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Trials

Specific recommendations to improve 
the design and conduct of clinical trials
Mark J. Kupersmith1,2,3* and Nathalie Jette1,4 

Abstract 

There are many reasons why the majority of clinical trials fail or have limited applicability to patient care. These include 
restrictive entry criteria, short duration studies, unrecognized adverse drug effects, and reporting of therapy assign-
ment preferential to actual use. Frequently, experimental animal models are used sparingly and do not accurately 
simulate human disease. We suggest two approaches to improve the conduct, increase the success, and applicability 
of clinical trials. Studies can apply dosing of the investigational therapeutics and outcomes, determined from animal 
models that more closely simulate human disease. More extensive identification of known and potential risk factors 
and confounding issues, gleaned from recently organized “big data,” should be utilized to create models for trials. The 
risk factors in each model are then accounted for and managed during each study.

Background
Why are not the results of drug clinical trials more effec-
tive? Except for certain infectious diseases treated with 
antimicrobial agents, medical therapies rarely cure ill-
nesses. Rather, most therapies reduce risks, decrease the 
frequency of harmful consequences, and moderate the 
severity of future clinical deficits in specific patient popu-
lations. One example of a commonly used therapy, statins 
reduce low-density lipoprotein (LDL), which is associ-
ated with atherosclerosis plaque occurrence. But myo-
cardial infarction is reduced only by approximately 30%, 
less if the drug is discontinued [1–4], The relationship 

between serum LDL levels and clinical benefit are not 
strong. Without addressing all of the other potential risk 
factors, we still do not know if LDL reduction, without 
other actions, is a true surrogate for clinical efficacy for 
statin use.

Problems with current approaches to clinical trials
The often-modest clinical benefits of new FDA approved 
therapies may stem from the limitations of drug devel-
opment, which includes fundamental problems in the 
design of many clinical trials [5–22]. Numerous critiques 
have detailed a variety of reasons why clinical trials fre-
quently fail and the pitfalls for interpreting and apply-
ing the results [23, 24]. A partial list of these problems 
includes poor recruitment and retention, restrictive entry 
criteria that limit enrollment of patients with concomi-
tant medical illnesses, children, older adults, and preg-
nant women; or non-participation by disenfranchised 
groups; brief study period and follow up; and failure to 
account for unrecognized adverse drug effects, some of 
which may be due to concomitant use of multiple non-
study drugs. Other problems include using “intention 
to treat” as the principal analysis rather than the actual 
drug or intervention that occurred for each participant, 
or uniform dosing of study drug, which may not reflect 
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actual blood and tissue levels [25]. Lastly, the selected 
endpoints may not be clinically meaningful. For example, 
with new cancer studies of people treated with immu-
notherapies, trials show a cellular immune response or a 
change in tumor burden, but the real goals are increasing 
survival and cures.

Complexity of human disease
Current randomized trials are most often designed to 
show the effect of a specific therapy, drug, or procedure, 
compared with a placebo or one another, and less com-
monly two, therapy. A primary outcome is required, and 
numerous secondary outcomes are considered to meas-
ure the effect of the study intervention. Trials assume 
that for the duration of the study, participants will be 
otherwise stable except for the specific illness being 
investigated. The problem is that human diseases are 
often the results of numerous, often incompletely under-
stood factors. We are complex living organisms, affected 
by an incalculable number of biological, behavioral, and 
environmental variables. Thus, it is improbable that a sin-
gle therapy will completely control and certainly unlikely 
to cure most illnesses. Yet, investigators persist in this 
approach, choosing obtainable goals, but not necessarily 
proving a clinical benefit for study therapies. For exam-
ple, most if not all medications approved for glaucoma 
are based on reducing elevated intraocular pressure. 
However, glaucomatous optic nerve damage and associ-
ated vision loss often occur despite lowering the elevated 
intraocular pressure. And we do not know how well the 
surrogate measurement of intraocular pressure is linked 
to the desired outcome of treatment (prevention of vision 
loss). In another example, it is yet to be determined 
whether drug induced activation of the immune system 
against cancer is strongly correlated with improved sur-
vival [26].

