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Abstract
Background: Non-inferiority trials are becoming increasingly popular in public health and clinical research. The
choice of the non-inferiority margin is the cornerstone of such trials. Most of the time, the non-inferiority margin is
fixed and constant, determined from historical trials as a fraction of the effect of the reference intervention. But in
some circumstances, there may some uncertainty around the reference treatment that one would like to account for
when performing the hypothesis testing. In this case, the non-inferiority margin is not fixed in advance and depends
on the reference intervention estimate. Hence, the uncertainty surrounding the non-inferiority margin should be
accounted for in statistical tests. In this work, we explore how to perform the non-inferiority test for a continuous
variable with a flexible margin.
Methods: We have proposed in this study, two procedures for the non-inferiority test with a flexible margin for
continuous endpoints. The proposed test procedures are based on a test statistic and confidence interval approaches
respectively. Simulations have been used to assess the performances and properties of the proposed test procedures.
An application was done on a real-world clinical data, to assess the efficacy of clinical monitoring alone versus
laboratory and clinical monitoring in HIV-infected adult patients.
Results: Basically, for both proposed methods, the type I error estimate was not dependent on the values of the
reference treatment. In the test statistic approach, the type 1 error rate estimate was approximatively equal to the
nominal value. It has been found that the confidence interval level determined approximatively the level of
significance. For a given nominal type I error α, the appropriate one- and two-sided confidence intervals should be
with levels 1 − α and 1 − 2α, respectively.
Conclusions: Based on the type I error rate and power estimates, the proposed non-inferiority hypothesis test
procedures had good performances and were applicable in practice.
Trial registration: ClinicalTrials.gov NCT00301561. Registered on March 13, 2006, url: https://clinicaltrials.gov/ct2/
show/NCT00301561.
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Background
After developing a new health intervention (treatment or
diagnostic test), the next step is to assess its effectiveness,
relative to the existing reference intervention. There are
several strategies to do this, such as the superiority trials
which involve testingwhether the new treatment is superior
to another (placebo, reference, or active control treatment).
However, when the active control intervention achieves
maximum efficacy or the use of a placebo is unethical,
it becomes difficult to statistically show the superiority
of the new health intervention. Studies aimed at showing
that a new intervention is not worse than the active con-
trol intervention by more than a pre-specified amount of
efficacy have become increasingly common in the recent
decade [1]. The expression is not worse than the active
control intervention by more than a pre-specified amount,
means it is acceptable to lose a “little bit” of themain effect
of the active control intervention compared to a new inter-
vention’s benefits (fewer side effects, costs, tolerable, and
safer). This acceptable loss of efficacy is illustrated numer-
ically as the non-inferiority margin. A trial showing that
the new intervention is non-inferior to the active control
intervention is called a non-inferiority trial [1].
The Food and Drug Administration (FDA)[2] provided

general principles for an appropriate choice of the non-
inferiority margin. The non-inferiority margin is at the
upper limit of the confidence interval, so the trial is
designed to show evidence of no more than this “loss of
maximum efficacy.” Generally, this margin is fixed, deter-
mined from historical trials as a fraction of the treatment
effect. However, in some cases, the mean estimate of ref-
erence treatment could be subjected to variations to the
levels that adopting a fixed margin would not be rele-
vant. Indeed, the fixed margin cannot take into account
the variability which surrounds the reference treatment
estimate, in this case, the margin should be a function
of the reference treatment. For binary endpoints, tests
that account for non-fixed margins have been studied [3–
5]. One finds that most works on the non-inferiority test
for continuous endpoints with fixed and linear margin
have been focused on the confidence intervals approach
[6–8], mainly consisting of comparing the bounds of the
treatments difference to the fixed margin. However, few
studies have been performed for a non-fixed or variable
margin for continuous endpoints. This work is aimed at
deriving non-inferiority tests for continuous endpoints
with flexible margin in active randomized controlled tri-
als. An application of the proposed methods is done on
the Stratall ANRS 12110/ESTHER trial.

