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Abstract 

Background Surgical interventions are complex. Key elements of this complexity are the surgeon and their learning 
curve. They pose methodological challenges in the design, analysis and interpretation of surgical RCTs.

We identify, summarise, and critically examine current guidance about how to incorporate learning curves in the 
design and analysis of RCTs in surgery.

Examining current guidance Current guidance presumes that randomisation must be between levels of just one 
treatment component, and that the evaluation of comparative effectiveness will be made via the average treatment 
effect (ATE). It considers how learning effects affect the ATE, and suggests solutions which seek to define the target 
population such that the ATE is a meaningful quantity to guide practice. We argue that these are solutions to a flawed 
formulation of the problem, and are inadequate for policymaking in this setting.

Reformulating the problem The premise that surgical RCTs are limited to single-component comparisons, evalu-
ated via the ATE, has skewed the methodological discussion. Forcing a multi-component intervention, such as sur-
gery, into the framework of the conventional RCT design ignores its factorial nature.

We briefly discuss the multiphase optimisation strategy (MOST), which for a Stage 3 trial would endorse a factorial 
design. This would provide a wealth of information to inform nuanced policy but would likely be infeasible in this 
setting.

We discuss in more depth the benefits of targeting the ATE conditional on operating surgeon experience (CATE). The 
value of estimating the CATE for exploring learning effects has been previously recognised, but with discussion lim-
ited to analysis methods only. The robustness and precision of such analyses can be ensured via the trial design, and 
we argue that trial designs targeting CATE represent a clear gap in current guidance.

Conclusion Trial designs that facilitate robust, precise estimation of the CATE would allow for more nuanced poli-
cymaking, leading to patient benefit. No such designs are currently forthcoming. Further research in trial design to 
facilitate the estimation of the CATE is needed.
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Introduction
The need for randomised controlled trials (RCT) in 
evidence-based medicine is well-established. There is 
a consensus in the surgical literature of accepting well-
designed and well-conducted RCTs as a “gold standard” 
for the evaluation of comparative effectiveness of surgical 
interventions. However, it is also widely acknowledged 
that the surgical setting poses numerous practical and 
methodological challenges to the design and conduct of 
an RCT. While none of these challenges are necessarily 
unique to surgery, it has been argued that the specific 
way in which they combine may in fact be unique to the 
surgical setting. Perhaps due to this, surgical trials have 
developed their own body of methodological literature, 
and arguably their own distinct field of research. This is 
exemplified by the IDEAL guidelines [1–6].

Surgical interventions are complex [4–12]. Key ele-
ments of this complexity are the surgeon and their learn-
ing curve. They have often been at the centre of debate 
and discussion in the literature about how to appro-
priately design, analyse and interpret a surgical RCT, 
because of the methodological challenges that they pose.

In this paper, we focus on the learning curve. Specifi-
cally, how to appropriately incorporate the existence of 
the learning curve into the design and analysis of Stage/
Phase 3 surgical RCTs.

In the “Background” section, we identify and summa-
rise how learning curves and the methodological chal-
lenges that they pose to surgical trial design and analysis 
are characterised in the surgical trial literature. We sum-
marise conventions for incorporating learning effects in 
surgical trial design and analysis. We outline how those 
conventions appear to have developed from a set of pre-
sumed necessary features of a surgical RCT, including 
randomisation with respect to only a single treatment 
component and the choice of estimand being the aver-
age treatment effect (ATE), which has led to an arguably 
misguided framing of the methodological problem to be 
solved.

In the  section titled “Examining the current formula-
tion of the problem and proposed solutions”, we critically 
examine the available literature and identify, summarise 
and discuss gaps in the surgical trial literature both in 
terms of the characterisation of the methodological prob-
lem and the proposed solutions. We argue that current 
methods for incorporating learning effects are attempted 
solutions to a misguided formulation of the problem, and 
are therefore inadequate.

In the section titled  “Reformulating the problem”, we 
suggest a reformulation of the problem, and briefly dis-
cuss avenues for further research that we believe would 
more appropriately incorporate learning effects, improv-
ing surgical trial design and analysis.

Background
What are learning effects and what methodological 
challenges do they pose?
The individual’s learning curve
It is a practical inevitability that any individual surgeon 
must go through a period of learning before they become 
proficient at delivering a particular procedure, during 
which it is expected that “errors and adverse outcomes 
are more likely” [13]. The increase of an individual’s 
proficiency over time is commonly referred to as their 
“learning curve”.