We suggest that the rigid tactics used in drug devel-
opment accounts for some of the failures of drugs that 
appear to be successful in experimental animal dis-
ease models [27]. Additionally, promising drugs, which 
might be effective if combined with one or more addi-
tional interventions, are abandoned. Though the current 
approach has been effective for developing treatments for 
many disorders, it is clearly limiting.

Further, most disorders have multiple pathophysiologi-
cal mechanisms that occur sequentially, simultaneously, 
or in other sequences. Altering or blocking one patho-
logical process may not be adequate to result in clinical 
benefit. Recent trials in oncology demonstrate the ben-
efit of combining chemotherapy and immunotherapy for 
reducing neoplasia pathology, but this does not always 
prolong survival [28], and, in most situations, cure rates 
remain low [29]. In another disorder that was virtually 

100% life-ending, HIV antiretroviral therapy is effective, 
but HIV infection persists, so interventions to augment 
the immune response, such as the CD8 + T-cell response, 
are being tested [30].

Pharmaceutical and device companies want to have 
simple outcome measures and endpoints. The goal is to 
have short duration studies and secure regulatory agency 
approval and a marketed product. The US federal funding 
agency-supported trials are approved based on review-
ers who demand simple unambiguous outcomes and 
brief duration trials. In general, few trials are designed 
to address and treat multiple factors, specifically tar-
geted to individual participants (e.g., precision medicine) 
or addressing the features of models derived from prior 
studies or “big data” [31].

Rethinking study design
Accounting for and managing identified risk factors is 
complicated and remains a major challenge in clinical 
practice. In the current environment, few healthcare pro-
viders have the time to adequately explore these issues, 
but there are efforts to address these complicating con-
cerns to determine the effectiveness of therapies [32]. 
Providing the most complete phenotypes (determined by 
all features) for study stratification should be optimized. 
Of course, study participants deserve the best and safest 
management during every clinical trial, and this could 
be an added benefit to improve recruitment. Many tri-
als utilize stratification to balance treatment groups for 
specific risk factors, but this is only a partial solution 
[33]. Instead of performing analyses such as proportional 
hazard on collected data, clinical trials should prospec-
tively manage these factors. This would include assessing 
adherence of the prescribed management, in addition to 
the steps utilized to assess study drugs and safety. The 
results of such studies could provide the foundation for 
improved healthcare outside of clinical trials. The man-
agement of every risk factor does not necessarily require 
medications, as interventions such as lifestyle changes 
and behavioral counseling are beneficial for numerous 
diseases (e.g., obesity reduction for diabetes mellitus, sys-
temic hypertension, and idiopathic intracranial hyperten-
sion). Providing management of many risk factors during 
a clinical trial may have an unintended consequence—an 
otherwise effective study therapy may not appear to be a 
robust treatment if each treatment group has additional 
effective interventions (e.g., the NIH sponsored Idio-
pathic Intracranial Hypertension Treatment Trial barely 
showed acetazolamide improved the primary outcome 
measure, a global index visual field loss, as the placebo 
group had managed weight reduction, a key treatment in 
the disorder [34]). Even if risk factor control might mask 
the effectiveness of a drug, if the drug is truly useful, it 
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should be effective in participants who do not have the 
additional risk factors or in those who are more adher-
ent to the self-management and recommendations for 
best medical care practices. Industry partners may be less 
responsive to this concept, as it could certainly drive up 
the costs of clinical trials.

Another problem in drug development is the use of 
experimental animal models that may not closely mir-
ror the human disease to be targeted. Preclinical studies 
reasonably focus on safety, but drug development that 
bypasses use of the best animal models may lose valu-
able insight into the efficacy, the outcome measures, and 
dosing. Companies may accelerate this process to satisfy 
investors by rushing investigations of their study drugs 
into human clinical trials. Experimental animal models of 
disease rarely replicate human diseases, but they provide 
insight and identify multiple potential mechanisms in 
the pathophysiological process to possibly address (e.g., 
experimental autoimmune encephalomyelitis models for 
multiple sclerosis, laser vascular injury for ischemic optic 
neuropathy) [35]. Yet, results of human clinical trials and 
animal studies frequently differ, which may be due in part 
to differences between species, inadequate models, lack 
of consistent outcome measures, and inadequate sample 
size for the experimental model [36].

