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Abstract

Background: Randomised controlled trials (RCTs) provide valuable information for developing harm profiles but
current analysis practices to detect between-group differences are suboptimal. Drug trials routinely screen
continuous clinical and biological data to monitor participant harm. These outcomes are regularly dichotomised
into abnormal/normal values for analysis. Despite the simplicity gained for clinical interpretation, it is well
established that dichotomising outcomes results in a considerable reduction in information and thus statistical
power. We propose an automated procedure for the routine implementation of the distributional method for the
dichotomisation of continuous outcomes proposed by Peacock and Sauzet, which retains the precision of the
comparison of means.

Methods: We explored the use of a distributional approach to compare differences in proportions based on the
comparison of means which retains the power of the latter. We applied this approach to the screening of clinical
and biological data as a means to detect ‘signals’ for potential adverse drug reactions (ADRs). Signals can then be
followed-up in further confirmatory studies. Three distributional methods suitable for different types of distributions
are described. We propose the use of an automated approach using the observed data to select the most
appropriate distribution as an analysis strategy in a RCT setting for multiple continuous outcomes. We illustrate this
approach using data from three RCTs assessing the efficacy of mepolizumab in asthma or COPD. Published
reference ranges were used to define the proportions of participants with abnormal values for a subset of 10 blood
tests. The between-group distributional and empirical differences in proportions were estimated for each blood test
and compared.

Results: Within trials, the distributions varied across the 10 outcomes demonstrating value in a practical approach
to selecting the distributional method in the context of multiple adverse event outcomes. Across trials, there were
three outcomes where the method chosen by the automated procedure varied for the same outcome. The
distributional approach identified three signals (eosinophils, haematocrit, and haemoglobin) compared to only one
when using the Fisher's exact test (eosinophils) and two identified by use of the 95% confidence interval for the
difference in proportions (eosinophils and potassium).
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Conclusion: When dichotomisation of continuous adverse event outcomes aids clinical interpretation, we advocate
use of a distributional approach to retain statistical power. Methods are now easy to implement. Retaining
information is especially valuable in the context of the analysis of adverse events in RCTs. The routine
implementation of this automated approach requires further evaluation.

Keywords: Harm, Adverse events, Continuous data, Randomised controlled trials, Power, Dichotomisation

Background

Randomised controlled trials (RCTs) provide oppor-
tunity to monitor for potential harm alongside deter-
mining the efficacy of a treatment [1] and frequently
gather considerable quantities of harm information
for analysis [2, 3]. Harm outcomes are either pre-
specified in advance at the start of a trial or are
allowed to ‘emerge’ as the trial progresses. There are
two broad approaches to collecting emerging harms
[4]. The most familiar is spontaneous reports of ad-
verse events (AEs) that occur to a participant.'
These events are typically binary or count in nature
such as occurrence of an allergic reaction or the
number of severe headaches a participant experi-
ences during the trial. The second type, which is the
focus of this paper, is from screening procedures
that participants undergo at regular trial visits. These
outcomes are predominantly continuous in nature
and include both clinical and biological measures.
Examples include blood pressure, heart rate, blood,
and urine tests. Typically, these continuous out-
comes are dichotomised into normal/abnormal based
on reference thresholds [5]. From a clinical perspec-
tive, dichotomising continuous outcomes is under-
taken to provide health care professionals
unambiguous thresholds to assist in diagnoses, and
the use of thresholds supports replicable interpret-
ation and decisions across clinicians [1, 6]. For
example, the diagnosis of hypertension according to
the World Health Organisation (WHO) definition
would be individuals who have a systolic blood pres-
sure equal to or above 140 mmHg and/or a diastolic
blood pressure equal to or above 90 mmHg [7]. This
simplicity in interpretation means the practice of
dichotomising is prevalent in clinical decision-
making and medical research. In addition, tools used
to assist in defining and reporting harms, such as
the Common Terminology Criteria for Adverse
Events which is used to define toxicities in cancer
trials, actively encourage use of thresholds for con-
tinuous outcomes to classify AEs [8].

'AEs are defined as any untoward medical occurrence that may
present during treatment with a pharmaceutical product but which
does not necessarily have a causal relationship with this treatment’.

In statistical analysis, it is well established that
dichotomisation leads to loss of information and thus
results in a reduction in statistical power when mak-
ing comparisons between groups [1, 5]. In the context
of screening for harm outcomes and monitoring
safety in trials, it is conventional to compare the pro-
portion of participants with abnormal results between
groups to check for imbalances [9, 10]. These propor-
tions are often formally compared through the use of
unadjusted hypothesis tests with p-values < 0.05 taken
as evidence of potential harm [10].

