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METHODOLOGY

Examining evidence of time‑dependent 
treatment effects: an illustration using 
regression methods
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Abstract 

Background:  For the design and analysis of clinical trials with time-to-event outcomes, the Cox proportional hazards 
model and the logrank test have been the cornerstone methods for many decades. Increasingly, the key assumption 
of proportionality—or time-fixed effects—that underpins these methods has been called into question. The avail-
ability of novel therapies with new mechanisms of action and clinical trials of longer duration mean that non-propor-
tional hazards are now more frequently encountered.

Methods:  We compared several regression-based methods to model time-dependent treatment effects. For illustra-
tion purposes, we used selected endpoints from a large, community-based clinical trial of low dose daily aspirin in 
older persons. Relative and absolute estimands were defined, and analyses were conducted in all participants. Addi-
tional exploratory analyses were undertaken by selected subgroups of interest using interaction terms in the regres-
sion models.

Discussion:  In the trial with median 4.7 years follow-up, we found evidence for non-proportionality and a time-
dependent treatment effect of aspirin on cancer mortality not previously reported in trial findings. We also found 
some evidence of time-dependence to an aspirin by age interaction for major adverse cardiovascular events. For 
other endpoints, time-fixed treatment effect estimates were confirmed as appropriate.

Conclusions:  The consideration of treatment effects using both absolute and relative estimands enhanced clini-
cal insights into potential dynamic treatment effects. We recommend these analytical approaches as an adjunct to 
primary analyses to fully explore findings from clinical trials.

Keywords:  Time-dependent effects, Proportional hazards, Clinical trials, Flexible parametric modelling, Treatment 
effect heterogeneity
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Introduction
The most commonly utilised approach for analysis of 
time-to-event data in clinical trials is the Cox propor-
tional hazards (PH) model [1]. The advantage of this 

model is its lack of assumptions about the shape of the 
underlying hazard functions and presentation of treat-
ment effects on a relative scale as hazard ratios (HRs). 
Increasingly, trials are being conducted in which the 
key assumption of PH that underpins this approach 
and presentation of the treatment effect summarised as 
being of single fixed magnitude is questionable [2, 3]. Tri-
als of longer duration and larger trials enable investiga-
tion of the natural history of the disease and interplay of 
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mechanistic processes over time. They offer compelling 
rationale for consideration of alternate measures of treat-
ment effect that allow for the examination of non-PH 
treatment effects over time. Examples of time-dependent 
(TD) effects include delays until treatment effectiveness 
as observed in immunotherapy-based oncology trials 
with minimal benefit in the first few months of treatment 
followed by a period of effectiveness after the immune 
system has been activated. In contrast, vaccinations for 
influenza and whooping cough provide examples of a 
treatment that is beneficial early after administration but 
whose effectiveness diminishes over time. Despite the 
potential importance of TD treatment effects, detailed 
assessment and reporting of the PH assumption required 
to assess the appropriateness of presented time-fixed trial 
results has been less than optimal [4–6].

Parametric models that make assumptions about the 
shape of the underlying hazard function can be used as 
an alternative to the Cox model. Models based on the 
Weibull and gamma distributions can specify increas-
ing, decreasing and inverted hazard functions. However, 
these models may fail to capture more complex hazard 
function. A flexible parametric model (FPM) uses spline 
functions to model the underlying hazard function of any 
shape or complexity with the advantages of modelling 
within a regression-based framework [7]. Specifying the 
baseline hazard allows for the direct estimation of rela-
tive and absolute effects of treatment in addition to other 
useful measures such as differences between survival and 
hazard functions to be estimated. In particular, the use 
of the restricted mean survival time (RMST) difference 
between groups as a distribution-free measure of treat-
ment effect has been gaining attention as a valid measure 
of treatment effect even when nonproportionality is pre-
sent [8, 9].

In addition to capturing complex hazard functions 
under PH [10], flexible parametric survival models can 
be easily extended to assess for TD treatment effects on 
the cumulative hazard or hazard scales [11, 12]. A second 
regression-based method to assess for evidence of TD 
treatment effects involves pseudo-observations—or jack-
knife estimates—based on the non-parametric Kaplan-
Meier (KM) curves. These pseudo-observations are used 
to create estimates constructed in such a way that their 
sample mean estimates the parameter of interest at pre-
determined times of interest. The effect of covariates may 
then be modelled with the pseudo-observations as the 
response variable in generalised linear models (GLMs) 
with a suitable link function [13, 14].

Heterogeneity of treatment effects is another form 
of non-PH that can arise in clinical trials. Treatment 
effect heterogeneity is when different subgroups of a 
trial population respond differently to treatment. Prior 

clinical knowledge of potentially strong predictive fac-
tors can—and should—be incorporated into the study 
design and prespecified analysis plans through selec-
tion of sufficiently homogeneous populations that can 
be expected to benefit from the treatment [15, 16]. Sub-
group heterogeneity may in itself also be time-depend-
ent; hence, reported averaged treatment effects, even 
in subgroup analysis, can obscure interesting insights 
available from the trial [17]. The Food and Drug 
Administration (FDA) provides guidance to enhance 
the collection, availability, and analysis of demographic 
subgroups to provide valuable information to better 
inform providers and the FDA about the safe and effec-
tive use of new therapeutics [18, 19].

