = E[1(Y > η)] = E[E[1(Y (X) > η)|X]] = E[Pr[Y (X) > η]|X]]

≤ E[1− γ |X] = 1− γ . Therefore, it holds limn→∞NPD(n)/n ≤ 1− γ 
almost surely. This implies that the proportion of patients 
with DLT is asymptotically controlled by the homogeneity 
constant γ , or equivalently, target toxicity level 1− γ . For 
example, by specifying γ = 0.9 , maximally one patient out 
of ten patients may show DLT in the long run. Later, we will 
see that the probability of overdosing event, Pr[X > ξ ] , can 
be also controlled by clinicians by using “feasibility bound,” 
but unlike the controlling mechanism of the probability of 
DLT, Pr[Y > η] , done by γ , the probability of overdosing 
event can be controlled in a Bayesian way. As for the two 
accuracy metrics, the sequences (BTM(n)) and (RMSE(n)) 
should converge to 0 as n grows; a dose-finding rule with 
this property is said to have a consistency property [34].

Due to the small sample nature of phase I studies, 
a practically useful diagnosis of a dose-finding rule 
D(·) can be performed by cross-sectional analyses of 
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the four metrics evaluated at a certain number n = N  , 
where N is a small natural number, say 15− 30 , and by 
checking the metrics via replicated numerical experi-
ments under diverse scenarios by varying design 
parameters γ  , η , and (xmin, xmax) that were used in 
defining the MTD and DLT. This way, we can assess 
whether the rule D(·) is robust enough to handle vari-
ations in environmental variables and can be used in 
real phase I studies across various therapeutic areas. 
Particularly, a dose-finding rule D(·) with a posi-
tive BTM (that is, xN > ξ0 ) is inappropriate for actual 
phase I clinical trials because it is highly likely that 
overly toxic doses would be suggested by the underly-
ing model.

Non‑linear dose‑toxicity curve
Let Y(x) denote continuous toxicity response, assum-
ing the validity of five assumptions (A1)–(A5). Addi-
tionally, we assume that the patients’ responses at 
the minimum dose xmin have been appropriately 
transformed and centered around zero, ensuring 
E[Y (x)|x = xmin] = 0 . In this paper, we further assume 
a non-linear correlation between toxicity and dose, 
expressed as follows:

where β , ν , and σ are positive real numbers. Here, 
N (µ, σ 2) denotes the Gaussian distribution with mean 
µ and standard deviation σ . The parameters in the non-
linear Eq. (4) have specific interpretations. Specifically, β 
represents the slope of the dose-toxicity curve, and when 
ν = 1 , it represents the rate of the increment of toxic-
ity response per unit of dose. On the other hand, ν rep-
resents the non-linearity parameter, with a higher value 
indicating a greater curvature of the dose-toxicity curve. 
Finally, σ represents the standard deviation of the toxic 
reaction of patients at a given dose x, describing inter-
patient variability.

Note that the non-linear regression (4) reduces to a 
simple linear regression when ν = 1 . This simple lin-
ear regression was studied by [16, 34] for the applica-
tion of phase I clinical trials. Specifically, Eichhorn and 
Zacks [34] discussed a Bayesian estimation of the slope 
parameter β , while fixing the standard deviation σ . On 
the other hand, Lee et al. [16] aimed to estimate both 
parameters in a fully Bayesian way. Estimating σ is cru-
cial because phase I cancer trials might enroll termi-
nal cancer patients with different types of malignant 
tumors at various disease stages; hence, the patient 
population is usually heterogeneous [47]. Both of the 
previous studies assumed that the toxicity response 

(4)y = β(x − xmin)
ν + σǫ, ǫ ∼ N (0, 1),

is linear in dose, lacking the flexibility to describe the 
toxicity-dose curve when the true curve is non-linear. 
In this paper, we extend the previous research by intro-
ducing the non-linear parameter ν and estimating it in 
a fully Bayesian way.

A closed-form expression of MTD ξ (2) can be 
derived by providing some constraints on the param-
eters (β , ν, σ):

Theorem  1  Consider a non-linear regression to 
describe the relationship between toxicity and dose: 
y ∼ N (β(x − xmin)

ν , σ 2) . Suppose that the slope and non-line-
arity parameters and standard deviation are restricted by 
β > (η − σ�−1(γ ))/(xmax − xmin)

ν , ν > 0 , and 0 < σ < η/�−1(γ ) . 
Then, MTD ξ (2) is given by

Proof
See the Appendix.  

Figure  3 is a pictorial description of the mean 
part of the dose-toxicity curve (4), that is, 
f (x) = E[Y (X)|X = x] = β(x − xmin)

ν . The curve is convex if ν > 1 
(as shown in Fig. 3), line if ν = 1 , and concave if 0 < ν < 1 . The 
maximum toxicity level η divides the dose-toxicity plane 
into the DLT region {(x, y)|x ∈ (xmin, xmax), y ≥ η} and the non-
DLT region {(x, y)|x ∈ (xmin, xmax), 0 < y < η} . The two regions, 
{(x, y)|x ∈ (0, xmin], y ≤ 0} and {(x, y)|x ∈ [xmax,∞), y ≥ β(xmax − xmin)

ν } , 
represent sub-therapeutic and overly toxic areas, respec-
tively, associated with assumptions (A1) and (A5). Nor-
mally, clinicians believe that MTD ξ (5) belongs to the 
dose range (xmin, xmax) . By using elementary calculus, the 
solution of the equation f (x) = η is xη = xmin + (η/β)1/ν , 
represented as the red vertical dashed line in the panel. 
Therefore, MTD ξ (5) is located on the left side of 
the point xη since it always holds σ�−1(γ ) > 0 and 
γ ∈ (0.5, 1) : see the violet vertical dashed line.

Three‑parameter non‑linear dose‑finder (3PND)
Due to the small-sample, sequential nature of phase I 
clinical trials, the Bayesian framework is preferred for 
accurately estimating the MTD ξ (5) than frequentist 
framework in the literature [4, 48, 49]. From a Bayesian 
viewpoint, the parameters β , ν , and σ are considered 
random variables, making MTD ξ a random variable 
as well. This means that the uncertainty underlying 
the estimation of the MTD ξ can be probabilistically 
described once an appropriate prior π(β , ν, σ) is speci-
fied. This advantage of Bayesian methodology in phase 

(5)ξ = ξ(β , ν, σ) = xmin +

(
η − σ�−1(γ )

β

)1/ν

.
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I clinical trials does not exist in traditional rule-based 
designs [50].

We propose a three-parameter non-linear dose-finder 
(3PND) as a fully Bayesian model-based design. Given 
the information set Fn = {(xi, yi)}

n
i=1 , the hierarchy of 

3PND is given as follows:

where l(σ , ν) = {η − σ�−1(γ )}/(xmax − xmin)
ν and 

u(σ , ν) = {η/(xmax − xmin)
ν} + σ�−1(γ ) . �(z) is the 

cumulative distribution function of the standard nor-
mal distribution. Notation U(l,u) represents the uni-
form distribution supported on open interval (l,  u). 
C+(0, 1)I(0,d) ∝ {1/(1+ z2)} · I(0,d) represents the unit 
scaled half-Cauchy distribution truncated on the interval 

(6)
yi|β , ν, σ ∼ N

(
β(xi − xmin)

ν , σ 2
)
, (i = 1, · · · , n),

(7)β|ν, σ ∼ π(β|ν, σ) = U(l(σ , ν),u(σ , ν)),

(8)σ ∼ π(σ) = C+(0, 1)I(0,η/�−1(γ )),

(9)ν ∼ π(ν) = logN (0, δ2),

(0, d). logN (0, δ2) represents the log-normal distribution 
with a unit median and a scale δ > 0 . See the Appendix 
for the detail of posterior computation.