When analysing continuous outcomes in trials, where
the sample size is limited, there is clear benefit to retain-
ing variables in their continuous form in order to maxi-
mise information. Methods have been proposed that
address dichotomisation of continuous outcomes in the
context of efficacy comparisons [11, 12]. These include a
suite of distributional approaches that allow proportions
to be compared between groups where the proportions
have been calculated based on the assumed distribution
of the continuous variables, rather than using empirical
estimates from observed data [13—-16]. The methods
proposed by Peacock and Sauzet allow for unequal vari-
ance between groups [16], skewed outcomes [15], and
the ability to adjust for prognostic variables [17]. These
methods enable the estimation of differences in propor-
tions with the same precision (width of confidence inter-
val or p-value) as a comparison of means, which is
recommended to always perform and present.

The aim of this study is to demonstrate the use of the
distributional approaches proposed by Peacock and Sau-
zet and to explore practical considerations in the context
of applying these methods when there are many con-
tinuous harm outcomes in RCTs.

Methods

Aim and design

We aim to explore and demonstrate the use of three
distributional approaches proposed by Peacock and
Sauzet to undertake a comparison of between-group
proportions including an extension method that enables
adjustment for covariates. We compare the results to
empirical dichotomisation approaches standard in
current practice. This study uses three case studies to
examine and demonstrate an alternative analysis strategy
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for continuous harm outcomes collected through regular
screening procedures in drug trials.

Trial characteristics

The  trial  datasets were  obtained via  the
ClinicalStudyDataRequest.com initiative from GlaxoSmithK-
line (GSK). Three RCTs evaluating mepolizumab in chronic
respiratory disease populations were chosen as follows: they
offered a standard randomised, double-blind, placebo-
controlled, parallel-group setting; the participants undertook
regular clinical and biological screening; they had typical
follow-up periods with repeated measurement; the methods
were comparable across all trials; and they provided evalu-
ation of a long-term treatment option in a chronic disease
population where screening for harm is highly relevant.

The trials evaluated the efficacy of mepolizumab com-
pared with placebo in patients (predominantly adults)
with asthma (trial acronym: MUSCA [18] and SIRIUS
[19]) or Chronic Obstructive Pulmonary Disease
(COPD) (trial acronym: METREX [20]). Trials included
one small study (n = 135) and two moderate sized stud-
ies (n = 551 and 836). Across all trials, participants
received treatment every 4 weeks for at least 24 weeks,
with the longest study treatment period lasting 52 weeks.
Trial characteristics are summarised in Table 1 [18-20].

Analysis methods

We analysed participants according to treatment alloca-
tion. In practice, all screened outcomes would be ana-
lysed in a trial but for demonstration purposes to allow

Table 1 Trial characteristics of the case studies included
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lucidity, we present a subset of ten monitored outcomes.
We chose continuous laboratory blood and clinical
outcomes for analysis with minimal missing data points
and perceived relationship to the disease area.

We dichotomised each outcome at both the lower and
upper tails of the distribution to define abnormally low
and abnormally high values in each treatment group.
The thresholds used for dichotomisation (presented in
section 1 of the supplementary material) were based on
the reference ranges as defined in the original studies.
Our primary analysis examined the last follow-up visit in
each trial as a means to assess the maximum cumulative
effect of the treatment. The analysis was repeated for
each visit to examine changes over time (results not
shown). First, we replicated standard empirical trial ana-
lysis practice using the Fisher’s exact test to compare the
proportions with abnormal (low and high) results versus
normal results between treatment groups. We also cal-
culated between-group differences in proportions and
95% confidence intervals (Cls) assuming an asymptotic-
ally normal test statistic. We then performed a prefera-
ble (but non-standard) analysis where we did not
dichotomise but calculated between-group mean differ-
ences with 95% Cls and p-values using linear regression
models adjusted for randomisation stratification
variables.