The goal of this paper is to examine whether regres-
sion-based methods allowing for TD treatment effects 
can provide additional or new insights. For illustration, 
we apply the methods to the effects of daily low-dose 
aspirin in initially healthy older persons using the large 
community-based ASPirin in Reducing Events in the 
Elderly (ASPREE) clinical trial. The ASPREE trial aimed 
to determine if aspirin improved healthy ageing with a 
primary composite endpoint of death, dementia, or per-
sistent physical disability. Secondary efficacy and safety 
endpoints were also collected. For some endpoints, event 
rates were anticipated to substantially increase with age-
ing. The large number of participants and long duration 
of the treatment phase of the trial provide an opportunity 
to assess the evidence for potential TD treatment effects 
of clinical interest and to investigate any potential inter-
play between underlying event rates and non-PH. Edito-
rials accompanying the trial findings support the need for 
ongoing follow-up of the ASPREE participants to more 
robustly address hypotheses regarding benefits or harms 
of aspirin on endpoints in this older population, with 
additional mechanistic studies particularly for cancer 
incidence and mortality being critical [20–22].

The rest of the paper is structured as follows: in the 
Methods section, we give a brief introduction to the dif-
ferent methods used. In the Semi-parametric Cox PH 
model section, we provide further detail of the ASPREE 
trial and a selection of endpoints chosen to best illus-
trate the functionality and interpretability of modelling 
time dependence of treatment effects. In the Parametric 
Weibull model section,  we present the ASPREE results 
using the methods described. Finally, we provide discus-
sions and recommendations in the Poyston-Parmar flex-
ible parametric models (FPMs) section.

Methods
We compare four regression-based approaches for the 
estimation of the summary treatment effect estimated 
as either a hazard ratio (HR) or a difference in restricted 
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mean survival time ( �RMST). The HR estimates were 
obtained from the Cox model, the Weibull model, and 
the spline-based flexible parametric model (FPM) all 
under an assumption of PH. The �RMSTs were estimated 
using the FPM PH model, the FPM allowing for time-
dependence of treatment effects and from generalised 
linear modelling of transformed datasets consisting of 
pseudo-observations, being jackknife estimates of time-
to-event observations for a specific pre-designated time 
interval had there not been censoring present.

Semi‑parametric Cox PH model
Using a Cox proportional hazards model [1], the hazard 
function for the ith patient can be written as

where xi represents covariates with regression coeffi-
cients β (log hazard ratios) to be estimated from the data, 
and h0(t) denotes the baseline hazard function or event 
rate when all of the covariates are equal to zero or at their 
specified baseline levels.

The Cox PH model treats the baseline hazard function 
as a nuisance parameter by maximising the partial like-
lihood function which permits estimation of the regres-
sion parameters but not the baseline hazard function. A 
key assumption of the Cox PH model is that of PH, in 
that the effect of a covariate remains constant or fixed 
in magnitude over the entire follow-up. The Cox model 
can be extended to incorporate non-proportional effects 
by including an interaction of the covariate(s) of inter-
est with some function of time. Various diagnostics have 
been proposed to assess the PH assumption including 
graphical approaches and analysis based on residuals or 
by including an interaction of a covariate of interest with 
a function of time [23, 24]. These tests of PH assumption 
require correct specification of the function of time and 
often lack power to detect non-proportionality [25] .

Parametric Weibull model
When non-constant event rates are anticipated, para-
metric models are an alternative to the Cox model [6]. 
Undertaking a parametric approach to the analysis of 
survival data has a number of benefits. By directly mod-
elling the baseline hazard function, measures of absolute 
risk, as well as relative risk, can be directly quantified 
with an associated estimate of uncertainty. There are 
efficiency gains if the baseline hazard is correctly speci-
fied in a parametric approach compared to the equiva-
lent semi-parametric approach. The modelling of TD 
effects in continuous time can be conducted more eas-
ily within a parametric framework. In the ASPREE trial, 
monotonically increasing event rates were anticipated—
and observed—for the majority of the endpoints which 

hi(t) = h0(t)exp(xiβ)

motivated the use of a Weibull hazard function to model 
the baseline hazard rate for this work. The estimates of 
treatment effect from this fixed distributional parametric 
approach act as a comparator to both the semi-paramet-
ric Cox model and the more flexible parametric models 
described below.

Royston‑Parmar flexible parametric models (FPMs)
Royston and Parmar introduced FPMs that use restricted 
cubic splines to model transformations of the survival 
function, most commonly using the log cumulative-haz-
ard function [7, 26] and later extended to the log haz-
ard function [27] as a tool to capture simple and more 
complex hazard functions under both PH and non-PH 
scenarios. In this way, the attraction of the Cox model—
allowing the shape of the baseline hazard to be free of any 
distributional assumptions—is still achieved by allow-
ing the basis function of cubic splines to flexibly fit the 
baseline hazard. Additionally, FPMs attain the efficiency 
of parametric models for estimation and interpretability, 
providing both relative and absolute estimates of treat-
ment effect.

FPMs use restricted cubic spline functions to model 
the transformation of the survival function. Restricted 
cubic splines are piecewise cubic polynomials joined 
together at “knots” with smoothing constraints placed 
on knot joins and a restriction that the spline function is 
linear beyond the first and last knots to ensure an over-
all smooth function that is not unduly affected by sparse 
data. In the general approach, FPMs are implemented on 
the log cumulative hazard scale using one set of spline 
variables with predefined knot positions based on evenly 
spaced centiles of uncensored log survival times, with 
boundary knots at the minimum and maximum uncen-
sored log survival times. The number of knots used to 
model the baseline hazard can be guided by clinical input 
and model selection criteria.