The prior distribution π(β , ν, σ) (7)–(8) is conceptu-
ally weakly informative, imposing minimal restrictions 
on the prior, while assuring that the MTD ξ lies in the 
dose range (xmin, xmax) with probability 1. Specifically, 
the prior is constructed as follows: first, we assume a 
flat prior for β given ν and σ (i.e., π(β|ν, σ) ∝ 1 , sup-
ported on (−∞,∞) ), a unit-scaled half-Cauchy prior 
for σ (i.e., π(σ) ∝ 1/(1+ σ 2) , supported on (0,∞) ), and 
a log-normal prior for ν (i.e., π(ν) = logN (0, δ2) , sup-
ported on (0,∞) ), centered around one, with the scale 
hyper-parameter δ > 0 . After that, we restrict the sup-
port of the joint prior π(β , ν, σ) to ensure that the MTD 
ξ (5) belongs to the dose range (xmin, xmax) . Note that 
the uniform and half-Cauchy distributions are consid-
ered non-informative and weakly informative priors, 
respectively. Log-normal distribution is a sub-exponen-
tial distribution, a class of heavy-tailed distributions 
studied by Lee [51] for a small-sample problem. Its 
tail-heaviness provides the flexibility of non-linearity of 
the dose-toxicity curve. Default values for δ are δ = 0.1 

Fig. 3  Pictorial description of the non-linear dose-toxicity curve
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or 0.5. In real applications, a plausible value for δ can 
be also chosen via sensitivity analysis. The higher the 
value of δ , the stronger the prior guess on the non-lin-
earity of the dose-toxicity relationship. Under the prior 
formulation, the values of δ , η , γ , xmin , and xmax , used in 
defining the MTD (1), are introduced as the hyperpa-
rameters of the 3PND.

Figure  4 displays a directed asymmetric graphical 
(DAG) model representation of the 3PND. Follow-
ing the grammar of the graphical model (Chapter  8 
of [52]), the circled variables indicate stochastic vari-
ables, while the observed ones are additionally colored 
in gray. Non-stochastic quantities are uncircled. The 
arrows indicate the conditional dependency between 
the variables.

Some difficulty in prior elicitation is briefly dis-
cussed. As noted in the guidance for the use of 
Bayesian statistics provided by the Food and Drug 
Administration [53], special care is needed in incorpo-
rating appropriate prior information in Bayesian mod-
eling. Specifically, the prior information should allow 
the Bayesian model to be flexible and efficient in iden-
tifying any pattern during trials [9]. This implies that 
we should prevent a suggested Bayesian model from 
being overly dominated by the prior information, and 
to that end, imposing weaker prior information may 
be more reasonable. However, given the FSAD setting, 
patients are introduced to the trials sequentially and 
individually. Hence, allowing too weak prior informa-
tion may lead to unstable parameter estimations, and 
it is highly likely that the first few patients are subop-
timally dosed. The CSAD setting also suffers from this 

issue. This may contradict the individual ethics men-
tioned earlier. Therefore, a good model should retain 
a reasonable balance between these two competing 
requirements.

Theoretical guarantee of MTD estimation using 3PND
The fundamental principle of a dose-finding study 
design is to allocate each included subject to the cur-
rent best estimate of MTD. The central question we 
may ask here is, “Will the proposed dose-finding algo-
rithm discover the true MTD given a large number of 
patients, such as 100 patients or even more, say, 1,000 
patients?” Although enrolling such a significant number 
of patients is not practical, one might seriously doubt 
the proposed design if it fails to detect the MTD even 
with such an extensive sample size.

In the present subsection, we provide a theoretical 
demonstration that the updated knowledge regard-
ing the MTD, denoted as ξ , progressively becomes 
more accurate and precise as the number of patients 
increases. This idealistic phenomenon is established 
through the concept of posterior consistency [54]. To 
elaborate, let ξ0 represent the true value of MTD ξ . Our 
objective is to establish that, as long as the true value ξ0 
resides within the dose range (xmin, xmax) , the posterior 
distribution of MTD ξ becomes increasingly concen-
trated around ξ0 with an expanding sample size. In this 
case, we say that, “the posterior distribution of MTD ξ 
is consistent at ξ0 ” [55]. To establish posterior consist-
ency, we leverage Doob’s theorem [56] to provide a suf-
ficient condition for the posterior consistency of the 
3PND. This theorem asserts that “for any prior π , the 

Fig. 4  3PND as a graphical model
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posterior is consistent at every value in the parameter 
space except, possibly, on a set of π-measure zero.”

Theorem 2  Within the hierarchy of the 3PND (6) – (9), 
the posterior distribution of the MTD ξ is consistent at 
any value of ξ0 within the dose range (xmin, xmax).

Proof
See the Appendix.  

Theorem  2 guarantees that as long as the dose range 
(xmin, xmax) encompasses the targeted MTD ξ0 , the pos-
terior distribution of MTD ξ remains consistent at ξ0 . In 
reality, since the true MTD ξ0 is unknown, it is advisable 
to select a dose range that is sufficiently broad to encom-
pass the true value ξ0 . However, the interval should not 
be overly wide as it may require a larger sample size than 
otherwise.

A dose‑finding rule using 3PND
A dose-finding rule D(·) (3) is the driving engine to oper-
ate an adaptive dose-finding design (Algorithm 1). In the 
present subsection, we derive a dose-finding rule based 
on the 3PND (6) – (9) to satisfy the desiderata.

Suppose that we have accrued information from n 
patients Fn = {(xi, yi)}

n
i=1 , which is the input of the map-

ping D(·) (3). The goal is now to select a dose for the 
(n+ 1)-th patient (denoted as xn+1 ), having observed Fn . 
In the dose assigning procedure, our aim is to select an 
optimal dose xn+1 while controlling the following two 
quantities:

(i) The probability of the occurrence of DLT from 
patients
(ii) The posterior probability of the event of overdos-
ing to patients

The controlling mechanism of the probability of DLT 
has already been taken into consideration in the formula 
of MTD ξ (5), which can be controlled by changing the 
homogeneity constant γ ∈ (0.5, 1) (see Fig.  1). Noting 
from Eq. (2), 1− γ represents the maximum proportion 
of patients with DLT at MTD. A reasonable value for γ 
may depend on the specific therapeutic area. If the anti-
cancer agent is entirely novel, a recommended value for 
γ is 0.99 so that probabilistically, at most one patient out 
of a hundred patients shows the DLT status. Otherwise, 
the default value for γ is often not explicitly defined, as it 
highly depends on a certain therapeutic area. For exam-
ple, values may range from 0.6 to 0.9.