We obtained unadjusted differences in proportions
using the distributional approaches proposed by Peacock
and Sauzet [13, 15, 16] which we refer to as methods 1
to 3. The extension method allowed us to obtain

MUSCA [18] METREX [20] SIRIUS [19]
Disease area Severe eosinophilic asthma COPD Severe eosinophilic asthma
Population age (years) =12 =40 =12

Intervention (dose) Mepolizumab (100 mg) + SOC

every 4 weeks
Comparator

Sample size 551 836

Placebo + SOC every 4 weeks

Primary endpoint Mean change from baseline in

the SGRQ
Trial duration/endpoint 24 52
(weeks)
Primary analysis population  m-ITT m-ITT

Haematological screening
(weeks)

Baseline, and then every 12 weeks

Clinical chemistry Baseline, 4, 8, 12, 24

screening® (weeks)

Randomisation stratification  Country
variable

Mepolizumab (100 mg) + SOC
every 4 weeks

Placebo+SOC every 4 weeks

Degree of reduction in the
glucocorticoid dose

Baseline, and then every 4 weeks
Baseline, 4, 8, 12, 24, 36, 52

Blood eosinophil count?

Mepolizumab (100 mg) every 4 weeks

Placebo
135

Annual rate of moderate or severe
exacerbations

24

ITT

Baseline, and then every 4 weeks
Baseline, 4, 8, 12, 20, 24

Country and duration of previous use of oral
glucocorticoids®

COPD chronic obstructive pulmonary disease, SOC standard of care, SGRQ St George’s Respiratory Questionnaire, m-ITT modified intent to treat, /TT intent to treat

2> 150/mm? at screening or > 300/mm? during the previous year
b< 5 years vs. > 5 years

Clinical chemistry screening including components such as albumin, bilirubin, creatinine, glucose, protein, and sodium


http://clinicalstudydatarequest.com
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adjusted distributional estimates by applying methods 1
to 3 to the marginal means from the regression model
which adjusts for randomisation stratification variables.
These methods use estimated distribution parameters of
the continuous outcome to estimate the difference in
the proportion of the population below or above a par-
ticular threshold [13] and follows a comparison of means
of which the precision is retained in the comparison of
proportions. Whilst interest is in the p-value as a meas-
ure of the strength of evidence against the null hypoth-
esis of no difference, we would refrain from
interpretation as significant/not significant. Multiple hy-
pothesis tests will inflate type I errors making this infer-
ence inappropriate. We therefore suggest these should
instead be interpreted as ‘signals’ for adverse drug reac-
tions that warrants further investigation and confirm-
ation in future studies.

The distributional methods make strong assumptions
about the distribution of the outcome and the appropri-
ate method to use will depend on whether the data is
normal or skewed in the population, and on the ratio of
between-group variances. We now describe the three
distributional approaches used to obtain a comparison
of two proportions.

Method 1: A distributional approach to compare
proportions between two populations — when there is
equal variance [13]

The normal distributional method can be used to esti-
mate the difference in proportions between two popula-
tions, e.g., treatment and control. Here, one assumes
that the treatment population has a shifted mean relative
to the control group and that both populations have a
normal distribution. The shift in mean between the
treated population and the control population leads to a
difference in the proportion of the population below or
above a certain threshold for the outcome. This shift
may be summarised by an estimate of the difference in
means and corresponding 95% CI or, equivalently, by an
estimate of the difference in proportions along with 95%
Cls [13, 16] with equivalent precision of that obtained
by a comparison of means. The delta method, based on
a Taylor expansion, is used to obtain large sample esti-
mates of the standard deviation for the random variable
p(X,,), which is the probability of being under (or above)
a threshold x,. Despite the strong assumptions regarding
the outcome distributions, simulations from previous
validation studies show that the distributional method
for equal variance is robust to deviations from these as-
sumptions if the treatment effect is small.

Key to this approach is the calculation of the standard
error for the difference in proportions and we summar-
ise how these are obtained using this method. If we as-
sume that the variance is the same between treatment
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and control, we can use the probability density function

of the normal distribution fN X, ) to derive the propor-

tion of the population (treatment group) below or above
a threshold x,, where X, is the sample mean for a sam-
ple size of n and s* the known common variance. The
proportion in a population is:

+oo

p(Xy) :/fN(?n,SZ)(t)dt or Fr(x,)O)dt

Xo

Equation 1: Formulae for the proportion in a population.
The standard error (se) of this estimate is:

S

se(p(Xn))= <ﬁ)fN(Xmsz) (%o)

Equation 2: Standard error for the proportion in a
population

The difference d between the proportion under the
threshold x, of the treatment population p, and control
population p, is defined as:

d =P P

Equation 3: Difference between the proportion under
the threshold x, of the treatment population p, and con-
trol population p..