Time-dependent effects were modelled using a differ-
ent set of spline variables for each covariate of interest, 
possibly using a different number of knots in potentially 
different locations than the spline variables used to model 
the baseline hazard. Defining k0 to denote the knots for 
the baseline hazard and kj the knots for the jth TD effect 
with associated parameters δj when there are D covariates 
with TD effects, the log cumulative hazard model is

In order to assess the complexity required for the baseline 
hazard for each endpoint of the ASPREE trial, a series 
of preliminary models were fit with varying numbers 
of knots considering possible degrees of freedom (df ) 

ln {H(t|x)} = s{ln(t)|γ , k0} +

D

j=1

s{ln(t)|δj , kj}xj + xβ
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ranging from one df to five df for the baseline spline func-
tion. Comparisons were then made between the mod-
els visually and through using the Akaike information 
criterion and Bayesian information criterion statistics 
with smaller values preferred. For all endpoints assessed, 
allowing for one (corresponding to the Weibull distribu-
tion) to three df for the baseline hazard resulted in suit-
ably smooth curves without evidence of overfitting. Time 
dependence of the treatment effect could be captured 
with either one or two df for the five different endpoints. 
We utilised a model with three df for the baseline hazard 
and allowed for two df for any TD treatment effect [10, 
28]. This was a compromise between the most parsimo-
nious model for any given endpoint and the clinical util-
ity of fitting the same model to each of the endpoints.

Figure  1 is a graphical presentation of a hypotheti-
cal example where non-proportionality of the treatment 
effect was present. The true hazard functions (indicated 
by dashed lines), modelled hazards (solid lines—b–d), 
and treatment effects (arrows) in the form of HRs that 
would arise from application of the Cox PH, the Weibull, 
and the PH and TD flexible modelling approaches 
are depicted. The arrows in the Cox PH approach (a) 

represent the constant HR with the absence of solid 
lines underlining that the hazard function need not be 
estimated. The solid lines in the Weibull and PH flexible 
modelling approaches (b, c) illustrate the constant HR 
estimated in these approaches. Finally, the varying arrow 
sizes in the TD flexible modelling approach (d) indicate 
that the estimated treatment effect varies over time, 
unlike the models represented in a–c.

Pseudo‑observations approach
Pseudo-observations provide non-parametric esti-
mates of a parameter of interest at the individual par-
ticipant level [13]. Pseudo-observations are jackknife 
estimates constructed in such a way that their sam-
ple mean estimates the parameter of interest, here the 
RMST. The pseudo-observations are a transformation 
of the original data that provides a dataset without cen-
soring. The effect of covariates such as treatment group 
on the RMST may then be modelled with the pseudo-
observations as the outcome variable in GLMs with an 
appropriate link function. Standard errors of parameter 
estimates use the robust “sandwich” estimator. The treat-
ment effect estimates of �RMST obtained through the 

Fig. 1  Graphical summary of the regression-based modelling approaches when non-proportional treatment effects are present. Estimated 
hazards (y-axes) and treatment effects from the Cox PH, the Weibull, the FPM PH and FPM TD models when non-proportionality of the true hazards 
(dashed lines) were present for a hypothetical situation. The arrows indicate the magnitude and direction of treatment effect as measured from the 
modelled baseline hazard (solid light blue line) to the modelled treatment line (solid purple line)
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pseudo-observations approach are distribution-free since 
they are based on the KM survival curve estimates and 
can be used to compare the magnitude of the �RMST 
estimates from the TD FPM. To maintain comparability 
of the HRs and �RMST estimates obtained by the com-
parator methods, the pseudo-observations approach 
used the last uncensored event time in the dataset for 
each endpoint as the time point chosen at which to esti-
mate the mean survival. For analyses of the yearly incre-
mental estimates of treatment effect included as a guide 
to assessing for non-PH of the main treatment effect, the 
indicated duration of time was used to estimate the �
RMST. All statistical analyses were performed with Stata 
15 (StataCorp, College Station, TX) with user-written 
ado file add-ons stpm2 [26], strmst [28], and stpsurv [14].

The ASPirin in Reducing Events in the Elderly 
(ASPREE) trial
The ASPREE trial was a community-based randomised 
trial comparing daily low-dose aspirin versus placebo 
with the aim of extending the duration of disability-free 
survival in healthy older adults and was conducted in 
the US and Australia. Inclusion criteria included ages 70 
years or above, except for African-American and His-
panic participants in the USA who were included from 
age 65 years. Reporting of the ASPREE trial on the pri-
mary endpoint and other clinical endpoints utilised a 
Cox PH modelling approach. This analysis was carried 
out because the PH assumption was deemed plausible for 
the primary endpoint components [29–31].

Our analyses were facilitated by the comprehensiveness 
of data collection in ASPREE, with recruitment of 19,114 
participants who attended regular face to face annual 
study visits for a median of 4.7 years (IQR 3.6–5.7 years). 
In addition, all major endpoints were adjudicated by End-
point Committees whose members were blinded to treat-
ment allocation. This enabled us to examine evidence 
for TD effects of aspirin as well as investigate treatment-
covariate interactions of interest. These analyses are to be 
viewed as supplementary subsidiary analyses to the pre-
specified primary analyses already published. Our aim is 
to illustrate the methods for investigating the magnitude 
and duration of any treatment effect over time, over-
all and in specific subgroups of participants even when 
there was no statistical evidence against the assumption 
of proportionality.