On the other hand, to control the posterior probabil-
ity of the overdosing event, we introduce a new variable, 
called (Bayesian) feasibility bound denoted as α in the lit-
erature [16, 34]. To describe the concept, let us assume 
that �n(x) = Pr[ξ ≤ x|Fn] denotes the posterior cumu-
lative distribution function of MTD ξ given Fn . With a 
value α ∈ (0, 1) set by clinicians, the selected dose xn+1 is 
the posterior α-quartile for the MTD ξ:

Inequality (10) implies that the posterior probabil-
ity of the event of overdosing to the (n+ 1)-th patient is 
bounded above by the constant α . It is important to note 
that, unlike the homogeneity constant γ , the feasibil-
ity bound α is neither a hyper-parameter nor a variable 
introduced to define MTD and DLT. Essentially, α is a 
pure Bayesian apparatus to control the convergence rate 
of the dose sequence (xn) toward the MTD. This quantile-
based dose selection scheme has also been adopted in 
EWOC [40] and its extension [15].

In practice, the proper value of α can be chosen 
through extensive simulations, depending on factors such 
as the disease, patients’ characteristics, and the number 
of patients to be enrolled. A lower value for α leads to a 
more conservative dose escalation, allowing for a smaller 
jump size from the current dose xn to the next dose xn+1 
during the trials. On the other hand, a higher value for 
α results in a more aggressive jump size from xn to xn+1 . 
We recommend using α = 0.001 , 0.01, 0.05, or 0.1 as 
default values of the feasibility bound. Sometimes, we 
can use a variable feasibility bound α , starting with some 
small value of α , and as the trial progresses, α increases 
in small increments [42]. In practice, an optimal value for 
the α can be determined by extensive simulation experi-
ments by trying different value of α , given values of γ and 
sample size N.

Now, we describe how to obtain xn+1 which satis-
fies the inequality (10). Because ξ is a continuous ran-
dom variable, we have the theoretical expression 
xn+1 = �−1

n (α) , where �−1
n (·) is the inverse function 

of �n(·) . However, the function �n(·) is not known 
in a closed-form distribution; hence, it is difficult to 
obtain xn+1 in a closed-form solution. Instead, we 
resort to a Markov chain Monte Carlo (MCMC) algo-
rithm [57] to approximate xn+1 . Algorithm 2 describes 
the steps to produce the next dose xn+1 based on 
accrued patients’ information Fn and feasibility bound 
α . More technically, the next dose xn+1 is an output of 
the function Dα(·) evaluated at the input Fn : that is, 
xn+1 = Dα(Fn) ∈ (xmin, xmax) (n = 1, 2, · · · ,N − 1) . In 
the notation Dα(·) , the Greek letter α is subscripted to 
emphasize that α is fixed during trials.

(10)�n(xn+1) = Pr[ξ ≤ xn+1|Fn] ≤ α.
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Algorithm 2 Dose-finding rule Dα(·) : F −→ (xmin, xmax)

Algorithm  2 represents the vanilla version, where the 
dose-searching process relies solely on the quantile Eq. 
(10). The development of an efficient sampling algo-
rithm in Step 1 of Algorithm  2 is pivotal to the success 
of the dose-finding algorithm. We have devised a sam-
pling algorithm that combines the Gibbs sampler [58], 
the slice sampler [59], and the elliptical slice sampler [60]. 
Detailed information can be found in the Appendix.

Results
To assess the operating characteristics and utility of 3PND 
in phase I cancer clinical trials, in this section, we conduct 
extensive simulation experiments and apply the proposed 
design to an optimal dose-finding problem using a dose-
response dataset resampled from Friedman et al. [38].

Simulation experiments
Outline of simulation experiments
To assess the method’s average behavior, we perform 
a simulation study. The general setup adopted here is 
similarly designed to the simulation experiments from 
[16, 34]. As we are mainly interested in evaluating the 
operating characteristics of the design, experiments are 
conducted based on the vanilla dose-finding algorithm 
described in Algorithm 2.

We compare four dose-finding algorithms that mainly 
differ in the enrollment schedule of patients with the 
same number of total patients. Additionally, we want to 
explore the “Exploration-Exploitation Dilemma” [61]. 
As normally encountered in many sequential learning 
problems, there is a trade-off between the exploration 
of new knowledge about MTD and the exploitation of 
old knowledge assuring patients’ safety. Optimal perfor-
mance usually requires some balance between explora-
tory and exploitative behaviors. One of the benefits of 
the dose-response modeling framework suggested in this 
paper is that this balance can be controlled by clinicians. 
We demonstrate this via simulation experiments.

The four algorithms are denoted as (1) FSAD (acc); (2) 
FSAD (std); (3) CSAD (acc); and (4) CSAD (std). The first 
two algorithms are fully sequential adaptive designs with 

accelerated and standard dosing strategies, respectively, 
whereas the third and fourth ones are cohort sequential 
adaptive designs with a cohort size of three (C = 3) , with 
accelerated and standard dosing strategies, respectively.

Simulation set‑up
To simulate a phase I clinical trial, experimenter needs to 
specify the following five categories of variables: (1) the 
total number of patients N; (2) the maximum toxicity 
level η , the homogeneity constant γ , and the dose range 
(xmin, xmax) ; (3) the feasibility bound α ; (4) the initial 
dose x1 for the first patient; and (5) true values of MTD 
ξ0 , standard deviation σ0 , and non-linearity parameter ν0 . 
Note that once the values of η , γ , xmin , ξ0 , σ0 , and ν0 are 
determined, then the true value of the slope parameter β0 
is automatically derived through the formula (5), that is, 
β0 = (η − σ0�

−1(γ ))/(ξ0 − xmin)
ν0.

After specifying the aforementioned variables, we 
generate a continuous toxicity response yi = Y (xi) 
according to the dose-toxicity curve (4), that is, 
yi ∼ P(ξ0,ν0,σ0)(y|xi) = N (y|β0(xi − xmin)

ν0 , σ 2
0 ) , and fol-

low the procedure described the previous section to 
examine the operating characteristics of dose-finding 
algorithms. Provided a sample size N, the eventual out-
come based on FSAD (and similarly for CSAD) is the 
sequence of doses (x1, x2, · · · , xn, · · · , xN ) , and we evalu-
ate the four metrics, NPD(N ) , NPO(N ) , BTM(N ) , and 
RMSE(N ).

We assume that the scale of the continuous toxic-
ity response y = Y (x) is aligned with the toxicity grade 
information in CTCAE with adjustment as similarly 
done by [16]. More specifically, on average, the values 
y = 0, 1, 2, 3 , and 4 indicate mild, moderate, severe, life-
threatening, and death-related toxicity of an adverse 
event against a dose x. These values are corresponding 
to CTCAE Grade 1, 2, 3, 4, and 5, respectively; see [37] 
for more detail about the generic symptom of adverse 
events. To check small-sample performance, we set the 
number of total patients to be N = 18 , 30, and 45, and 
replicate 1000 times. Eventually, we report median values 
of the four metrics obtained from replications.
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We experiment with two dosing strategies, accelerated 
and standard dosing strategies. To that end, we set the values 
of the homogeneity constant γ and the feasibility bound α 
accordingly while fixing other variables. Accelerated design 
is more inclined to produce a fast and accurate estimation of 
MTD with a higher risk of DLT and overdosing, and stand-
ard design indicates the the acceleration is not used.

To summarize, the following are the variables we set 
for the simulation experiment:

•	 Number of patients: N ∈ {18, 30, 45}.
•	 Variables specific to accelerated designs: γ = 0.9 

and α = 0.01.
•	 Variables specific to standard designs: γ = 0.99 and 

α = 0.001.
•	 Variables describing the degree of non-linearity of 

dose-toxicity curve: ν0 ∈ {0.6, 1, 1.4}.
•	 Variables shared in accelerated and standard 

designs: δ = 0.1 , η = 3 , (xmin, xmax) = (5, 80) , 
x1 = 6 , ξ0 = 50 , and σ0 = 0.1.