Methods
Notations
The following are the definition of the basic notations
used.

• XR and XN are the the random variables for
continuous primary endpoint in the active control
group (reference) and new intervention group (new
group), respectively.

• nR and nN are the the sample sizes for the active
control group and new group, respectively.

• μR and μN are the the means of continuous primary
endpoint for the active group and new group,
respectively.

• σ 2
R and σ 2

N are the the variances of continuous
primary endpoint for the active group and new group
respectively.

• �L(μR) is the non-inferiority margin, and
� = μN − μR is the difference of true means.

• H0 and H1 are the null and alternative hypotheses,
respectively.

Approach using a test statistic
Without loss of generality, assuming that an increase in
the endpoint corresponds to more efficacy. The non-
inferiority hypotheses can be formulated as follows:

{
H0:μN ≤ μR − �L Thereisnonon − inferiority
H1:μN > μR − �L Thereisnon − inferiority (1)

The formulation of the hypotheses test in Eq. (1) shows
that the non-inferiority means that the new intervention
is not worse than the active control intervention with a
�L margin. When �L is fixed, testing the hypotheses (1)
can be viewed as a classical composite hypotheses test for
mean difference [9]; therefore, based on the central limit
theorem applied to the boundary of the null hypothesis,
the asymptotic test Zfixed can be obtained by:

Zfixed = X̄N − X̄R + �L√
σ 2
N

nN + σ 2
R

nR

∼ N(0, 1). (2)

In effect, when �L is fixed, we have:

Var(X̄N − X̄R + �L) = Var(X̄N ) + Var(X̄R)

= σ 2
N

nN
+ σ 2

R
nR

. (3)

The null hypothesis is rejected if Zfixed > Z1−α , where
Z1−α is the (1 − α) percentile of the standard normal dis-
tribution. From the Karlin-Rubin theorem, this test is the
uniformly most powerful test of level α [10].
If �L is not fixed, i.e, if �L is a function of μR, then

Var{X̄N − X̄R + �L(X̄R)} �= Var(X̄N ) + Var(X̄R), and
therefore, Var(X̄N ) + Var(X̄R) is not a valid variance of
X̄N−X̄R+�L(X̄R). Under the assumption that�L is a con-
tinuously differentiable function, variance estimation was
performed using delta method discussed below.
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Variance estimation using deltamethod
If �L(.) is a continuously differentiable such that
�′

L(μR) �= 0 (�′
L is the first derivative of �L), then using

the Taylor series of order 1 in a neighborhood of μR,

�L(X̄R) = �L(μR) + �′
L(μR)(X̄R − μR) + op(1). (4)

Hence,

{X̄N − X̄R + �L(X̄R)} − {μN − μR + �L(μR)}
= (X̄N − μN ) − (X̄R − μR) + {�L(X̄R) − �L(μR)}
= (X̄N − μN ) − (X̄R − μR) + �′

L(μR)(X̄R − μR) + op(1)
= (X̄N − μN ) + {�′

L(μR) − 1}(X̄R − μR) + op(1)

Thus, the variance estimate is:

Var{X̄N − X̄R + �L(X̄R)} = σ 2
N

nN
+ {�′

L(μR) − 1}2σ 2
R

nR
(5)

The test statistic can then be expressed as:

Zflexible = {X̄N − X̄R + �L(X̄R)} − {μN − μR + �L(μR)}√
σ 2
N

nN + {�′
L(μR)−1}2σ 2

R
nR

.