In this paper, we reexamine the analysis of the pri-
mary endpoint of disability-free survival and four other 
selected endpoints, clinically significant bleeding, major 
adverse cardiovascular events (MACE), solid tumour 
cancer incidence, and solid tumour cancer mortality. 
For each endpoint, we estimate the summary HR treat-
ment effect measure presented previously utilising three 

different regression-based approaches. In these main 
analysis models, only the treatment covariate is included 
to enable comparison with estimates of HR from the 
unadjusted primary analyses already published. Addi-
tionally, we provide the summary �RMST treatment 
effect measure estimated using the same events as for 
estimation of the summary HR, and graphically display 
the HR and �RMST endpoint measures over time.

Disability‑free survival
Disability-free survival was the primary endpoint of the 
ASPREE trial. It was a composite endpoint defined as 
survival free from dementia or persistent physical dis-
ability and was derived from the time to first occurrence 
of any one of the three components of death, dementia, 
or persistent physical disability in an individual. The end-
point aimed to capture the qualitative and quantitative 
components of an ongoing healthy life span in an older 
population considered sufficiently healthy to be enrolled 
in a primary prevention trial. Details regarding the health 
measures and definitions used in the trial and the pri-
mary conclusion that aspirin use in healthy older adults 
did not prolong disability-free survival (HR 1.01, 95% 
confidence interval (CI) 0.92 to 1.11, p-value = 0.79) have 
been reported elsewhere [29].

Clinically significant bleeding
An increased risk of a clinically significant bleeding 
event is an adverse effect of aspirin usage [32]. The clini-
cally significant bleeding endpoint of the ASPREE trial 
included haemorrhagic stroke, symptomatic intracranial 
bleeding, and clinically significant extracranial bleeding, 
which were defined as bleeding that led to hospitalisa-
tion, prolongation of hospitalisation, surgery, or death. 
The trial showed the risk of bleeding was significantly 
higher with aspirin than with placebo (HR 1.38, 95% CI 
1.18 to 1.62, p < 0.001). The observation of a constantly 
increasing separation of cumulative incidence curves 
suggested that the rate of participants newly experienc-
ing bleeding was constant over time [30]. Our analyses 
further assess and quantify the evidence for persistence 
of a constant elevated bleeding risk associated with aspi-
rin over the duration of the trial.

Major adverse cardiovascular events (MACE)
MACE was a non-prespecified composite endpoint 
which included fatal coronary heart disease (excluding 
death from heart failure), nonfatal myocardial infarc-
tion, and fatal or nonfatal ischaemic stroke. These events 
were adjudicated as part of the broader cardiovascular 
disease endpoints, and included the conditions related to 
ischaemia and atherothrombosis that were anticipated to 
be affected favourably by low-dose aspirin. The effect of 
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aspirin on MACE events in the trial has been reported 
previously as a HR of 0.89, 95% CI 0.77, 1.03 [30].

Solid tumour cancer mortality and incidence
Cancer incidence was a prespecified endpoint in the trial. 
At the time of the trial’s conception, there was emerging 
evidence to suggest that low dose regular aspirin usage 
may be a potential cancer preventative [33]. As partici-
pants with a history of cancer were able to enter the trial, 
incident cancer events included in analysis required diag-
nosis of new site-specific cancers post randomisation. 
For the present analysis, only solid tumour cancers were 
considered in order to be consistent with previous analy-
ses [33]. The effect of aspirin on solid tumour cancer inci-
dence was reported as a HR of 1.05, 95%CI 0.95 to 1.14; 
the effect of aspirin on cancer mortality was reported as a 
HR of 1.35, 95%CI 1.13 to 1.61 [34].

Possible time-dependence of these cancer endpoints 
was acknowledged with additional mechanistic studies 
and further follow-up called for [21]. We aim to further 
explore possible time-dependence of treatment effect for 
the solid tumour cancer endpoints as suggested by pro-
gressive separation of the cumulative incidence curves in 
previous reports [31, 34].

Results
Table 1 presents results for the two estimands of treat-
ment effect (HR and �RMST) for the selected five end-
points. HR estimates were obtained from the Cox PH 
model, the Weibull model, and the FPM PH model. �
RMST estimates were obtained from the FPM PH 

model, the FPM TD model, and the pseudo-observa-
tions (p-obs) dataset. The duration of time at which the 
final summary estimates of HR were assessed extended 
from time of randomisation to the time of last endpoint 
event occurrence in the trial dataset. In order to enable 
comparability, the same time period was used for the 
estimation of the �RMST for each endpoint.