The standard error for the difference d is obtained by
estimating the parameters of the normal distribution
from the observed data:

sed)=( 25 ) P (09) + P 0

Equation 4: Standard error of the difference between the
proportion under the threshold x, of the treatment
population p, and control population p, where s is the
pooled standard deviation assuming equal variances.

The 95% CI for the difference in proportions can then
be calculated using Equation 4.

When the nature of the treatment leads to an increase
in the variability of the outcome, the assumption of
equal variance may not hold. In this situation, an alter-
native method can be applied which we describe next
[16].

Method 2: A distributional approach to compare
proportions between two populations — when there is
unequal variance [16]

When two populations have unequal variance in the out-
come this can be addressed by using the ratio of the var-
iances between the two groups. The ratio of variances
R = 0?/0? can be used to adjust the pooled estimate and
account for differences in the treatment group standard
error compared with control. The estimate and standard
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error for the difference in proportion when there is un-
equal variance is:

\/(nt—l)sf + (n,~1)Rs?
Suneq =

(Vl; + nc_z)
52 e 2 S%’}‘f’ 2
un
se(d)= ,,ltquv(%,,n,,s%,m,)(xo)Jr :f > )(xO)
N\ X Sune
TRq

Equation 5: Estimate and standard error for the differ-
ence in proportions when population have unequal vari-
ance in the outcome.

The ratio of variances R should ideally be obtained
from previous studies. When no data is available, the ra-
tio can be estimated from the observed data using stand-
ard deviations s, and s.. In this case, simulation studies
have shown that the distributional standard error under-
estimates the true variability and so a correction factor
can be used in the analysis in order to address this [16].

Method 3: A distributional approach to compare
proportions between two populations — for a skew-
normal distribution [15]

Many health outcomes, such as white blood cell count
[21], have skewed distributions. In this case, a generalisa-
tion of the normal distribution, the skew-normal distri-
bution which has an extra shape parameter, a, to model
skewness due to a disturbance to the normal distribu-
tion, can be used instead [22]. Using the delta method,
the random variable p(X,) for the proportion of the
population with the outcome value under the threshold
xo comes in a closed form (see [15]).

Simulation results have shown that small coefficients
of skewness (between * 1) do not affect the reliability of
the normal method, even in small sample sizes. In large
samples, the skew-normal method provides similar esti-
mates to that of the normal method with small coeffi-
cients of skewness [15]. Hence, for small deviations from
normality regardless of the sample size, the normal
method is recommended.

Extension method: A distributional approach to compare
proportions between two populations — with adjustment
for baseline variables [17]

In RCTs, it is good practice to adjust for randomisation
stratification variables in the primary analysis, regardless
of their prognostic value as this conditional estimate will
increase precision of the treatment effect estimate [23].
The distributional method has been extended to derive
adjusted comparisons of proportions from linear regres-
sion models and mixed models. The extended method
uses marginal means obtained from linear or mixed

Page 5 of 11

models for each treatment group (calculated using the
mean value of all variables) but other approaches to
calculate the marginal means in this context has been
proposed by others: [24] then follows the same meth-
odology as for Eq. 1 to calculate adjusted distribu-
tional and corresponding standard deviations [17].
The method makes distributional assumptions on the
residuals of the model (e.g., normal, skew-normal,
gamma).

We now describe how to obtain adjusted differences
in proportions from an adjusted linear regression model.
Let Y be the dependent variable, A a categorical (‘treat-
ment group’) variable with k + 1 values and X a set of in-
dependent variables. Then, the following linear
regression model can be fit to obtain adjusted mean
differences:

Yi=Bo+Ba +BX;+e

Equation 6: An adjusted linear regression model

Then, using the marginal outcome mean E(Y| A = a, X)
obtained from fitting Eq. 6, the adjusted distributional
probabilities for each level of the exposure a =0, 1, ..., k
is:

p,=PY <x|A=a,X)= CD<E<Y|A G;’X)_x0>
Equation 7: Adjusted distributional probability for each
level of exposure a = 0,1,...k derived from a linear re-
gression model where @ is the cumulative distribution
function of the standard normal distribution and o2 is
the residual variance.