(6)

Asymptotic properties of the test statistic Zflexible
From the central limit theorem, when nN and nR approach
infinity, the random variable Zflexible ∼ N(0, 1) on the
boundary of null hypothesis, that is, asymptotically,

Zflexible = X̄N − X̄R + �L(X̄R)√
σ 2
N

nN + {�′
L(μR)−1}2σ 2

R
nR

∼ N(0, 1). (7)

μR is unknown and σ 2
R and σ 2

N may be unknowns, which
need to be estimated. We used the maximum likelihood
estimationmethod on the boundary of the null hypothesis
(μN = μR − �L(μR)). The unknown parameters are esti-
mated considering the cases where the variances σ 2

R and
σ 2
N are known, unknown, equal, or unequal.
The maximum likelihood (ML) estimators μ̂R, σ̂R2 and

σ̂N
2 for μR, σ 2

R and σ 2
N , respectively, are consistent. More-

over, since �′
L is assumed continuous, �′

L(μ̂R) is a con-
sistent estimator for �′

L(μR). The estimator Ẑflexible of
the test statistic Zflexible can be obtained by replacing
the unknown parameters in (6) by their ML estimators.
Therefore, the test H ′

0 versus H1 (where H ′
0 is the bound-

ary of H0 i.e μN = μR − �L(μR)) is rejected if Ẑflexible >

z1−α , where α is the nominal type I error and z1−α denotes
the 1 − α percentile of the standard normal distribution.
The significance level of this test tends to α when nN and
nR approach infinity.

Assuming that, under alternative hypotheses H1, μN −
μR + �L(μR) = v, we have v > 0. Hence, if η is the power
of the test, it follows that:

η = P

⎛
⎜⎜⎝ X̄N − X̄R + �L(X̄R)√

σ 2
N

nN + (�′
L(μR)−1)2σ 2

R
nR

> z1−α/H1

⎞
⎟⎟⎠

= P

⎛
⎜⎜⎝ X̄N − X̄R + �L(X̄R) − v√

σ 2
N

nN + (�′
L(μR)−1)2σ 2

R
nR

> z1−α − v√
σ 2
N

nN + (�′
L(μR)−1)2σ 2

R
nR

⎞
⎟⎟⎠ ,

where, under alternative hypothesis, X̄N−X̄R+�L(X̄R)−v√
σ2N
nN

+ (�′
L(μR)−1)2σ2R

nR

∼

N(0, 1). Assuming the equal variance in both groups
(σ 2 = σ 2

R = σ 2
N ) and denoting by δ = v/σ , the power,

given as a function of δ, nN , nR, and α is:

η(δ, nN , nR) = �

⎛
⎜⎝ δ√

1
nN + (�′

L(μR)−1)2
nR

− z1−α

⎞
⎟⎠ , (8)

where � is the cumulative distribution function of the
standard normal distribution. For a fixed nominal type
I error α, and for any fixed μR and μN such that v =
μN − μR + �L(μR) > 0, when nR → ∞ and nN → ∞, it
follows that η → 1. Therefore, the test Zflexible is asymp-
totically convergent. From Eq. 8, it is possible to find the
sample size that achieves the nominal fixed power. Denot-
ing the nominal type II error by β and assuming that
nN = rnR with r > 0, the sample size which will allow
nominal power (1 − β) is such that:

nR ≥ (z1−α + z1−β)2
[
1 + r{�′

L(μR) − 1}2]
rδ2

. (9)

This formula is equivalent to the one found in [9] when
the margin is fixed. Practically, δ is equivalent to the
standardized difference in the comparison of the means,
and in this work, it would be named standardized non-
inferiority difference. In the power and sample sizes calcu-
lations, one will fix δ (for example, δ = 0.05 or δ = 0.5
if one wants to detect small or large inferiority differ-
ences respectively), and μR could be pre-specified from
historical studies with similar treatment.
The proposed test statistic Ẑflexible is asymptotic, hence

works well for large sample sizes, hence not adapted
for datasets with small sample sizes, which are not
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uncommon in pratical situations. In such cases, the non-
parametric test based on the percentile bootstrap confi-
dence interval which does not require any assumptions on
the sample size or sample distribution can be used[11].