Under the above specification, a patient shows DLT if 
the patient’s toxicity response y is greater than η = 3 (that 
corresponds to CTCAE Grade 4), and a patient is over-
dosed if assigned dose x is greater than the true MTD ξ0.

Simulation results
Table  1 presents the results of simulation experiments 
based on the four designs. The second column in the table 
indicates the curvature of the true dose-toxicity curve: lin-
ear ( ν0 = 1 ), strictly convex ( ν0 = 1.4 ), and strictly concave 
( ν0 = 0.6 ). The best-performing algorithm for each metric 

is highlighted in bold within each row. Overall, all designs 
exhibit excellent consistency in MTD estimation across 
various sample sizes and curvatures, as indicated by the 
presence of small negative values for BTMs alongside small 
positive values for RMSEs. It is noteworthy that accuracy 
improves with increasing sample size, leading to smaller 
RMSEs as N increases. This consistency is theoretically 
guaranteed, as demonstrated in Theorem 2.

Regarding safety, the standard designs provide a safer 
dosing strategy in terms of NPD and NPO when com-
pared to the accelerated designs. Notably, all stand-
ard designs yield a median value of zero for both NPD  
and NPO. In terms of the accuracy of MTD estimation, 
the accelerated designs outperform the standard designs, 
as evidenced by their smaller RMSEs. The results under-
score that 3PND possesses a desirable property for 
balancing safety (exploitation) and accuracy (explora-
tion) through the homogeneity constants γ or feasibility 
bound α.

Application to find an optimal O6‑BG dose
Outline of application
We have illustrated the use of continuous outcomes to indi-
cate the degree of severity of toxicity in the context of oncol-
ogy trials for finding the MTD for chemotoxic agents. One 
typical example is a continuous toxicity score measured 
based on grade information from multiple adverse events 
[14–16]. However, our modeling framework can be gener-
alized to molecularly targeted agents that have little or no 
toxicity in the therapeutic dose range. Typical examples 
include biomarker responses of molecularly targeted agents 
(see [62] for more details). For example, such a biomarker 

Table 1  Results of simulation studies

Note: The best-performing algorithm for each metric is highlighted in bold within each row. FSAD (acc), FSAD (std), CSAD (acc), and CSAD (std) correspond to dose-
finding algorithms based on 3PND, using accelerated fully sequential design, standard fully sequential design, accelerated cohort sequential design, and standard 
cohort sequential design, respectively. The second column indicates the curvature of the true dose-toxicity curve: linear ( ν0 = 1 ), strictly convex ( ν0 = 1.4 ), and 
strictly concave ( ν0 = 0.6)

FSAD (acc) FSAD (std) CSAD (acc) CSAD (std)

 Curvature NPD NP0 BTM RMSE NPD NP0 BTM RMSE NPD NP0 BTM RMSE NPD NP0 BTM RMSE

N=18

Linear 0 0 −1.46 0.03 0 0  −2.63 0.05 0 0  −1.59 0.03 0 0  −2.8 0.06

Convex 0 1 −1.24 0.02 0 0  −2.25 0.05 3 3  −1.42 0.03 0 0  −2.31 0.05

Concave 0 0 −4.9 0.1 0 0  −8.23 0.16 0 0  −8.47 0.17 0 0  −13.19 0.26

N=30

Linear 1 0  −1.1 0.02 0 0  −1.94 0.04 0 0  −1.12 0.02 0 0  −1.92 0.04

Convex 1 1 −0.84 0.02 0 0  −1.53 0.03 3 3  −0.98 0.02 0 0  −1.59 0.03

Concave 0 0 −2.65 0.05 0 0  −4.54 0.09 0 0  −3.03 0.06 0 0  −5.02 0.1

N=45

Linear 1 0  −0.85 0.02 0 0  −1.46 0.03 1 0 −0.83 0.02 0 0  −1.45 0.03

Convex 1 1 −0.69 0.01 0 0  −1.21 0.02 3 3  −0.74 0.01 0 0  −1.19 0.02

Concave 0 0  −1.89 0.04 0 0  −2.96 0.06 0 0 −1.79 0.04 0 0  −3.04 0.06
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response might be based on the level of a molecular target, 
or the change in the level of a target that suggests clinical 
promise. Basically, this generalization is possible because 
our modeling framework is based on the principle of the 
monotonic relationship between a continuous response and 
a dose.

In the following, we develop a re-design of a dose escala-
tion trial based on a molecularly targeted endpoint, utilizing 
the dose-response dataset resampled from Friedman et al. 
[38]. In their study, the authors conducted a phase I trial 
involving a molecularly targeted agent, O6-benzylguanine 
( O6-BG). The escalation strategy in this trial was grounded 
on the reduction of the target enzyme O6-alkylguanine-
DNA alkyltransferase (AGT) activity. The patient responses 
were initially recorded as continuous measurements—spe-
cifically, tumor AGT activity measured in fmol/mg—corre-
sponding to discrete dose levels of 40, 60, 80, 100, and 120 
mg/m2 (refer to Table 1 in [38]). The plan involved treating 
up to 13 patients at each dose level. Despite the continuous 
nature of the patients’ outcomes, the authors dichotomized 
these outcomes to facilitate the dose escalation procedure 
in the trial. Authors employed a rule-based design based on 
the depletion of the target AGT activity and concluded that 
a 100 mg/m2 dose of O6-BG is an optimal dose that will be 
used in another phase I trial.

Figure 5a displays the values of tumor AGT activity from 
24 patients: 3, 3, 9, and 9 patients at doses 40, 60, 80, and 100 
mg/m2 , respectively. No patients in the trial were assigned to 
the dose level of 120 mg/m2 . These values are as follows:

•	 Tumor AGT activity (fmol/mg) of patients assigned 
to dose 40 mg/m2 : 26.35, 42.00, 15.00.

•	 Tumor AGT activity (fmol/mg) of patients assigned 
to dose 60 mg/m2 : 23.00, 13.50, 11.00.

•	 Tumor AGT activity (fmol/mg) of patients assigned 
to dose 80 mg/m2 : 31.67, 8.00, 9.00, 14.50, 11.50, 
7.00, 11.70, 9.03, 8.00.

•	 Tumor AGT activity (fmol/mg) of patients assigned 
to dose 100 mg/m2 : 4.07, 5.00, 8.70, 2.50, 4.07, 6.13, 
3.60, 5.00, 5.00.

Among the 24 patients, there are 4 patients whose 
responses are smaller than 5 fmol/mg, resulting in unde-
tectable tumor AGT activities. These values will later be 
used in the re-design based on 3PND and EWOC to con-
struct a hypothetical dataset that resembles the actual trial.

In the following, we employ 3PND and EWOC to 
determine the optimal dose of O6-BG, resulting in unde-
tectable tumor AGT levels (< 5 fmol/mg), as similarly 
researched by [35].

Finding an optimal O6‑BG dose using 3PND
In order to apply 3PND for determining an optimal dose 
of O6-BG, we perform a transformation on the actual 
values of tumor AGT activity, yielding “60 - Tumor AGT 
activity,” which will be used as the continuous response in 
3PND. This transformation is crucial to establish a mono-
tonic relationship between the continuous response y and 
the dose x to implement a model-based design.