A distinction is made between learning during the ini-
tial development of the procedure, where the community 
of innovators and early adopters learn from their initial 
experiences while simultaneously refining the proce-
dure, and the learning curve of an individual surgeon 
who gains proficiency through the repeated performance 
of the fully-developed, stable procedure [9, 14–16]. The 
latter is what one may typically expect to encounter in a 
Stage/Phase 3 RCT since it is expected that the proce-
dure has “stabilised” before such an RCT is carried out.

The following characterisation from Cook, Ramsay 
and Fayers [17] (pg. 255) appears to be the accepted 
foundation for conceptual models of the learning curve: 
“A learning curve...tends to be most rapid at first and 
then tails off over time. Three main features of a learn-
ing curve can be recognized. An initial or starting level 
defines where the performance level begins. The rate of 
learning measures how quickly a particular level of per-
formance is reached. Last, the asymptote or expert level 
is the level at which performance stabilizes.”

The evolution of a new surgical intervention and the timing 
of an RCT 
It appears to be unanimously accepted that a new surgi-
cal procedure initially goes through a period of develop-
ment during which it undergoes “rapid”, “fluid”, “iterative” 
change in light of the early practical experience gained 
by its innovators/early adopters [6]. It is also accepted 
that the procedure ultimately “stabilise[s]”/“settle[s]” 
[9], in some sense, before wider adoption [6]. This raises 
the question of when the best time is to undertake a 
Stage/Phase 3 RCT to evaluate the effectiveness of the 
procedure.

An often-cited argument from Chalmers [18] is that 
randomised evaluation should begin with the first 
patient. It is argued that if clinical equipoise exists, then 
randomised allocation offers the patient the best chance 
of receiving the best treatment. However, many commen-
tators argue that a randomised comparison undertaken 
during the development stage of a new intervention will 
quickly become obsolete as the intervention evolves [19–
24]. The prevailing opinion is that the intervention should 
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be allowed to fully develop before randomised compari-
sons are made. Practically this gives a lower bound on the 
appropriate timing for an RCT.

More practical considerations also impose an upper 
bound to the timing. It is widely accepted that if an RCT 
is attempted too late — after the “exponential adoption” 
of the intervention — then recruitment will be infeasible 
[2, 6, 21, 23, 25–27]. It is believed that the wide adop-
tion of an intervention is congruent with a “conviction 
of likely efficacy” [6], which would then “upset equi-
poise” [23]. Similarly, if evaluation is attempted too late, 
then the new intervention may have already — rightly or 
wrongly — been discarded due to a conviction of likely 
lack of efficacy.

These arguments imply that there is a perceived inter-
val during which an RCT of a new surgical intervention is 
appropriate: after having undergone its period of devel-
opment, and before it has been adopted in wider practice. 
Given that an RCT will likely require the commencement 
of wider adoption to meet sample size requirements, it 
follows that many of the participating surgeons in an RCT 
will be unfamiliar with the experimental intervention.

Principal features of a surgical RCT 
The perceived goal of a surgical RCT has been to emu-
late the approach to RCTs taken in drug evaluation. RCTs 
have been successfully implemented to evaluate drugs, 
and it is presumed that surgical interventions should 
be “similarly” evaluated, with many authors referring to 
“the (conventional) RCT” [19, 28–31], a parallel-group 
design where individual patients are randomised to inter-
ventions, most typically to either the experimental or 
control intervention, with the aim of estimating the aver-
age treatment effect (ATE). When evaluating complex 
interventions, randomisation under this design involves 
either randomising a single component of the complex 
intervention, or randomising between different whole 
intervention packages. We will refer to this design as the 
conventional RCT .

Given the required timing of a surgical RCT, many of 
the participating surgeons will be new adopters of the 
experimental intervention, still in the process of learning 
during the trial, whereas they will likely already be pro-
ficient with the standard care [2, 9, 15, 23, 27, 32, 33]. A 
common concern is that this disparity of expertise may 
distort the comparison between the interventions, “bias-
ing” the results against the experimental intervention [2, 
6, 9, 13, 15, 23, 27, 31, 33–37]. This perceived source of 
bias, referred to as “differential expertise bias”, is a “fre-
quent criticism” of surgical RCTs [9], and is central to 
discussions about surgical RCT design.