Approach based on confidence intervals
For any test based on confidence intervals, the main inter-
est is on the level of confidence intervals which is required
to achieve a desired nominal type I error. Moreover, as dis-
cussed in [9] and [12], the type I error is a controversial
issue in clinical trial tests. In the framework of non-
inferiority tests, when the non-inferiority margin is fixed,
[13] recommended using 1−α and 1− α

2 for two-sided and
one-sided confidence interval levels respectively, while [7]
recommended to use 1 − 2α for two-sided and 1 − α for
one-sided confidence intervals. In [7], it is argued that the
recommendation of [13] would lead to a conservative test,
as the estimate type I error rate would be half the nom-
inal one. Moreover, it has been argued that there would
be approximately a 10% loss of power. In this section, we
propose a non-parametric procedure for the confidence
interval (one-sided and two sided) construction when the
non-inferiority margin is flexible.
An intuitive procedure based on confidence intervals

for the hypotheses test in Eq. (1) would be by checking
the overlapping of the confidence intervals of μN − μR
and −�L(μR). The null hypothesis would be rejected if
the two confidence intervals are non-overlapped and not
rejected otherwise. In such case, as illustrated in [14],
the intervals may be overlapped while the statistics would
not be necessarily non-significantly different; thus, the
power of the test would be lower. The proposed procedure
involves comparing the lower bound of the confidence
interval (one- or two-sided, respectively) with γ% level
of μN − μR + �L(μR) with 0. The null hypothesis H0 is
rejected if the lower bound of the confidence interval for
μN − μR + �L(μR) is greater than 0.
Estimation of the type I error is performed using simula-

tions and non-parametric estimation of confidence inter-
vals on the boundary of the null hypothesis. The detailed
steps are described below.

1. From a fixed μR, calculate μN = μR − �L(μR) (sat-
isfying the null hypothesis H0). We assume that the
standard deviations σN and σR are known.

2. Let m denote the number of desired simulations, for
i ∈ {1 · · ·m}, simulate m pairs of samples XN and
XR of size nN and nR, respectively, from the normal
distributionN (μN , σN ) andN (μR, σR), respectively.

3. Using bootstrap, compute the empirical percentile
confidence intervals [ ai,∞] for one-sided confidence
interval (and [ ai, bi] for two-sided confidence interval,
respectively) of level γ for μN − μR + �L(μR), for
i ∈ {1 · · ·m}.

4. For i ∈ {1 · · ·m} H0 is rejected when ai > 0,
thus the level of significance is estimated by: α(γ ) =
1
m

∑m
i=1 1ai>0.

Like any other power estimation, the data are drawn
under the alternative hypothesis that is, μN > μR −
�L(μR). Since there is a wide range of possibilities on
the alternative hypothesis, in practice, one considers the
equivalence point, that is, μR = μN . Therefore, similarly
to studies of [5] and [15], the equivalence point (μR = μN )
will be used for drawing data for the power estimation.

1. Given μR, simulate m pairs of samples XN and XR of
respective sizes nN and nR using the respective normal
distributionsN (μR, σN ) andN (μR, σR).

2. Using bootstrap, compute the empirical percentile
confidence intervals [ ai, bi] of level γ for μN − μR +
�L(μR), for i ∈ {1 · · ·m}.

3. For i ∈ {1 · · ·m}H0 is rejected when ai > 0. Thus, the
power is estimated by, η(γ ) = 1

m
∑m

i=1 1ai>0.

Performances assessment
Simulations were done to evaluate the finite-sample per-
formances of the asymptotic test and confidence interval
based test. The performance indicators used were the
type I error and statistical power. Monte-Carlo simulation
techniques were used for the estimation of the considered
indicators. In the simulations, we considered the margin
�L(μR) = μ

1/4
R ; and unknown variances σ 2

R and σ 2
N .