For all five endpoints, the summary results presented 
here for the Cox PH model agree with the previously 
reported results in the main and follow-up trial publi-
cations [29–31, 34, 35]. The three modelling approaches 
with the underlying PH assumption gave almost iden-
tical estimates of the HR. P-values from the three PH 
modelling approaches and across the HR and �RMST 
estimates from the FPM PH model were also similar. 
There were some differences between the estimates of 
�RMST from the flexible TD and pseudo-observation 
modelling approaches; however, these were small and 
unlikely to have any substantive impact on the clini-
cal interpretation of the results. The FPM PH model-
ling approach provides a link between the HRs and �
RMSTs, giving a means to relate the magnitude of treat-
ment effect of a relative hazard reduction to an absolute 
decreased mean survival time on average. As an illus-
tration, for the clinically significant bleeding endpoint, 
a 38% increased relative risk of bleeding expressed in 
terms of the �RMST could be equivalently expressed as 
during the trial, a participant randomised to low-dose 
aspirin would have experienced either a bleeding event 
or reached the end of the trial without a bleeding event 

Table 1  Summary of the ASPREE trial results for five endpoints using regression-based modelling approaches assuming PH or 
allowing for TD treatment effects

Endpoint Estimation HR (95% CI), p-value Estimation �RMST (95% CI), p-value
model Model

Primary Cox PH 1.01 (0.92,1.11), 0.79 FPM PH − 0.006 (− 0.047, 0.035), 0.79

Weibull PH 1.01 (0.92,1.11), 0.79 FPM TD − 0.005 (− 0.046, 0.036), 0.81

FPM PH 1.01 (0.92,1.11), 0.79 GLM p-obs − 0.007 (− 0.049, 0.035), 0.75

MACE Cox PH 0.89 (0.77,1.03), 0.12 FPM PH 0.021 (− 0.006, 0.049), 0.13

Weibull PH 0.89 (0.77,1.03) 0.12 FPM TD 0.021 (− 0.006, 0.048), 0.12

FPM PH 0.89 (0.77,1.03), 0.12 GLM p-obs 0.021 (− 0.008, 0.050), 0.16

Clinically Cox PH 1.38 (1.18,1.62), < 0.001 FPM PH − 0.050 (− 0.075, − 0.026), < 0.001

significant Weibull PH 1.38 (1.18,1.62), < 0.001 FPM TD − 0.052 (− 0.077, − 0.027), < 0.001

bleeding FPM PH 1.38 (1.18,1.62), < 0.001 GLM p-obs − 0.057 (− 0.084, − 0.029), < 0.001

Cancer Cox PH 1.05 (0.95,1.15), 0.32 FPM PH − 0.020 (− 0.059, 0.019), 0.32

incidence Weibull PH 1.05 (0.95,1.15), 0.32 FPM TD − 0.018 (− 0.058, 0.021), 0.36

FPM PH 1.05 (0.95,1.15), 0.32 GLM p-obs − 0.024 (− 0.068, 0.020), 0.29

Cancer Cox PH 1.36 (1.13,1.63), 0.001 FPM PH − 0.032 (− 0.047, − 0.013), 0.001

mortality Weibull PH 1.36 (1.13,1.63), 0.001 FPM TD − 0.029 (− 0.048, − 0.010), 0.003

FPM PH 1.36 (1.13,1.63), 0.001 GLM p-obs − 0.033 (− 0.055, − 0.012), 0.003
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approximately 18 days (0.050 years) sooner on average 
than a participant randomised to placebo.

For each endpoint, the HR and �RMST at yearly 
incremental durations of time after randomisation are 
additionally presented in Supplementary Tables S1-S5 
available in Additional File 1. These yearly estimates 
are a tabular subset of the PH and TD analyses of treat-
ment effect presented in C and D of Figs. 2 and 3 (and 
Supplementary Figs. S1-S3 also available in Additional 
File 1). Qualitative assessment of TD treatment effects 
comes from comparing the HRs from yearly incremen-
tal durations of follow-up and by comparing the overall 
HRs with the duration-specific HRs. This is undertaken 
here regardless of statistical evidence to indicate 

non-proportionality of treatment effect so caution is 
warranted with these exploratory analyses to avoid 
over-interpretation.

Concerning solid tumour cancer mortality, there was 
an overall increased risk (HR 1.36, 95% CI 1.13, 1.63) 
found at the end of the trial using a Cox model. How-
ever, for this endpoint, there was statistical evidence 
to indicate non-proportionality of treatment effect 
(PH test p = 0.01 [24]) with the incremental assess-
ments providing some insight into the evolution of this 
treatment effect. The estimated hazard ratio gradually 
changed from 0.90 for the first year of the trial (95% 
CI 0.47,1.73) to 1.20 (95% CI 0.96, 1.50) suggestive of 

Fig. 2  Comparison of PH and TD modelled treatment effects for the cancer mortality endpoint. Survival curves (A) and hazard rates (B) by 
treatment arm, and difference in RMST ( �RMST (C)) and HR (D) over time from PH (blue curves) and TD (green curves) analysis models for the 
cancer mortality endpoint. Y-axes scales are chosen to emphasis any model or treatment differences
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a possible adverse effect of treatment emerging at four 
years from randomisation (Supplementary Tables S5).

For the major haemorrhage endpoint, there was no 
statistical evidence to indicate non-proportionality of 
treatment effect, and although an initial higher treat-
ment-related adverse effect was seen during the first 
year of follow-up, this stabilised to a lower—but still 
adverse—effect for the remaining years (Supplemen-
tary Table  2). For the primary endpoint, MACE and 
cancer incidence endpoints, the similarity of the dura-
tion-specific HRs over time suggest that a summary 
estimate of treatment effect was appropriate with little 
to suggest any time-dependence of effect (Supplemen-
tary Tables S1, S3 and S4).