Also, at the centre of debate and discussion about 
surgical trial design is the widely-acknowledged 

heterogeneity of surgical care [12, 38–40]. Design phi-
losophies appear to diverge based on their stance on 
how to appropriately incorporate treatment heteroge-
neity in the conventional RCT. On the one hand, it is 
frequently treated as a nuisance, to be suppressed or 
eliminated from a trial, giving rise to suggestions such 
as standardisation of the interventions [19, 29, 41, 42] 
and restricting recruitment to a set of practitioners that 
are more homogeneous than the wider population [6, 7, 
13, 19, 21, 23, 26, 28, 29, 31, 41–43]. On the other hand, 
discussions of “pragmatic” RCTs focus more on captur-
ing the heterogeneity so that the trial is more inclusive 
and better reflects wider practice [2, 8, 9, 16, 20, 35].

Learning effects are one aspect of the heterogeneity of 
surgical care, and these competing design philosophies, 
coupled with the premise of emulating the conven-
tional RCT, give rise to two clear and distinct schools of 
thought about how to best incorporate learning effects 
in surgical RCT design.

Learning effects in current surgical trial design
A commonly suggested approach is to limit participa-
tion to only those surgeons who are no longer “learn-
ing” any of the interventions, for example by requiring 
that the surgeons need to have “completed”/“gone 
through”/“[reached] the plateau [of ]” their “learn-
ing curve” [13, 21, 31], or to have “mastered” [22] the 
technique, to have “an acceptable level of ”/“sufficient” 
experience [6, 28], or to have undergone “a period of 
training”/“run-in period” [7, 43]. Despite varying prac-
tical suggestions for how exactly to set the criteria, the 
common goal is the same, to ensure that “the learning 
occurs outside the study” [16].

An objection to this “experts-only” design is that it 
limits the external validity of the trial [8, 15, 16, 20, 29, 
33, 36]. In wider practice not all surgeons that deliver 
these treatments will be expert surgeons, and so the 
results from such a trial may not be “mirrored by the 
larger surgical community” [36], and thus “aren’t use-
ful to guide everyday surgical practice” [33]. When the 
goal is to evaluate effectiveness, it is argued that a more 
“pragmatic” approach is required [2, 3, 8, 9, 16, 20, 35].

A widely advocated alternative approach is therefore 
to aim to have a group of participating surgeons which 
is representative of those who would deliver the inter-
vention in wider practice [9, 15, 20, 22, 33, 37]. This 
aligns with the aims of a “pragmatic” design, and sug-
gests imposing no restrictions on the level of expertise 
required for a surgeon to participate in the trial, given 
that the surgeon meets any requirements to perform 
the intervention in general practice [9, 16, 20, 22, 37].
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Learning effects in current surgical trial analysis
Available guidance on incorporating operating surgeon 
experience in the analysis of a surgical RCT is given by 
a body of literature, stemming from Cook, Ramsay and 
Fayers [14, 15], which suggests that data about operating 
surgeons’ experience should be collected during the trial 
[9, 14-16, 20, 32, 33, 36]. It is recognised that the treat-
ment effect may depend on the level of experience of the 
operating surgeon, and that a benefit of collecting data 
on operating surgeon experience is the abilty to explore 
this relationship by estimating the “learning effects” [14, 
15, 44]. However, it is assumed that the trial is designed 
to target the ATE only, and that therefore analyses of the 
learning effects are ancilliary, not supported (and thus 
in particular not necessarily sufficiently powered) by the 
design.

Under the experts-only design, it is assumed that all 
surgeons in the trial have already reached the plateau of 
their learning curve, and that therefore the ATE will not 
vary with respect to operating surgeon experience within 
the trial population. The rationale for collecting operat-
ing surgeon experience data under this design is to check 
this assumption empirically, and to adjust for it if not, to 
address the differential expertise bias.

Under the pragmatic design, the rationale for collect-
ing operating surgeon experience data is to demonstrate 
how representative the distribution of operating experi-
ence in the trial is, and to perform exploratory analyses 
which estimate how (if at all) the comparative effective-
ness of the interventions changes with operating surgeon 
experience [14, 15].