Both indicators were computed for the two proposed
tests according to the reference treatment. For the type
I error, data were drawn on the boundary of the null
hypothesis: for a given μR, μN is obtained such that μN =
μR − �L(μR). For the power, data were drawn under the
alternative hypothesis: for a given μR, μN is obtained such
that μN > μR − �L(μR). Usually, one takes μN = μR.
In all cases, it is assumed that μR vary in [ 1, 1000]. In the
test based on statistic, the power was estimate using for-
mula (8), and two cases were considered for δ = 0.05 and
δ = 0.5.
In the approach based on the asymptotic test, the nom-

inal type I error was fixed and set at α = 5%. For the
confidence interval based test, we considered 95% one-
and two-sided confidence interval levels. The purpose
was to estimate the type I error rate for the respective
confidence interval. In all the simulations, we considered
balanced sample sizes (that is when n = nN = nR),
n = 30, 100, and 1000 for small, medium, and large sample
sizes, respectively. The number of bootstrap samples with
replacement was B = 1000, and the number of simulation
replications was m = 10000. The R software program-
ming language [16] was used to conduct the simulations
and codes are accessible in a separate file on request.
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Fig. 1 Type I error rate estimates according to sample sizes for test
statistic based test. Type I error rate estimates as function of reference
treatment, for the test statistic based test from the left to the rigth,
sample sizes are nN = nR = 20, 100, and 1000 respectively

Application to the Stratall ANRS 12110 / ESTHER
This study was motivated by the randomized non-
inferiority “Stratall ANRS 12110 / ESTHER” trial [17].
The main purpose was to assess an exclusively clinical
monitoring strategy compared with a clinical monitoring
strategy plus laboratory monitoring in terms of effective-
ness and safety in HIV-infected patients in Cameroon.
The idea was to achieve the scaling-up of HIV care in rural
districts where most people live with HIV, but local health
facilities generally have low-grade equipment. A total of
459 HIV-infected patients were included in the study and
randomly allocated to two groups, one receiving exclu-
sively clinical monitoring (intervention group, N = 238)
and the other receiving laboratory and clinical monitoring
(active control group (reference), N = 221). All patients
included were initiated antiretroviral treatment and were
followed up for 24 months. Clinical monitoring alone was
compared to laboratory and clinical monitoring in a non-
inferiority design. The continuous primary endpoint was
the increase in CD4 cells count from treatment initiation
to the twenty-fourth month. Based on previous studies,
the non-inferiority margin (�L(R)) was prespecified as
a linear function (25%) of the mean CD4 cells increase
(μR) after 24 months of antiretroviral treatment in labo-
ratory and clinical monitoring group , �L(R) = 25

100μR.
Unlike other non-inferiority studies [18, 19], the non-
inferiority margin in this study was varied (depending on
the mean increase in CD4 in the active control group
(reference)). However, the classical two-sided confidence
interval based test with 90% level were used to obtain a
type I error (α) close to 5% [17]. Indeed, the statistical test
procedures that explore the non-inferiority test for con-

Fig. 2 Power estimates according to sample sizes for test statistic based test (with standardized non-inferiority difference delta = 0.05). Power
estimates as function of reference treatment (with standardized non-inferiority difference delta = 0.05), for test statistic based test. From the left to
the rigth, sample sizes are nN = nR = 20, 100, and 1000, respectively
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Fig. 3 Power estimates according to sample sizes for test statistic based test (with standardized non-inferiority difference delta = 0.5). Power
estimates as function of reference treatment (with standardized non-inferiority difference delta = 0.5), for test statistic based test. From the left to
the rigth, sample sizes are nN = nR = 20, 100, and 1000, respectively

Fig. 4 Type I error rate estimates according to sample sizes for the 95% one-sided confidence intervals level based test. Type I error rate estimate as
function of reference treatment, for the 95% one-sided confidence intervals level based test. From the left to the rigth, sample sizes are
nN = nR = 20, 100, and 1000, respectively
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tinuous data with variable margins were not available at
that time in the original paper [17].Moreover, as discussed
in [12], the relationship between the confidence intervals
level and the type I error can be controversial.
More details about the background of the study and the

clinical trial process can be found in [17]. Two analyses
were done according to the type of data:
1 Firstly, the increase of CD4 cells count at 24 months

from the baseline was considered, which implies
missing or lost patients before the end of follow-up
period were excluded in the analysis. In that case, the
total number of patient in the analysis reduced to
n = 334, with nR = 169 and nN = 165. “Observed
data” will refer to the case where data are analyzed by
excluding participants with missing observation at 24
months.