Exploring time‑dependence of treatment effect 
for the solid tumour cancer mortality endpoint
Figure  2 shows a four-panel graphical presentation of 
the treatment effect over time for the cancer mortal-
ity endpoint. Figure  2A (top left) shows KM survival 
curves for aspirin and placebo arms, an FPM analysis 
assuming PH and an FPM analysis allowing for TD of 
the treatment effect. The KM curves shown in black for 
the aspirin (solid lines) and placebo (dashed lines) arms 
in the top left panel (A) show little difference in the 
first 2–3 years with an apparent separation of the two 
curves beginning from year 3 onwards. The survival 
curves from a conventional analysis assuming PH (blue 
curves) appear to capture the pattern reasonably well. 

Fig. 3  Comparison of PH and TD modelled treatment effects for the composite primary endpoint. Survival curves (A) and hazard rates (B) by 
treatment arm, and difference in RMST ( �RMST (C)) and HR (D) over time from PH (blue curves) and TD (green curves) analysis models for the 
composite primary endpoint
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However, even with the greatly expanded y-axis used 
here, differences in the survival proportions can be dif-
ficult to discern graphically. The summary HR from 
the conventional FPM PH model estimates the treat-
ment effect as 1.36 (95% CI 1.13, 1.63; p = 0.001) and 
the �RMST to be – 0.032 (– 0.052, – 0.013; p = 0.001) 
indicating worse outcomes in the aspirin arm. The sur-
vival curves from the analysis allowing for a TD treat-
ment effect (green curves) are able to capture the lack 
of separation of the non-parametric KM curves in the 
first few years of the trial and the increasing separation 
in the latter years.

The hazard rates by treatment group are presented in 
Fig. 2B. On this scale, the initial lack of separation of the 
two groups, followed by a clear separation can be clearly 
discerned in the curves generated from the FPM allowing 
for a TD treatment effect. An indication of uncertainty 
is provided with a shaded 95% CI around the estimated 
curves. Figure  2C is the difference in RMST ( �RMST) 
between the two curves assessed at incremental dura-
tions of time since randomisation over the time period 
0.25–6.75 years. The emergence of a treatment effect 
in later years of follow-up is apparent, and it is evident, 
on the �RMST scale, regardless of whether a PH model 
or a TD model is used. The timing of the emergence of 
the delayed adverse treatment effect appears to differ 
between the chosen models. The PH analysis resulted in 
a larger estimate of treatment effect at all follow-up times 
considered.

In Fig. 2D, the HR estimates as a function of time since 
randomisation from the PH and TD analyses of treat-
ment effect are presented. Compared to the summary HR 
from the PH analysis presented as the constant horizon-
tal line, the HR estimates in the TD analysis varied over 
time with a gradually increasing harmful effect of aspirin. 
From a likelihood ratio test of model fit, there is evidence 
to suggest that the TD model better fits the data com-
pared to the PH model (p = 0.03).

Absence of any time‑dependence of treatment effect 
for the primary and other ASPREE endpoints
An exploratory analysis of treatment effect on disability-
free survival, the ASPREE primary endpoint, presented 
in Fig.  3, shows the survival curves for the aspirin and 
placebo arms of the trial are almost identical for the 
entire duration of the trial (A). There was no evidence of 
a treatment effect and the summary HR estimate of 1.01 
(95% CI 0.92, 1.11; p = 0.79) or the �RMST of – 0.006 
(– 0.047, – 0.035; p = 0.79) provide an adequate descrip-
tion of the lack of effect of aspirin on this composite 
outcome over the duration of the trial. Even with an 
expanded survival proportion axis, the survival propor-
tion curves for the aspirin and placebo arms are almost 

identical for the entire duration of the trial. The duration 
of follow-up captured by these analyses is from randomi-
sation until the last uncensored event time in the dataset 
occurring at 7.01 years.

Similar four panel presentations for the MACE, clini-
cally significant bleeding and cancer incidence endpoints 
are in Supplementary Figs. S1, S2 and S3 in Additional 
File 1. For the MACE and cancer incidence endpoints, 
there is little to differentiate visually between the PH and 
TD analysis models, confirming the appropriateness of 
applying single summary estimates of treatment effect 
for these three endpoints. There is an overall increased 
risk of clinically significant bleeding due to aspirin with 
some suggestion that this risk is highest for the first 6 
months after commencement of daily usage. This transi-
tory treatment effect is explored further as part of assess-
ing for time-dependent treatment effects by sex (see next 
section). For all three endpoints, there is no suggestion of 
improvement of the overall model fit from the likelihood 
ratio tests comparing the PH and TD approaches.

Time‑dependent treatment effects by subgroup: clinically 
significant bleeding in males and females
The flexible modelling approaches being examined here 
can also be used to provide additional insight into inter-
actions between time-dependent treatment effects and 
subgroups of interest. Here, this is conducted as a post-
hoc exploratory analysis although it could form part of a 
pre-specified analysis plan.

For the clinically significant bleeding endpoint, from a 
comparison of the HR from PH and TD models (see Sup-
plementary Fig. S2 panel D), there is some evidence for 
an elevated risk in the first year of taking low dose aspirin 
daily (HR 1.84 95% CI 1.25, 2.70, p = 0.002), which then 
plateaued after the first year to a lower, but still elevated 
risk (HR 1.30 95% CI 1.08, 1.55, p = 0.003) similar to the 
reported overall HR 1.38 95%CI 1.18, 1.62, p < 0.001 for 
the overall treatment effect from the PH model. Pub-
lished subgroup analysis by sex did not show strong evi-
dence of different treatment effects in males and females 
(males HR = 1.21 95% CI 0.97, 1.51; females HR = 1.58, 
95% CI 1.26, 1.99; interaction p-value = 0.1) [29]. The 
potential time-dependence of this interaction is explored 
visually in Fig. 4.