Examining the current formulation of the problem 
and proposed solutions
Surgical interventions comprise multiple treatment com-
ponents. Typically they cannot be sufficiently described 
by procedure name alone. For example, two identical 
patients receiving the same procedure but from different 
surgeons, or at different centres, or with different pre- 
and post-operative care protocols, etc. are not receiving 
the same intervention, and therefore do not necessarily 
have the same expected outcome. The level of operating 
surgeon experience at the time of the operation is a prime 
example of one of these treatment components and is 
present in all surgical interventions. A patient undergo-
ing a procedure performed by a surgeon with no previ-
ous experience with that procedure is not receiving the 
same intervention, and may not have the same expected 
outcome, as an identical patient undergoing the same 
procedure performed by the same surgeon once they 
are an expert. A surgical intervention is more accurately 
described in terms of both the procedure and the level of 
experience of the operating surgeon, e.g. “Procedure A” 

is more accurately described as “Procedure A performed 
by a surgeon who has performed Procedure A over 300 
times previously”.

Current discussion about both how to characterise and 
address the challenges that learning curves pose is built 
upon the premise that the comparison to be made is 
with respect to only a single treatment component, typi-
cally Procedure, and that the primary target of the trial 
is the average treatment effect (ATE), a single value (e.g. 
an odds ratio, hazard ratio, or difference in means) which 
represents the difference in expected patient outcome if 
they are offered Procedure B compared to A, averaged 
over the target patient population.

When making a single-component comparison only 
in the evaluation of multi-component interventions, 
the ATE represents the difference in patient outcome 
between the different levels of that component (e.g. Pro-
cedure A vs B) averaged over the observed levels of the 
other treatment components (e.g. operating surgeon and 
their level of experience). The hypothetical example in 
Fig. 1 illustrates this, where the ATE is evaluating Proce-
dure A vs B, and does so by averaging over the observed 
levels of operating surgeon experience. In Fig. 1, the ATE 
is illustrated via the speedometer-type symbols, pointing 
in a single direction indicating direction and strength of 
superiority of a procedure. Figure 1a plots the conditional 
average treatment effect (labelled CATE) — the expected 
difference in patient outcomes under Procedure A vs B 
conditional on the operating surgeon’s level of experience 
with Procedure B. The ATE evaluated at a number of dif-
ferent levels of experience is illustrated in Fig. 1a. In the 
example illustrated in Fig. 1, Procedure B performed by a 
surgeon with no previous experience is inferior to Proce-
dure A, but the comparative effectiveness of Procedure B 
increases under surgeons with more experience. In such 
a scenario, the ATE will depend on how many patients 
in the target population will be having their operation 
performed by inexperienced surgeons. That is, the ATE 
is specific to the distribution of the levels of experience 
of the operating surgeons. This is illustrated in Fig. 1b–d 
where the ATE is evaluated in three distinct example tar-
get populations.

The target population in Fig.  1b comprises mostly 
patients who would be receiving Procedure B performed 
by an inexperienced surgeon, and thus the ATE points to 
the inferiority of Procedure B. The target population in 
Fig. 1c comprises mostly patients who would be receiv-
ing Procedure B performed by a surgeon with moder-
ate experience, and thus the ATE points to no difference 
between the Procedures. Finally, in Fig. 1d, the majority 
of patients would receive Procedure B from surgeons 
with high experience, and thus the ATE points to the 
superiority of Procedure B.
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In summary, for a given, fixed relationship between 
operating surgeon experience and treatment effect, the 
single-component comparison of Procedure A vs B made 
by targetting the ATE can ultimately point to either pro-
cedure being superior, or to there being no difference 
between the procedures, solely depending on the distri-
bution of the level of experience of the operating surgeon 
in the target population.

The methodological challenge then, as characterised by 
surgical trial literature, is about defining the target popu-
lation such that the ATE for a randomised comparison of 
different levels of a single treatment component is a well-
defined, consistent and meaningful quantity that can be 
used to guide policy in a setting where there is treatment 
effect heterogeneity related to operating surgeon experi-
ence. The two predominant schools of thought regarding 
surgical trial design represent contrasting attempts to 
address this challenge.