In Fig.  5b, we present the transformed dataset along-
side the fitted curve (represented by a red dashed line) 
derived using the least-squares method. Our assumption 
is that the true dose-response function adheres to the form 
y = β · (x − 20)ν . The estimated parameter values are 
β̂ = 10.57 and ν̂ = 0.37 . The non-linear nature of the curve 
underscores the necessity of incorporating flexibility into 
the dose-response relationship within our model design.

We apply a dose-escalation rule based on 3PND  
(Algorithm 2), incorporating two options: “Discrete Dose 
Selection” and “Monotonic-increasing Dose Sequence.” 
(Details on the options are described in Discussion.) To sim-
ulate a hypothetical dataset for the dose-escalation proce-
dure and leverage the reported data from [38], we introduce 
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(b) Transformed Continuous Responses and Fitted Curve

Fig. 5  Dose-response relationship of tumor AGT activity versus O6-BG dose levels of 40, 60, 80, an 100 mg/m2 from 24 patients (a) and transformed 
responses and fitted curve y = 10.57 · (x − 20)0.37 (b). Horizontal dashed lines on (a and b) represent 5 fmol/mg and 55 = 60 − 5 fmol/mg, 
respectively
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perturbation errors sampled from a uniform distribution 
with specified lower and upper bounds: ±8, ±6, ±4, and 
±2 (fmol/mg) corresponding to the dose level of 40, 60, 80, 
and 100 mg/m2 . (Observing the actual dataset from [38], it 
is evident that the standard deviation of responses decreases 
as the dose increases.) These perturbations are corre-
spondingly added to the resampled tumor AGT activity 
responses. This process constructs a dataset used to assess 
and refine our dose-finding strategy. We construct CSAD 
with cohort size of three with accelerated and standard 
dose-escalation. Variables are specified as follows:

•	 Number of patients and cohort size: N = 30 and 
C = 3.

•	 Variables specific to accelerated designs: α = 0.1.
•	 Variables specific to standard designs: α = 0.05.
•	 Variables shared in accelerated and standard designs: 

δ = 0.5 , γ = 0.6 , η = 55 , (xmin, xmax) = (20, 140) , 
and x1 = 40.

Figure 6 displays the results of the dose-escalation based 
on 3PND designs. Panels a (i)–(ii) and panels b (i)–(ii) cor-
respond to accelerated and standard designs, respectively. 
Blue curves in panels represent the posterior means of the 
dose-toxicity curve based on 3PND. Continuous responses 

and doses are reported in Table 2. The accelerated design 
ends up finding an optimal dose of 100 mg/m2 , consistent 
with the findings from [38] and [35]. On the other hand, the 
standard design selects 80 mg/m2 , which is more conserva-
tive than the accelerated design. No patients were over-
dosed in either design. In the accelerated design, 3 out of 30 
patients reported tumor AGT activity smaller than 5 fmol/
mg. In contrast, none of the patients in the standard design 
reported tumor AGT activity smaller than 5 fmol/mg.

The result of a redesign proposed by Wang and Ivanova 
[35] led to three patients being assigned a dose level of 
120 mg/m2 , resulting in overdosing. Since no patients 
were overdosed using the 3PND, our designs are safer 
than the similar research conducted previously. Overall, 
we observe that the 3PND with accelerated dose-escala-
tion shows promise in identifying an optimal O6-BG dose 
for the current scenario.

Comparison with finding an optimal O6‑BG dose using EWOC
We proceed to apply EWOC [40] in order to utilize the 
binary responses. For the application of EWOC, we 
dichotomize the continuous responses (i.e., 60 - tumor 
AGT activity) using a threshold value of 55 (fmol/mg). As 
a result of this dichotomization, the binary responses yield 
y = 1 when tumor AGT activity is less than 5 fmol/mg, and 
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Fig. 6  Results of dose-finding using 3PND: accelerated design in (a) (i)–(ii) and standard design in (b) (i)–(ii). The red vertical dashed lines indicate 
the final estimates of optimal doses: 100 mg/m2 for the accelerated design and 80 mg/m2 for the standard design. The blue curves in panels 
represent the posterior means of the dose-toxicity curves based on 3PND
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0 otherwise. The result of dichotomization process on the 
continuous response is visually represented in Fig. 7.

To implement EWOC, we use a built-in R func-
tion ewoc_d1classical(.) within an R package 
library(ewoc), with the following set-up: target rate 
of patients with undetectable tumor AGT activity to be 
theta = 0.4, the minimum dose to be min_dose = 20, 
the maximum dose to be max_dose = 140 , the initial 
dose to be first_dose = 40, and feasibility bound for 
accelerated design to be alpha = 0.1 and feasibility bound 
for standard design to be alpha = 0.05, with the specifi-
cation of uniform prior distributions for the parameters 
involved in EWOC (See help(ewoc_d1classical) 
for details about the variable set-up). To simulate a hypo-
thetical dataset with number of patients 30 with cohort 
size of 3 ( N = 30 and C = 3 ), we use the same method 

adopted in the 3PND re-design, followed by dichotomi-
zation with threshold values of 55, as illustrated above. 
Eventually, this will lead to two EWOC designs with accel-
erated and standard dose-finding rules, such that the gen-
eral set-up will be similar to the two 3PND designs with 
accelerated and standard dose-finding rules, respectively, 
with the crucial difference being the data form (continu-
ous versus binary responses).

Figure  8 displays the results of dose-finding based on 
EWOC designs. Panels a (i)–(ii) and panels b (i)–(ii) cor-
respond to accelerated and standard designs, respectively. 
The blue curve in the panels represents the posterior 
mean of the dose-toxicity curve based on EWOC design. 
Binary responses and doses are reported in Table 3. Both 
the accelerated and standard designs end up identifying 
optimal doses of 100 mg/m2 and 80 mg/m2 , respectively, 

Table 2  Results of dose-finding using 3PND

Note: The target AGT activity is 5 fmol/mg protein. Continuous responses are obtained by “60 - AGT activity.” Dose assigned to the last cohort of patients is the final 
estimate of an optimal dose for each design: 100 mg/m2 for accelerated design and 80 mg/m2 for standard design. Tumor AGT activities (fmol/mg) were resampled 
from Friedman et al. [38]

3PND (accelerated design, α = 0.1) 3PND (standard design, α = 0.05)

 Patient Dose ( mg/m2) AGT activity (fmol/mg) Continuous response Dose ( mg/m2) AGT activity (fmol/mg) Continuous response