For males, the increased risk of a major bleeding event 
due to aspirin was at its highest during the first few 
months although a still-elevated risk persisted through-
out the follow-up and was estimated to be approximately 
constant after the first year of treatment. Compared 
to males, females had a higher increased risk of bleed-
ing due to daily aspirin usage throughout follow-up. For 
females, the acute increased risk persisted for most of 
the first year, and this risk decreased more slowly over 
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the duration of the trial than males. The shaded area in 
Fig.  4 indicates the uncertainty band around the esti-
mated time-dependent HR for all participants enrolled 
in the trial and highlights the increasing uncertainty at 
later timepoints. Supplementary Fig. S4 in Additional File 
1 contains graphs for the difference by sex in the HR(t) 
from the TD analysis for the other four endpoints under 
consideration.

Time‑dependent treatment effects by subgroup: MACE 
by age as a continuous covariate
Insight into potential treatment effects and continuous 
predictor covariates can also be obtained using the FPM 
approaches. For the ASPREE primary analysis, subgroup 
effects by age at randomisation were examined catego-
rised as younger than the median age (< 74 years) vs older 
(74+ years) as specified in the statistical analysis plan. For 
illustration purposes here, in order to maximise power to 
detect any treatment effect interactions, age was analysed 
on a continuous scale.

For the MACE endpoint, a tendency towards a 
greater beneficial treatment effect for the < 74 years 
age group (HR = 0.76, 95% CI 0.59, 0.97) compared to 
the 74+ age group (HR = 0.97, 95% CI 0.81, 1.17) has 
been reported although this interaction was not statis-
tically significant ( p-valueint = 0.11 ) [29]. To illustrate 
application of the method, age at baseline was included 
in the PH FPM model as a continuous covariate with 
an assumed linear association with the endpoint. The 

evidence of an interaction effect between aspirin and 
(continuous) age at randomisation was summarised 
by p-valueint = 0.06 . When allowing for TD of the 
effect of aspirin and age on MACE, the evidence of an 
interaction effect between aspirin and age was similar 
p-valueint = 0.04.

Figure  5 presents these PH and TD FPM analyses 
assessing treatment effect of aspirin according to age 
for the MACE endpoint. When a linear relationship 
between age and MACE was assumed—and one accepts 
the hypothesis that there is an interaction—the FPM PH 
analysis showed a protective effect of aspirin at younger 
baseline ages, increasing towards an absence of any ben-
efit at older ages (blue line with 95% CI shaded area). 
From the exploratory analysis of the time-dependence 
of this effect depicted in the green lines in Fig.  5, there 
is some evidence to suggest that the possible beneficial 
effect of aspirin for ASPREE participants younger than 
the median was greatest during the earlier years follow-
ing randomisation and reduced with time. For partici-
pants older than the median, there was no evidence of 
any benefit of aspirin during the trial. Supplementary Fig. 
S5 contains graphs of the effect of age with treatment for 
the other ASPREE endpoints examined in this report. 
There was no evidence of any interaction effect between 
aspirin and age in either the PH or TD FPM analyses for 
these other endpoints.

Fig. 4  Assessing time-dependence of aspirin treatment for males and females on risk of clinically significant bleeding. The overall estimated HR(t) 
for treatment effect is the solid green line with the shaded green area indicating the 95% CI width. The HR(t) for treatment effect estimated from 
females only is indicated by a purple dashed line and the HR(t) for treatment effect estimated from males only indicated by the blue dashed line
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Discussion
In this paper, we demonstrated the potential for 
increased clinical insight using regression-based analy-
sis methods to model the time-dependence of treatment 
effects compared to methods that assume proportionality 
of the treatment effect. For five endpoints of the ASPREE 
trial, we compared the results obtained using the Cox 
and Weibull PH models to alternative flexible modelling 
methods utilising splines that are suitable in the context 
of non-PH and which describe time-dependent treat-
ment effects. We have shown enhanced interpretability 
by flexibly modelling the baseline hazard or by using the 
approach of pseudo-observation jackknife estimates in 
a generalised linear modelling approach. We have fur-
ther demonstrated the potential of the flexible modelling 
approaches to explore time-dependent treatment effect 
heterogeneity in subgroups.

There has been a proliferation of research into analy-
sis methods when non-PH is anticipated or detected with 
much focus on weighted adaptations to the standard 
logrank (LR) test in the presence of specific forms of non-
pH such as delayed effects [36–41]. Combination tests 
have also been proposed that combine multiple weighted 
LR tests and/or weighted LR tests with tests for non-PH 
designed to provide robust power to detect survival curve 
differences under a range of non-PH scenarios [42–47]. 
These hypothesis testing approaches have been aimed 
at maintaining power to detect statistical significance in 
clinical trials in the primary analysis. We have focused 
instead on regression-based approaches and graphical 

exploratory analyses to examine the evidence for TD 
treatment effects [48]. In particular, we have utilised the 
flexible parametric modelling approach as, unlike test-
based approaches, it provides estimation of treatment 
effects under PH and non-PH.