Experts‑only design
The experts-only design defines the target population as 
patients who are treated by surgeons who have reached 
the plateau of their learning curve. This approach views 

treatment effect heterogeneity related to operating sur-
geon experience as a nuisance, and attempts to eliminate 
it from the trial by restricting attention only to the subset 
of interventions where there is minimal treatment effect 
heterogeneity. Setting an inclusion criteria for participat-
ing surgeons in terms of a minimum threshold for their 
level of experience appears to be a popular approach in 
practice [45].

Figure  2 illustrates the experts-only design applied 
to the same three example populations given in Fig.  1. 
Patients being treated by operating surgeons below a 
given threshold of experience are excluded from the trial. 
Consequently, in the range of experience that is included, 
treatment effect heterogeneity is negligible. We get the 
same ATE in all three target populations, but with differ-
ent amounts of exclusivity of the trial population in each 
case.

Essentially the operating surgeon experience treatment 
component is being held constant at the expert level. 
This gives us a well-defined, consistent ATE with a valid 
interpretation: “How does expertly-performed Procedure 
B compare to expertly-performed Procedure A on aver-
age (across the population of patients who are treated by 

Fig. 1 ATEs evaluating Procedure A vs B under populations with a fixed CATE but different distributions of operating surgeon experience
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expert surgeons)?” In wider complex intervention litera-
ture, this would be referred to as the simple effect of the 
procedure component at the expert level of the operat-
ing surgeon experience component [46]. The results from 
such a trial are useful for providing evidence of efficacy 
— superiority of the experimental procedure under ideal 
conditions - but will have limited utility for evaluating 
effectiveness, and thus for policymaking. This is because 
it does not shed light on the comparative effectiveness of 
the procedures at any non-expert levels of operating sur-
geon experience.

For example, in Fig.  2, an experts-only design would 
reveal that Procedure B is superior to Procedure A when 
performed by an expert surgeon. This evidence could 
reasonably be used as proof-of-concept that Procedure 
B has the potential to be superior to Procedure A across 
the wider population, warranting further, more inclusive 
research. However, it does not act as sufficient evidence 
of the effectiveness of Procedure B in wider practice. For 
example, in the target population in Fig. 2a, most patients 
in practice would receive Procedure B from a relatively 
inexperienced surgeon, under which Procedure A is the 

superior choice. At best, the experts-only design in that 
scenario has provided unbiased information to be used 
for policymaking for a small fraction of the patient pop-
ulation, leaving the question of comparative effective-
ness and safety under non-expert surgeons unanswered, 
but warranting further research into the effectiveness of 
Procedure B. At worst, the results will be used naively 
to inform a policy which implements Procedure B in 
favour of Procedure A at all levels of operating surgeon 
experience in practice, potentially to the detriment of the 
majority of patients.

Pragmatic design
The pragmatic approach aims to sample a distribution 
of operating surgeon experience that is representative of 
wider practice, allowing, rather than suppressing, vari-
ation in the surgeons’ expertise. The rationale for this is 
clear: to ensure that the trial mirrors, and thus produces 
results applicable to, wider surgical practice. The prag-
matic design aims to evaluate the effect of procedure 
averaged over a representative mix of the operating sur-
geon experience treatment component.

Fig. 2  ATEs evaluating Procedure A vs B under the experts-only design in the same populations shown in Fig. 1. The shaded region represents an 
exclusion criteria based on (lack of ) operating surgeon experience
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This yields an ATE with a seemingly useful interpre-
tation for policymaking, i.e. “How does Procedure B 
compare to Procedure A on average across the whole 
population of patients who will be receiving the inter-
ventions in practice?” In wider complex intervention lit-
erature, this would be referred to as the main effect of 
the procedure component [46]. Despite this being more 
inclusive than experts-only design, it still has major limi-
tations for policymaking.

Firstly, the ATE provides a single answer, pointing to 
only one level of the component being randomised and 
promoting a one-size-fits-all policy. In the 3 example tar-
get populations in Fig. 1, a “pragmatic” trial would arrive 
at an estimated ATE that would point to a policy of either 
“always Procedure A” or “always Procedure B” which, in 
all 3 example target populations, is not the best proce-
dure for all patients.