1 40 19.82 40.18 40 19.82 40.18

2 40 46.77 13.23 40 46.77 13.23

3 40 8.63 51.37 40 8.63 51.37

4 60 26.98 33.02 40 31.66 28.34

5 60 5.67 54.33 40 7.90 52.10

6 60 8.18 51.82 40 34.90 25.10

7 60 25.07 34.93 60 25.07 34.93

8 60 12.27 47.73 60 12.27 47.73

9 60 9.75 50.25 60 9.75 50.25

10 80 10.81 49.19 60 7.24 52.76

11 80 6.49 53.51 60 25.87 34.13

12 80 9.92 50.08 60 10.81 49.19

13 80 9.72 50.28 60 16.09 43.91

14 80 12.16 47.84 60 27.74 32.26

15 80 30.06 29.94 60 8.59 51.41

16 80 12.46 47.54 60 24.44 35.56

17 80 5.54 54.46 60 9.81 50.19

18 80 4.18 55.82 60 5.26 54.74

19 80 11.05 48.95 80 11.05 48.95

20 80 9.36 50.64 80 9.36 50.64

21 80 15.78 44.22 80 15.78 44.22

22 80 15.93 44.07 80 8.37 51.63

23 80 9.95 50.05 80 16.01 43.99

24 80 9.67 50.33 80 17.81 42.19

25 100 4.30 55.70 80 11.95 48.05

26 100 7.59 52.41 80 9.93 50.07

27 100 9.14 50.86 80 9.87 50.13

28 100 6.10 53.90 80 10.20 49.80

29 100 5.90 54.10 80 9.80 50.20

30 100 3.41 56.59 80 16.32 43.68
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consistent with the outcomes using 3PND. In the accel-
erated design, 4 out of 30 patients reported tumor AGT 
activity smaller than 5 fmol/mg. In the standard design, 
3 out of 30 patients exhibited tumor AGT activity smaller 
than 5 fmol/mg. These patients are indicated by “1” in the 
binary response column of Table 3.

Overall, we observe that EWOC produces an optimal 
dose matching that of 3PND. However, the results show that 
EWOC required a larger number of patients with undetect-
able tumor AGT activity compared to 3PND. Our results 
imply that EWOC using binary responses might neces-
sitate a larger patient sample than 3PND using continuous 
response to effectively learn the dose-response curve.

Discussion
Modern dose-finding studies and designs are highly spe-
cific to individual clinical settings. For example, clinicians 
may wish to estimate the MTD more precisely by accom-
modating a particular shape of the dose-toxicity curve 
or by incorporating information from multiple groups in 

adaptive designs, etc. Additionally, implementing a dose-
finding design for actual phase I cancer clinical trials 
involves several practical requirements. For instance, it is 
conventional to have discrete dose levels while allowing 
only one dose level increment for each patient or cohort. 
The current section presents several extensions of the 
basic modeling framework to accommodate such com-
plexities and requirements, thus making the dose selec-
tion schemes more realistic.

Different non‑linear dose‑toxicity curve
The likelihood part (6) of our design assumes that the rela-
tionship between dose and toxicity response can be cap-
tured by a power function. The mean function part can 
be replaced and generalized to a more complex growth 
curve shape, such as the Richards growth curve [63] or the 
Gompertz growth curve [64], each having a greater number 
of parameters than a power function used in 3PND. Such 
curves can describe a plateau on the dose-toxicity curve 
so that higher doses may not improve clinical benefit and 
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toxicity does not necessarily increase with increased doses. 
While these curves would more dynamically describe the 
dose-toxicity curve than using the power curve, specifying 
prior distributions requires extensive research to ensure 
plausibility under small sample problems. Related research 
based on binary response can be found in [43].

Accommodation of multiple groups
The model discussed so far assumes that all patients are 
grouped together, implying that the MTD is expected to be 
the same for all of them. However, there are circumstances 
where patients need to be treated in different groups, lead-
ing to different MTDs across these groups. Simultaneously, 
given the limited sample size inherent to dose-finding 
problems in phase I studies, it is desirable to estimate 
these MTDs using a single model that allows information 
to be shared across different groups. The objective within 
this formulation is to maximize the therapeutic effect of a 

treatment for individual patients/groups, which is referred 
to as personalized maximum tolerated doses (MTDs) [65].

Our framework can be extended to estimate MTDs for 
multiple groups. To illustrate, we consider two groups, 
labeled as A and B, with the goal of estimating MTDs 
denoted as MTDA and MTDB . For simplicity, we assume 
that the curvature parameter ν is the same and known 
between the two groups. One approach is to allow the slope 
parameter to differ while maintaining a shared standard 
deviation between the groups. Consequently, the likelihood 
of the extended model will be y = βA(x − xmin)

ν + σǫ 
for group A and y = βB(x − xmin)

ν + σǫ for group 
B. Conditional priors for βA and βB given σ , and the 
prior for σ , remain the same as Eqs. (7) to (8), respec-
tively. This implies βA,βB|σ ∼ U(l(σ , ν),u(σ , ν)) and 
σ ∼ π(σ) = C+(0, 1)I(0,η/�−1(γ )) . Sharing the same 
standard deviation σ between the two groups is cru-
cial; otherwise, the estimation of MTDs becomes 

Table 3  Results of dose-finding using EWOC

Note: The target AGT activity is 5 fmol/mg protein. Binary responses are obtained by 1 if AGT activity < 5, and 0 otherwise

Patient EWOC (accelerated design, α = 0.1) EWOC (standard design, α = 0.05)

Dose ( mg/m2) AGT activity (fmol/mg) Binary response Dose ( mg/m2) AGT activity (fmol/mg) Binary response

1 40 19.81 0 40 19.81 0

2 40 46.77 0 40 46.77 0

3 40 8.62 0 40 8.62 0

4 40 31.66 0 40 31.66 0

5 40 7.89 0 40 7.89 0

6 40 34.90 0 40 34.90 0

7 60 25.06 0 40 29.10 0

8 60 12.27 0 40 40.36 0

9 60 9.74 0 40 13.32 0

10 80 10.81 0 60 7.23 0

11 80 6.49 0 60 25.87 0

12 80 9.91 0 60 10.80 0

13 80 9.72 0 60 16.08 0

14 80 12.16 0 60 27.74 0

15 80 30.06 0 60 8.58 0

16 100 4.54 1 80 12.45 0

17 100 3.77 1 80 5.54 0

18 100 3.08 1 80 4.17 1

19 80 11.05 0 80 11.05 0

20 80 9.36 0 80 9.36 0

21 80 15.77 0 80 15.77 0

22 80 15.92 0 100 3.21 1

23 80 9.94 0 100 2.72 1

24 80 9.67 0 100 5.83 0

25 100 11.95 0 80 11.95 0

26 100 9.92 0 80 9.92 0

27 100 9.87 0 80 9.87 0

28 100 6.09 0 80 10.19 0

29 100 5.90 0 80 9.80 0

30 100 3.41 1 80 16.32 0
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parallel, and information borrowing does not occur. With 
this suggested extension, explicit formulae for the MTDs are 
MTDA = ξ(βA, σ) = xmin + [(η − σ�−1(γ ))/βA]

1/ν and 
MTDB = ξ(βB, σ) = xmin + [(η − σ�−1(γ ))/βB]

1/ν.

Discrete dose selection
Let � = {dk ∈ (xmin, xmax)|d1 < · · · < dK , k = 1, · · · ,K } 
be the set of ordered dose levels selected for a trial. To adapt 
the vanilla algorithm (Algorithm 2) to incorporate discrete 
dose selection, we modify the algorithm’s third step by set-
ting xn+1 = Dα(Fn) = argmink=1,··· ,K |dk −�−1

n (α)| ∈ �.

Stopping rule
A stopping rule can be integrated into Algorithm 1 by add-
ing a break statement. This break statement will terminate 
the for-loop within the algorithm. The specific condi-
tion for the break depends on the context of the toxicity 
response Y(x). For instance, if Y(x) represents a continuous 
toxicity score, clinicians can implement a break condition 
whenever the number of patients experiencing a CTCAE 
Grade ≥ 4 exceeds a pre-specified threshold. This condi-
tion ensures that the trial is halted due to safety concerns.