From a clinical perspective, there is utility in being able 
to present any treatment effects with estimates in both 
risk-based and time-based metrics which provide com-
plementary information. They provide equivalent infor-
mation albeit on different metrics when a one-summary 
treatment effect is sufficient to describe the findings from 
a trial. When treatment effects vary over time, the differ-
ent metrics may provide insight into the timing and dura-
tion of period specific effects reflective of clinician and 
patient interest. For three endpoints in the ASPREE trial: 
disability-free survival, MACE, and cancer incidence, 
a single HR or �RMST provided an appropriate and 
clinically meaningful summary of the effect of aspirin in 
healthy older adults, similar in magnitude and direction 
of treatment effect for the entire duration of the trial. In 
contrast, for solid tumour cancer mortality and clinically 
significant bleeding, there was some evidence of time-
dependent treatment effects that we now discuss in fur-
ther detail.

The possible time-dependence of the effect of aspi-
rin on solid tumour cancer mortality suggested adverse 
effects of treatment emerging by the third year of the 
trial. We provided evidence that the time-dependent 
model was a more appropriate fit to the trial data than 
the proportional hazards model used in the original trial 

Fig. 5  Effect of aspirin on age at randomisation in PH and TD analysis for the MACE endpoint. The estimated age by treatment interaction effect 
from the PH model is the solid blue line with the shaded area indicating the 95% CI width. The interaction treatment effect from the TD model at 
yearly intervals is indicated by the green lines with colour intensity decreasing over time
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analyses. The findings contrast with the longer-term 
beneficial effects of aspirin observed in other RCTs. Pre-
viously postulated hypotheses to account for this unex-
pected increase in cancer mortality suggest that the effect 
of aspirin may have biological effects that vary according 
to the timing of the exposure, or vary according to age or 
other participant-specific characteristics. It is conceiva-
ble that aspirin may have short-term actions on pathways 
specific to ageing or tumour cell types in older hosts that 
could explain the worsened survival among participants 
in ASPREE in the absence of any apparent effect on can-
cer incidence [22]. Continued follow-up of ASPREE par-
ticipants is currently underway to examine legacy effects 
of the intervention.

For clinically significant bleeding, plausible observa-
tions of clinical interest from an analysis of time-depend-
ent treatment effects were seen. An increased risk with 
aspirin was durable to 5 years of exposure and beyond. 
There appeared to be a particularly elevated risk of bleed-
ing events with aspirin in the first few months after 
beginning treatment, which by the end of the first year 
of follow-up had plateaued to a lower but still increased 
harmful effect which was then sustained for the remain-
der of follow-up. However, care is required not to 
over-interpret this conclusion as the existence of this 
time-dependence of treatment effect was not confirmed 
by a statistical test. Hence, clinical and mechanistic 
plausibility should be considered carefully, and addi-
tional studies would be necessary to confirm the working 
hypotheses regarding any time-dependent aspirin treat-
ment effects.

Further insights into the potential benefits and harms 
of treatment effects can be demonstrated using flex-
ible modelling approaches by incorporating categorical 
covariates for subgroups and by allowing continuous 
covariates to be investigated assuming linear and more 
flexible spline functional forms. These analyses can 
provide a more nuanced understanding of potential 
treatment subgroup heterogeneity and time-dependent 
treatment effects. Clinical trials are rarely adequately 
powered to detect interaction effects so any findings 
need to be considered with the requisite understanding 
of the exploratory nature of these investigations.

For the clinically significant bleeding endpoint of 
ASPREE, by allowing for the treatment effect to differ 
in males and females and allowing that difference to be 
time-dependent, we were able to demonstrate an acute 
period of higher risk upon starting daily aspirin usage for 
both males and females. Our analyses also suggest that 
females had a relatively higher increased risk of clinically 
significant bleeding at all times compared to males.

Previous assessments for possible treatment-age 
interactions for the MACE endpoint in ASPREE had 

been performed using pre-specified categorical group-
ings of the age-at-randomisation covariate. Based on 
the selected categorisations, there had been little evi-
dence to suggest any treatment-age interaction effect 
(see Supplement S7, S8 in [29]). Our detailed explora-
tory analysis suggested a beneficial effect of aspirin for 
ASPREE participants younger than the median age (< 
74 years) particularly in the early years of follow-up, 
but for older participants (74+ years), there was no 
indication of aspirin benefit during the trial.

To more fully report the information in a trial, 
tabulation of both relative and absolute measures of 
treatment effect at key times of clinical interest, and 
graphical presentation of complementary measures 
of treatment effect over time for subgroups should 
be encouraged [49]. In this way, readers can ascertain 
for themselves the suitability of summary treatment 
effect measures presented as the main findings of the 
trial. We note that apparent time-dependent treatment 
effects can arise if underlying event susceptibility var-
ies between participants, a flaw of using relative meas-
ures such as the hazard ratio for causal inference [50]. 
Effect measures directly estimable from absolute risks 
such as the �RMST and difference in survival propor-
tion retain their causal interpretability regardless of 
the proportionality of the treatment effect and should 
be used to supplement reports of relative effect meas-
ures [51].

Conclusion
We have compared a range of regression-based 
approaches allowing for assessment of time-dependent 
treatment effects and illustrated their potential using 
a range of endpoints from the ASPREE trial. We rec-
ommend these analyses as exploratory and supple-
mentary to the pre-specified primary analyses, aiming 
to provide enhanced insight and understanding to the 
mechanisms of any treatment effect, over time and in 
subgroups of interest. In order to facilitate interpreta-
tion, results should be presented using relative and 
absolute measures of treatment effect in a range of 
graphical and tabular presentations to provide comple-
mentary insights into the timing, magnitude and dura-
tion of any treatment effects in a trial.
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