Furthermore, the distribution of operating surgeon 
experience in the target population is not static. With 
every procedure that is performed, surgeons are gain-
ing more experience, and the distribution of experience 
across the population is changing. For example, given 
the necessary timing of a trial of a new surgical interven-
tion, one may expect that during the trial the distribution 
of operating surgeon experience with the experimental 
intervention across the wider surgeon population may 
look like that in Fig.  1a, with most surgeons inexperi-
enced. By the end of the trial they will all have gained 
experience, shifting the original distribution (Fig.  1b), 
and so by the time the intervention would be rolled out in 
practice, the distribution is already different to what was 
observed in the trial. Finally, if the intervention is rolled 
out after the trial and becomes the new standard, then 
that distribution is likely to change again (e.g. Fig.  1c), 
and continue to change over time as new surgeons pick 
up the procedure and others continue to gain experience 
all at different rates to one another. A “representative 
sample” of participating surgeons during an RCT is only 
a snapshot of a moving target with respect to operating 
surgeon experience.

The strategy of the pragmatic trial to capture a rep-
resentative sample of the population at the time of the 
trial is no guarantee that the results will be applicable to 
wider practice. It gives a one-size-fits-all answer that can 
be misleading, and nevertheless is vulnerable to obso-
lescence as the level of experience of operating surgeons 
changes over time.

The conventional RCT design is not fit‑for‑purpose
The fundamental issue with the current approaches to 
surgical trial design is that, in a setting where the com-
parative effectiveness of procedure depends on operat-
ing surgeon experience, they are solutions to a flawed 

formulation of the problem. That is, they are attempts 
to make the results from the conventional RCT — a sin-
gle-component comparison, evaluated via the ATE — a 
useful quantity for policymaking in a setting where it is 
arguably not fit-for-purpose.

Restricting the comparison to different choices of a 
single component such as procedure limits the possibili-
ties for estimation to either a simple effect (such as the 
experts-only design) or a main effect (such as the prag-
matic design).

In summary, in the presence of treatment effect het-
erogeneity associated with the level of operating surgeon 
experience, the ATE is dependent on the distribution 
of operating surgeon experience, which changes over 
time, and is liable to change substantially from what is 
observed in a trial. Nevertheless, the ATE provides a sin-
gle answer, promoting a one-size-fits-all policy which, 
in a setting where the best policy depends on the level 
of experience of the operating surgeon, may lead to less-
pronounced or negligible benefit, or potentially harm, in 
a subpopulation of patients. Unless it can be reasonably 
assumed that the comparative effectiveness of Procedure 
does not depend on operating surgeon experience in any 
clinically meaningful way (for example, the interven-
tions being researched are all technically very easy, with 
demonstrably short/shallow learning curves), the evalu-
ation offered by the conventional RCT lacks the nuance 
required for policymaking for a surgical intervention.

Reformulating the problem
The premise that surgical RCTs are limited to single-com-
ponent comparisons, evaluated via the ATE, has skewed 
the methodological discussion. Forcing a multi-compo-
nent intervention such as surgery into the framework of 
the conventional RCT design ignores its factorial nature. 
This limits the research questions that can be addressed 
and therefore the usefulness of the trial for policymak-
ing. When there is plausible treatment effect heterogene-
ity we should target estimands that reveal more than just 
the simple or main effects of the procedure, which can be 
used for more nuanced policymaking, ultimately to the 
patients’ benefit.

It would be ideal to be able to target the causal effects 
of both procedure and operating surgeon experience, and 
of their interaction. That is, for a given patient, what are 
the individual and combined effects of procedure and 
operating surgeon experience on expected outcomes. 
Unbiased, robust estimates of these estimands would 
open up a huge range of possibilities for policymaking. 
As well as answering both the experts-only and prag-
matic trial questions, it would also allow us to answer 
“what is the effect of sending the patient to a more (or 
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less) experienced surgeon?” and also “what is the best 
combination of procedure and operating surgeon expe-
rience to give to a patient?” With this information, poli-
cies could be tailored to any specific operating surgeon 
experience.

Estimating causal effects of individual components of 
a complex intervention when they can all be randomised 
is a well-established goal in experimental design, with 
well-developed trial design methodology. The multiphase 
optimisation strategy (MOST) for behavioural inter-
ventions exemplifies this [47], and outlines trial design 
methodology that could be directly applied to surgical 
interventions to answer questions about the causal effects 
of operating surgeon experience. However, to apply the 
factorial designs outlined in MOST in this setting would 
require us to be able to randomly allocate both the pro-
cedure and the level of operating surgeon experience. 
This in particular requires us to be able to directly control 
and stipulate the level of operating surgeon experience 
for any individual patient. This may indeed be possible 
in some circumstances and, if that is the case, then the 
MOST framework would be a great improvement on cur-
rent approaches to surgical trial designs.