2 Secondly, an analysis was done with all participants
who attended at least one follow-up visit, and the last
observation carried forward (LOCF) imputation
method was applied for participants whose CD4 data
were missing at 24 months (in this case, the number
of patients to analyzed is the same as the baseline:
n = 459, nR = 238 , nN = 221).

The classical parametric two-sided confidence interval
based test with 90% level was used by [17] to perform the
non-inferiority test. The final result was that the CLIN
was inferior to the LAB.
Results
Simulations results
Test statistic based test
The results for the approach based on a statistic are sum-
marized in Figs. 1, 2, and 3 for type I error rate and power
estimates, respectively. Whatever the sample size, it is
observed that the type I error rate estimates were constant
and were not μR dependent. For small sample size, the
type I error rate estimate was slightly above the nominal
value, while the median value estimate was 0.053, and an
Interquartile Range(IQR) of [ 0.051 − 0.054]. As the sam-
ple size increases, the type I error estimates get close to
the nominal value. In effect, for medium sample size of
n = 100, the type I error estimate is close to the nom-
inal value, the median value estimate for μR was 0.051
(IQR =[ 0.050 − 0.052]). For large sample sizes, for exam-
ple, n = 1000, the type I error estimate was more accurate
and closer to the nominal value, the median estimate was
0.050 (IQR =[ 0.050 − 0.050]).

Fig. 5 Power estimates according to sample sizes for the 95% one-sided confidence intervals level based test. Power estimates as function of
reference treatment, for the 95% one-sided confidence intervals level based test. From the left to the rigth, sample sizes are nN = nR = 20, 100, and
1000, respectively
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The power estimates were summarized in Figs. 2 and 3,
and they were not μR-dependent. As expected, the power
increased with sample sizes for fixed standardized non-
inferiority difference δ, and larger values of δ led to a
higher power estimate for fixed sample size.

Confidence interval based test
The results for the approach based on confidence intervals
are summarized in Figs. 4, 5, 6, and 7. For 95% both one-
and two-sided confidence interval levels, the estimate type
I error rates remained around 0.05 and 0.025, respectively,
and are more concentrated around those values as the
sample sizes get larger. Then, for a given nominal type I
error of α, the suitable confidence intervals level would be
1− α and 1− 2α for one- and two-sided confidence inter-
vals, respectively. The power (at the equivalence point,
μR = μN ) increases with the sample sizes, but the conver-
gence to 1 seemed to require very large sample sizes. This

is not the case for the test statistic based method. There-
fore, in terms of power estimate, the approach based on
the test statistic would perform better than the confidence
intervals based approach.

The Stratall ANRS 12110 / ESTHER trial
The proposed methods were also applied to the Stratall
ANRS 12110 / ESTHER tria, based on Observer and
LOCF data, with a linear margin of �L(R) = 25

100R. The
results for the approach based on the test statistic are sum-
marized in Table 1. The p-value is calculated based on
the test statistic in Eq. (6). The statistical power was com-
puted using Eq. (8) and based on the same inputs as in
[17], which wereμN = μR = 140 and σN = σR = 130. For
the Observed data, the p-value estimate was = 0.02, and
the null hypothesis that CLIN was inferior to the LAB was
rejected at 0.05 level. On the other hand, for the LOCF
data, the p-value was = 0.09, and the null hypothesis that