Monotonic‑increasing dose sequence
This option aims to ensure that the dose sequence (xn) 
is monotonically increasing: x1 ≤ x2 ≤ · · · ≤ xN . To 
achieve this, the third step in Algorithm  2 is replaced 
with xn+1 = Dα(Fn) = max{xn,�

−1
n (α)} . It is important 

to note that this option disables the de-escalation of the 
dose. Therefore, the choice of the feasibility bound value 
α becomes crucial.

Upper bounding dose increment
To safeguard patients from potential overdose, it is possi-
ble to impose an upper bound on the dose increment. For 
this purpose, in the third step of Algorithm 2, we employ 
xn+1 = Dα(Fn) = min{xn +M,�−1

n (α)} , where M > 0 
is a constant. This design ensures that the dose increment 
remains constrained within an upper limit of M.

Repeated measurement of toxicity response
In cases where each patient is allowed to be assigned 
multiple doses, our modeling framework can be easily 
extended to a non-linear mixed-effect modeling frame-
work, or more generally, Bayesian hierarhical modeling 
framework [66]. Using 3PND as an example, the likelihood 
will now take the form of yij ∼ N (βi(xij − xmin)

νi , σ 2), 
(i = 1, · · · ,N ; j = 1, · · · ,Mi) , where yij represents the 
continuous toxicity response of the i-th patient to the j-
th dose xij . The parameters βi and νi denote the slope and 
non-linearity parameter specific to the i-th patient, while 
the standard deviation σ is shared across all N patients. A 

joint prior distribution for these parameters can be simi-
larly given as the prior of 3PND (7) – (9) to ensure that 
the individualized MTD belong to the dose range, while 
individual model parameters (βi, νi), (i = 1, · · · ,N ) fol-
low a population-level model. Under this formulation, 
the objective is not only to estimate the individualized 
MTDs for each patient but also to estimate the popula-
tion MTD, representing the MTD for all patients.

Conclusions
In this article, we re-examined the dose-finding prob-
lem, delving into its foundational aspects and utilizing 
continuous outcomes. We presented a comprehensive 
dose-finding analysis using our modeling framework and 
introduced the novel 3PND dose-finding algorithm. This 
algorithm, which estimates the non-linearity parameter 
through a fully Bayesian approach, benefits from a mod-
ern sampling technique that enhances the efficiency of 
posterior computation (refer to the Appendix  “Posterior 
computation” for details). Simulation experiments yielded 
results suggesting that our modeling framework demon-
strates favorable trial operating characteristics and is well-
suited for actual phase I studies, ensuring patient safety 
and efficient convergence of dose sequences to identify 
the MTD even with reasonably small sample sizes.

Our modeling framework is not only applicable to deter-
mining the MTD for cytotoxic agents in first-in-human 
studies but also proficient in identifying optimal doses for 
non-cytotoxic agents and animal studies. This adaptability 
stems from its foundation in the regression framework.

One specific context where our modeling framework 
finds relevance is in the domain of molecularly targeted 
agents. Advances in these agents, characterized by mini-
mal or no toxicity within the therapeutic dose range, have 
spurred investigations into optimal phase I trial designs 
[67]. In such scenarios, incorporating pharmacodynamic 
biomarkers becomes imperative to monitor the drug’s bio-
logical effects, particularly in trials involving molecularly 
targeted agents. Here, the determination of the adminis-
tered dose is guided by target inhibition considerations 
rather than toxicity concerns, as elucidated in [62]. As 
demonstrated in the previous section, the 3PND-based 
dose-escalation rule can identify optimal doses by account-
ing for the non-linearity of the dose-response curve.

Another pertinent application lies in pre-clinical stud-
ies, particularly those involving repeated doses in indi-
vidual patients [68]. In such instances, our modeling 
framework seamlessly extends to a non-linear mixed-
effect modeling approach [66]. This extension accom-
modates multiple doses for each patient, empowering the 
determination of personalized MTDs for every individ-
ual, as outlined in Discussion.
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Appendix
Proof of Theorem 1
We can simplify the inequality (1) as follows

where � denotes the cumulative distribution function of 
standard normal distribution. By using elementary calcu-
lus on the last inequality (11), we have

The inequality (12) implies that the value 
ξ = xmin + [{η − σ�−1(γ )}/β]1/ν is the largest value that 
satisfies the inequality (11). On the other hand, the follow-
ing inequality holds due to the parameter constraints on the 
(β , ν, σ) (that is, β > (η − σ�−1(γ )/(xmax − xmin)

ν , ν > 0 , 
and 0 < σ < η/�−1(γ ) ), we have xmin < ξ < xmax . The two 
derived inequalities implies that ξ = xmin + [{η − σ�−1(γ )}/β]1/ν 
is the largest value that satisfies the inequality (2).

Proof of Theorem 2
To prove the theorem, we first show that the marginal 
prior density of MTD ξ , denoted as π(ξ) , is supported 
within the dose range (xmin, xmax) , which encompasses 
the complete parameter space of MTD ξ . To this end, we 
begin by defining Z = ξ |σ , ν as the continuous random 
variable representing MTD ξ , conditioned on the stand-
ard deviation σ and the non-linearity parameter ν . We 
can derive the closed-form expression of the cumulative 
distribution function of Z as follows:

It is straightforward to show that GZ(x) has the follow-
ing properties: (i) GZ(x) is strictly increasing on the open 

(11)
Pr[Y (X) ≤ η|X = x] = Pr

[
Y (X)− β(X − xmin)

ν

σ
≤

η − β(X − xmin)
ν

σ
|X = x

]

= �

(
η − β(x − xmin)

ν

σ

)

≥ γ ,

(12)x ≤ xmin +

(
η − σ�−1(γ )

β

)1/ν

,

GZ(x) = Pr[ξ ≤ x|σ , ν]

= Pr

[

xmin +

(
η − σ�−1(γ )

β

)1/ν

≤ x|σ , ν

]

= Pr

[

β ≥
η − σ�−1(γ )

(x − xmin)ν
|σ , ν

]

=
u(σ , ν)− {η − σ�−1(γ )}/(x − xmin)

ν

u(σ , ν)− l(σ , ν)

=
(xmax − xmin)

ν

(xmax − xmin)ν + 1
·

1

σ�−1(γ )
·

(
η

(xmax − xmin)ν
+ σ�−1(γ )−

η − σ�−1(γ )

(x − xmin)ν

)

.

interval (x∗min(σ , ν), xmax) , (ii) GZ(x
∗
min(σ , ν)) = 0 , and 

(iii) GZ(xmax) = 1 , where the left end point x∗min(σ , ν) of 
the interval is given by

Therefore, the random variable Z = ξ |σ , ν is supported 
on the interval (x∗min(σ , ν), xmax).

Note that the left end point x∗min(σ , ν) is a function of σ 
and ν , whose support is given as (0, η/�−1(γ ))× (0,∞) . 
On the other hand, by using elementary calculus, we 
can show that the function x∗min(σ , ν) (13) is mono-
tonically deceasing and continuous on the interval 
(0, η/�−1(γ )) , and the following one-sided limits hold: 
limσ→(η/�−1(γ ))−x

∗
min(σ , ν) = xmin and limσ→0+x

∗
min(σ , ν) = xmax , for any 

fixed value of ν > 0 . Summing the results indicates that 
the marginal random variable ξ is supported on the open 
interval (xmin, xmax).