However, in practice, it is likely that we could not ran-
domly allocate a level of operating surgeon experience 
to a patient, but would be entirely unable to control the 
level of operating surgeon experience for any individual 
patient’s operation. There may be constraints on which 
surgeon(s) an individual patient could be treated by, and 
constraints on the timing of the patient’s operation. A 
more likely scenario is one where the level of operating 
surgeon experience for any individual patient’s opera-
tion must be treated as a given rather than as a directly 
manipulable component in the design.

The current approaches to design advocated in the sur-
gical trial literature and the fully-randomised factorial 
approach advocated by MOST represent two extremes. 
The former is entirely feasible but limited while the lat-
ter gives a wealth of information but is likely infeasible in 
this setting. There is however an intermediate approach 
to design that should be considered which would still 
offer an improvement over current designs while also 
being practically realistic.

Trial design to target the conditional average treatment 
effect (CATE)
We now consider the conditional average treatment effect 
(CATE) [48, 49], a relevant estimator for exploring treat-
ment effect heterogeneity also referred to as moderation, 
statistical interaction and differential effect [50]. For a 
given measure of operating surgeon experience, X say, the 
CATE represents the difference in expected patient out-
come if they are offered Procedure B compared to if they 

are offered Procedure A, averaged over the population 
of patients who are treated by surgeons with experience 
X = x . In a single analysis, the CATE can be evaluated 
for a range of values of x via estimation of the interaction 
between X and the ATE, and so rather than reducing the 
comparison of interventions to a single value — the ATE 
— we could instead have an estimate of how the proce-
dures compare given different levels of operating surgeon 
experience, potentially giving different answers at differ-
ent levels of operating surgeon experience.

Regarding policymaking, the CATE first asks “how 
experienced is the surgeon going to be for this patient’s 
operation?” and then points to which procedure is the 
better option given the answer. Note that the CATE not 
only asks a question about the surgeon, but also implicitly 
asks questions about the patient, since the population of 
patients who would be treated by an inexperienced sur-
geon likely does not have the same characteristics as the 
population of patients who would be treated by the most 
experienced surgeons [51]. In particular this means that 
unlike the effects estimated under a fully-randomised 
design, the CATE cannot be used to make causal infer-
ences about what would happen if we sent an individual 
patient to a more (or less) experienced surgeon. What 
can be done with the CATE is weaker than what can be 
done with the causal effects of operating surgeon experi-
ence, but if found to be credible, could be more informa-
tive than the ATE. The CATE, unlike the ATE, allows 
us to recognise that the best procedure depends on the 
context in which the procedure will be taking place, spe-
cifically on how experienced the surgeon will be and thus 
also, implicitly, on what kind of patient we are treating in 
terms of operative difficulty.

For example, in Fig. 1, if a trial was designed to target 
the CATE, then it would produce results that shed light 
on the fact that Procedure B is relatively harmful in the 
population of patients being treated by surgeons with 
low levels of experience, is no different to Procedure A 
in the population of patients being treated by surgeons 
with moderate levels of experience, and is superior in 
the population of patients being treated by surgeons with 
high levels experience. This could lead to a policy where 
Procedure B is adopted by highly experienced surgeons 
(and/or high-volume/specialist centres) only, or a pol-
icy where Procedure B is adopted for everyone but with 
additional measures put in place to mitigate the evident 
relative harm that is caused by Procedure B under less 
experienced surgeons, such as supervision by an expert 
surgeon or a more stringent selection of which cases are 
given to surgeons who are still learning.

Furthermore, unlike the ATE, the CATE does not 
depend on the specific distribution of operating surgeon 
experience in the target population. For example in Fig. 1, 
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the curve labelled CATE, which describes how the treat-
ment effect changes conditional on operating surgeon 
experience, is the same for all three of the example tar-
get populations in that figure. An estimate of the CATE 
remains consistent as the distribution of operating sur-
geon experience changes. In particular, an estimate of the 
CATE would remain valid if the distribution of operating 
surgeon experience changed substantially, and so it does 
not share the vulnerability of the ATE to become obsolete 
over time due to changing distribution of operating sur-
geon experience.