Recently, efforts by data/computer companies, health-
care systems, and other institutions have recognized 
the importance and power of using artificial intelligence 
and other methods to mine large patient databases and 
validate or develop new theories of risk factors, modifi-
able or not, for diseases. “Big” data can be used to create 
models, based on human data, which can be evaluated 
for significance in large databases such as IBM Market 
Watch or Medicare data. For example, a model can be 
used to determine the impact on developing a specific 
disorder over a defined time interval. Individuals with 
and without the features of the model, without the tar-
get illness at a starting time point, can be evaluated for 
the development and severity of the target disease in 
already collected global health data. Once the relevance 

of these human models is established, they can be applied 
to treatment trials. Machine and deep learning methods 
have been suggested as a way to identify potential clini-
cal trial participants, augment stratification to reduce the 
number of patients needed, enhance recruitment, and 
streamline monitoring [37, 38]. To date, artificial intelli-
gence-derived complex models of disease, using human 
and experimental paradigms, have been used sparingly 
to identify the multiple risk factors for clinical trials, and 
they have not been applied to develop the needed mul-
tiple approaches to treat illnesses. Using rheumatoid 
arthritis investigations as examples of this approach, 
studies show that that these investigations are not truly 
global in consideration of all potential factors. They tend 
to only take into account known features, thought to have 
potential for disease prevention [39] or to be associated 
with the disorder [40]. Thus, they do not seem to improve 
prediction of therapeutic response [41]. However, 
machine learning methods that utilize approaches such 
as the least absolute shrinkage and selection operator 
and random forests methods may identify new previously 
unrecognized predictors of disease severity and response 
to a therapy [42]. Clinicians and clinical trial experts in 
each specialty should contemplate using these “big data” 
to create expanded risk models that include more than 
the obvious risk factors. These models could be consid-
ered in clinical trial design and participants accordingly 
stratified at study enrollment. Treatment groups could 
include groups without potential risk factors and those 
with the risk factors, with further stratification depend-
ing on the degree of control of those factors.

Conclusions
The proposed approaches must be and can be assessed 
before implemented in clinical trials. In non-medical 
fields such as finance, theoretical paradigms developed by 
academics have not always been successful in real world 
applications. The “science” of investing is replete with 
complex models that work in isolated situations but do 

Table 1 Recommendations to improve clinical trials

1. Develop experimental models that closely mirror the human disease for testing

2. Use of outcomes that reflect the animal model results and are clinically meaningful

 a. Increased use of secondary outcomes when clinically meaningful

3. Dosing better tied to animal model outcome testing (in addition to safety)

 a. Determine if drug levels in an accessible specimen are relevant to a response

4. Recognizing the complexity of human disease

 a. Use existing databases to determine the risk factors that could be important in the study disease and create disease models

 b. Manage other disease risk factors during the trial

 c. Control for complications due to non-study medications

5. Combine therapies to address multiple pathophysiological mechanisms
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not withstand the frequent shifting conditions in finan-
cial markets [43]. The chaos induced by the unpredict-
ability of politics, regulations, wars, social changes, and 
weather defy accurate forecasting. Human health is simi-
lar—as health status is affected by stress, diet, and use of 
medications that can induce adverse effects. In contrast 
to financial market forecasting, comprehensive preclini-
cal testing and the approach of testing the disease models 
in existing huge databases can overcome some of these 
issues and provide a form of replication. However, in the 
end, no database on human health is complete enough to 
absolutely account for every combination and permuta-
tion of human health. Table 1 lists the additional recom-
mendations for improving future clinical trials.
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