Because the marginal prior of ξ is compactly supported 
on the open interval (xmin, xmax) , the measure zero set over 
the dose range (xmin, xmax) with respect to the prior meas-
ure π(ξ) is the empty set. Thus, by the Doob’s theorem [56], 
the posterior distribution of ξ is consistent at any value 
ξ0 ∈ (xmin, xmax).

Posterior computation
Gibbs sampler
Let Fn = {(xi, yi)}

n
i=1 denote the set of the n observations 

from the first n subjects, where yi = Y (xi) represents the 

continuous toxicity response of the i-th patient against 
the assigned dose xi . We consider a vector-form of the 

(13)x
∗
min(σ , ν) = xmin +

[
{η − σ�−1(γ )} · (xmax − xmin)

ν

η + σ�−1(γ ) · (xmax − xmin)ν

]1/ν

.
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3PND (6) – (9): yn = zνnβ + σǫn , ǫn ∼ Nn(0, In) (6), where 
yn = (y1, · · · , yn)

⊤ and zνn = ((x1 − xmin)
ν , · · · , (xn − xmin)

ν)⊤ 
are n-dimensional response and covariate vectors, respec-
tively. Here, the ν in the vector notation zνn implies the com-
ponent-wise exponent.

Now, our eventual goal is to simulate a sample from the 
joint posterior distribution

where l(σ , ν) = {η − σ�−1(γ )}/(xmax − xmin)
ν and 

u(σ , ν) = {η/(xmax − xmin)
ν} + σ�−1(γ ).

The nominator of the joint density π(β , ν, σ |Fn) (14) is 
detailed as

where c(β , ν) = (yn − zνnβ)
⊤(yn − zνnβ)/2 . Because 

the joint density π(β , ν, σ |Fn) cannot be obtained in a 
closed-form distribution, we develop a MCMC algorithm 
to sample from the joint density. Algorithm  3 details 
a Gibbs sampler [58, 69] to sample from the density 
π(β , ν, σ |Fn) (15).

(14)π(β , ν, σ |Fn) =
Nn(yn|z

ν
nβ , σ

2In) · π(β , ν, σ)
∫ u(σ ,ν)
l(σ ,ν)

∫∞
0

∫ η/�−1(γ )

0 Nn(yn|zνnβ , σ
2In) · π(β , ν, σ)dσdνdβ

,

(15)

Nn

(
yn|z

ν
nβ , σ

2In

)
· π(β|σ , ν) · π(σ) · π(ν)

= Nn(yn|znβ , σ
2In) · U(β|l(σ , ν),u(σ , ν)) · C

+(σ |0, 1)I(0,η/�−1(γ ))(σ ) · logN (ν|0, δ2)

∝
1

(σ 2)n/2
exp

(

−
c(β , ν)

σ 2

)

·
1

σ
I(l(σ ,ν),u(σ ,ν))(β) ·

1

1+ σ 2
I(0,η/�−1(γ ))(σ ) ·

1

ν
exp

(

−
(log ν)2

2 · δ2

)

,

Algorithm 3 Gibbs sampler

Note that the density π(β|σ , ν,Fn) (16) in Step 1 is a 
truncated normal distribution supported on the inter-
val (l(σ , ν),u(σ , ν)) with mean µn(ν) and variance σ 2

n (ν) . 
Using a statistical software R, one may use R package 
truncnorm to sample from it. To implement Step 2 and 
Step 3, one consideration is to use Metropolis-Hasting 
algorithm (MH) [57] due to the non-closed form the full 

conditional densities, which may have an issue of sam-
pling efficiency. Instead, in the next subsections we intro-
duce modern MCMC sampling techniques to sample 
from the densities.

Slice sampler implementation in Step 2
We use the slice sampler [59] to implement Step 2. Slice 
sampler is popular for its ability to adapt the change of 
the step size based on the local property of the target 
density. A central idea of the slice sampler is to find a 
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valid parameter expansion from the target density, and 
use the Gibbs sampler to the expanded target distribu-
tion [70]. See [59] for more detail.

To apply the slice sampler in the Step 2 (17), first, use 
the change of variable, τ = σ 2 , to get

where g(τ ) = 1/(1+ τ ) and A(β , ν) = ({h(β , ν)}2, {η/�−1(γ )}2) . 
The notation IG(a, b) denotes the inverse gamma dis-
tribution with shape parameter a and scale param-
eter b. Note that the function u = g(τ ) is decreasing on 
the positive real line, and its inverse function is given 
by τ = g−1(u) = (1− u)/u . Consider a joint density, 
π(τ ,u|β , ν,Fn) ∝ IG(τ |n/2, c(β , ν)) · I(0,g(τ ))(u) · IA(β ,ν)(τ ).   . 
We can show that 

∫
π(τ ,u|β , ν,Fn)du = π(τ |β , ν,Fn) , 

which implies that π(τ ,u|β , ν,Fn) is a valid param-
eter expansion of the density π(τ |β , ν,Fn) (19). 
Finally, execute the Gibbs sampler to the joint density 
π(τ ,u|β , ν,Fn) , and disregard u, and transform τ back to 
σ to get a realization from π(σ |β , ν,Fn).

Algorithm  4 details the steps to implement the slice 
sampler:

(19)

π(τ |β , ν,Fn) = π(σ |β , ν,Fn)|σ=τ 1/2 · |dσ/dτ |

∝ τ−(n+1)/2 exp {−c(β , ν)/τ } · {1/(1+ τ )} · IB(β ,ν)(τ
1/2) · |τ−1/2|

∝ τ−n/2−1 exp {−c(β , ν)/τ } · {1/(1+ τ )} · IA(β ,ν)(τ )

∝ IG(τ |n/2, c(β , ν)) · g(τ ) · IA(β ,ν)(τ )

Algorithm 4 Slice sampler for Step 2

Elliptical slice sampler implementation in Step 3
The current subsection illustrates how to sample from 
the conditional posterior density π(ν|β , σ ,Fn) (18) by 
using the elliptical slice sampler (ESS) [60]. Conceptu-
ally, ESS and MH algorithms are similar in that both 

comprises two steps: proposal step and criterion step. A 
difference between the two algorithms arises in the cri-
terion step. If a new candidate does not pass the crite-
rion, then MH takes the current state as the next state: 
whereas ESS re-proposes a new candidate until rejection 
does not take place, rendering the algorithm rejection-
free. To apply the ESS in the Step 3 [18], we start with 
the change of variable, φ = log ν , to get

where L(φ) = exp {−c(β , eφ)/σ 2} . Algorithm  5 details 
the steps to implement ESS:

(20)

π(φ|β , σ ,Fn) = π(ν|β , σ ,Fn)|ν=eφ · |dν/dφ|

∝ exp
{
−c(β , eφ)/σ 2

}
· logN1

(
e
φ |0, δ2

)
· eφ

∝ L(φ) ·N1(φ|0, δ
2),
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Algorithm 5 Elliptical slice sampler for Step 3

Abbreviations
MTD	� Maximum tolerated dose
DLT	� Dose-limiting toxicity
CTCAE	� Common toxicity criteria for adverse events
NPD	� Number of patients with dose-limiting toxicity
NPO	� Number of patients overdosed
BTM	� Bias to MTD
RMSE	� Square root of the relative mean squared error
3PND	� Three-parameter non-linear dose-finder
EWOC	� Escalation with overdose control
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