Fig. 6 Type I error rate estimates according to sample sizes for the 95% two-sided confidence intervals level based test. Type I error rate estimate as
function of reference treatment, for the 95% two-sided confidence intervals level based test. From the left to the rigth, sample sizes are
nN = nR = 20, 100, and 1000, respectively
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Fig. 7 Power estimates according to sample sizes for the 95% two-sided confidence intervals level based test. Power estimates as function of
reference treatment, for the 95% two-sided confidence intervals level based test. From the left to the rigth, sample sizes are nN = nR = 20, 100, and
1000, respectively

CLIN was inferior to the LAB was not rejected at 0.05
level.
For the confidence interval-based approach, the test

was performed by considering the one- and two-sided
confidence interval levels. The results are presented in
Table 2. The null hypothesis that CLIN was inferior to
LAB was not rejected for any of the confidence intervals
used with “LOCF data.” On the other hand, when using
“Observed data,” the null hypothesis of inferiority was not
demonstrated.
The two proposed methods produced consistent results

on the Stratall ANRS 12110 / ESTHER trial. Moreover,
based on LOCF data, the obtained results are in line with
those in [17]: the clinical monitoring alone was inferior to
laboratory plus clinical monitoring.

Discussions
In this study, we have proposed two non-inferiority test
approaches for a continuous endpoints with flexible mar-
gins: a test based on a test statistic and a confidence inter-
val based test. The confidence interval approach is more
used in literature and recommended by the international

guideline [2]. For the non-inferiority test with continu-
ous endpoints and fixed margin, some studies like [7] and
[12] studied the confidence interval approach which does
not allowed for explicit sample size calculation. Compara-
tively, our proposed test based on a statistic allows explicit
calculation of sample size and power formula.
The simulation results for the confidence intervals

based test showed that the confidence interval level deter-
mined approximatively the type I error rate. The test with
95% one- and two-sided confidence intervals level led to
type I errors which were approximated by 0.05 and 0.025,
respectively. Therefore, for a given nominal type I error
α = 0.05, the confidence intervals based test would be
performed with one- or two-sided confidence intervals

Table 1 p-value and power determination for the approach
based on the asymptotic test statistic and according to the data
used

p-value Power

Case of LOCF 0.02 0.77

Case of observed data 0.11 0.82
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Table 2 Confidence interval calculations and decision on
non-inferiority confidence interval based test

One-sided CI Two-sided CI

Case of LOCF

CLIN − LAB + �L(LAB) − 5 to∞ − 10 to52

Decision Inferiority Inferiority

Case of observed data

CLIN − LAB + �L(LAB) 7 to∞ 1 to72

Decision Non-inferiority Non-inferiority

with 1−α or 1−2α levels, respectively; these findings are
consistent with those in [7]. The non-inferiority hypothe-
sis test is a one-tailed test, so when performing the testing
procedure with the classical nominal type I error α, the
actual type I error would be α/2. Therefore, for a given
desired nominal type I error, to avoid the conservative-
ness of the test, the test should be performed with this
nominal error times two. However, the debate on which
of the one- or two-sided confidence intervals should
be used in non-inferiority trials remains open, which is
discussed in [20].
The most important output of this study was the type I

error which was not varying according to the value of ref-
erence treatment, either for the test based on a statistic
or the test based on confidence intervals. This suggested
that the variability and uncertainty around the margin
were accounted for, without affecting the properties of
the proposed tests. The proposed methods in this study
could therefore be viewed as a generalization of the case
where the non-inferiority margin is fixed for continuous
endpoints.

Conclusions
In an active controlled trial of non-inferiority, the non-
inferiority margin should be a function of reference treat-
ment to account for the uncertainty surrounding themean
estimate of reference treatment. This paper produced a
framework on how to perform the non-inferiority hypoth-
esis test with a flexible margin. Based on type I one error
rate and power estimates, the proposed non-inferiority
hypothesis test procedures have good performances and
are applicable in practice, a practical application on clini-
cal data was illustrative.
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