Even in circumstances where the treatment effect may 
not depend on operating surgeon experience, an analy-
sis targetting the CATE could confirm this empirically, 
rather than relying on an assumption, as would be the 
case using the ATE.

The value of estimating the CATE is recognised in 
the current literature [14, 15, 44], but discussion is lim-
ited to analysis methods only, while trial design unani-
mously targets the ATE. Under designs which target the 
ATE, there are no measures in place to ensure that that 
the analysis of the CATE will be robust and have suffi-
cient precision to make meaningful conclusions. Conse-
quently, estimation of the CATE is typically an auxilliary 
(exploratory/sensitivity) analysis only, if it is performed 
at all, and unlikely to provide definitive evidence to guide 
policymaking.

The precision of the CATE can be affected by numer-
ous features of the design [47, 52], including the total 
number of patients randomised, the number of partici-
pating surgeons, the within- and between-surgeon spread 
of observed operating surgeon experience during the 
trial, the (im)balance in the numbers of patients treated 
by each surgeon, and the (im)balance between the treat-
ment arms both within each surgeon and within levels of 
operating surgeon experience. These features can all be 
controlled through the design, even if the level of oper-
ating surgeon experience for any given individual patient 
cannot be. Crucially, the precision of the CATE estima-
tor could be increased while holding the total sample size 
constant, via manipulation of the other design features.

For example, purposeful recruitment of participat-
ing surgeons, such as prioritising surgeon recruitment 
to target surgeons with specific levels of experience at 
certain times during the trial as needed, could be used 
to manipulate the within- and between-surgeon spread 
of experience observed in the trial, and therefore affect 
the precision of the CATE estimator. Similarly, stratifica-
tion of the randomisation with respect to a measure of 
surgeon experience could address potential imbalances 
of treatment allocation in any given region of experience, 
again affecting the precision of the CATE estimator.

Furthermore, there are a number of established fea-
tures of the trial design, sampling method and contex-
tual considerations which can affect the credibility of the 
CATE estimator [50, 53]. These include considerations 
such as using a continuous measure for the non-ran-
domised component rather than categorical, stratifying 
the randomisation by the non-randomised component, 
and stating an a priori hypothesis regarding the nature of 
the CATE (e.g. the direction in which the ATE changes 
with respect to the non-randomised component).

Incorporating operating surgeon experience in the pri-
mary analysis of comparative effectiveness by estimating 
the CATE should be welcomed. It is in the trial design 
where the foundation for these analyses must be laid, 
with a treatment allocation procedure, sampling strategy 
and sample size target that mitigate the biases and impre-
cision that the analysis would otherwise be vulnerable to.

Trial designs which facilitate the estimation of the 
CATE represent a clear gap in current surgical trials 
methodology. Specifically, there is a gap in surgical trials 
guidance both in terms of the recognition of the need for 
such designs and also regarding practically how to max-
imise precision of the CATE. We believe that with further 
research there are opportunities to design surgical trials 
which focus on the CATE without requiring prohibitive 
sample sizes, via manipulation of features other than the 
total sample size which affect the precision of the CATE.

Conclusion
We have identified and summarised the current framing 
of the methodological problem posed by learning effects 
to trial design and analysis for Stage/Phase 3 surgical 
RCTs. We have critically examined this framing and the 
solutions to it advocated in the current literature. We 
have argued that the ATE yielded by the conventional 
RCT simply cannot provide adequate information for 
policymaking in the presence of treatment effect hetero-
geneity with repsect to operating surgeon experience.

We have discussed characterising the intervention 
explicitly as the combination of treatment components, 
e.g.“procedure × operating surgeon experience”, and have 
pointed to the theoretically ideal solution of fully-ran-
domising the intervention to estimate causal effects of 
each individual component as well as their interaction.

Finally, we have briefly discussed an avenue of further 
research. Trial design approaches that facilitate robust, 
precise estimation of the conditional average treatment 
effect (CATE) would allow for more nuanced policymak-
ing that will ultimately benefit patients. No such designs 
are currently forthcoming. Further research of what can 
practically be done in the trial design to facilitate the esti-
mation of the CATE is needed.
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