Using the delta method, the standard deviation for
P(Y < xg| A = a, X) can be derived from:

sd(p,)

s 1 (E(Y|A = a,X)-x)*
=——— exp| -
\/E /2T o‘g P 20 g
Equation 8: Standard deviation for the adjusted distri-
butional probability derived from a linear regression
model
To obtain adjusted differences in proportions from a
mixed model, we first define a simple random intercept
model with two levels, where y is a random element

with zero mean and variance o2 as:

Yi=Bo+ B, +BX; +u +e

Equation 9: A simple random intercept model

Then, using the marginal outcome mean E(Y| A = a, X)
obtained from fitting Eq. 10, the adjusted distributional
probabilities for each level of the exposure a =0, 1, ..., k
is:
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EY|A=a,X)-
P(Y<xO|A:a,X):q)< (Y| a, )xo>

2 2
o; + o0

Equation 10: Adjusted distributional probability for each
level of exposure a = 0,1,....k derived from a mixed
model.

The precision of the adjusted distributional estimates
reflects approximately the precision of the correspond-
ing regression coefficient.

We have outlined available distributional analysis ap-
proaches for dichotomised continuous outcomes above;
more detail can be found in the original articles [13, 15,
16]. Software routines to facilitate easy implementation
are available for both Stata and R [14, 25]. The com-
mands employed in our analysis are described in section
2 of the supplementary material.

Model selection

Before starting analysis, the appropriate distributional
method needs to be selected, i.e., the normal method
with equal or unequal variance, or the skew-normal
method. In theory, this should be based on what is be-
lieved to be true for the population distribution. In this
set of case studies, we have selected 10 outcomes for
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ease of demonstration but a more realistic scenario in
the context of screening clinical and biological measure-
ments to monitor harm is that we have tens or hundreds
of outcomes recorded where we may not have know-
ledge of the population distribution. Hence, it may not
be practical to choose the appropriate distributional
method for the trial population on an outcome-by-
outcome basis. As a result, we propose an automated
procedure that selects the appropriate distributional
method based on the observed data. This may be consid-
ered a reasonable compromise for the purpose of practi-
cality in the context of screening as a means to detect
signals of potential harm for further evaluation. This is
proposed on the basis of sample sizes being sufficient to
obtain reasonable distributional estimates, and the trial
population being a representative sample of the target
population.

An automated procedure to select the appropriate
distributional method

The automated procedure performs a series of tests on
the observed data to select the most appropriate distri-
butional method. Figure 1 displays a flow diagram of this
decision process. Two factors are considered in the

Which distributional
method should | use
for my data?

|

group variance known?

iNo

Normal distributional
method with no
assumptions made about
the ratio of variances

Fig. 1 Flow diagram for method selection

Is the outcome Yes Skew-normal
skewed? ———— P distributional method
l No
Is equal variance between Yes Normal distributi'onal
groups? —p method assuming
' equal variance
l No
ST (T G e T Yes Normal distributional
> method assuming the

ratio of variances is
known
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decision process: the normality of the distribution of the
outcome in each treatment group and the between-
group variance. We examined the normality of the dis-
tribution in each group by obtaining the overall skew-
ness parameter for the outcome. The variance-ratio test
was performed on each outcome to assess between-
group variance, with p-values less than 0.05 taken to
suggest an unequal variance between treatment groups.
The Stata code used to assess skewness and variance is
presented in section 3 of the supplementary material.

Following the decision tree in Fig. 1, the automated
procedure selected the skew-normal distributional
method when the skewness statistic was < - 1 or > 1.
When the skewness statistic was between — 1 and 1 (ex-
clusive) and p-values > 0.05 were obtained from the
variance-ratio test, the automated procedure selected the
normal distributional method for equal variances. Else, if
there was evidence that the variances were unequal (p <
0.05), the normal distributional method was used, and
the standard deviation was calculated separately for each
group. To increase the reliability of the models, a correc-
tion factor was used when there was a large effect size
which, for a difference in proportion, a standardised ef-
fect size > 0.75 was considered to be large [16]. The
standardised effect size in the case of unequal variance is
Glass’s A defined as:

xt_?cc
A=——
Sc

Equation 11: Glass’s equation for the difference in
means. t and c represent the treatment and control
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group respectively and s, is the standard deviation in the
control group.

Results

Histograms for each outcome are presented in section
4 of the supplementary material and the thresholds
used to dichotomise outcomes are reported in section
1. The histograms display a variety of distributions
across outcomes, with examples of normal, positively,
and negatively skewed distributions. The varied distri-
butions across 10 outcomes highlight the need for
different distributional methods and demonstrate that
if population distributions are unknown there is value
for a practical method to select an appropriate distri-
butional method.

Figure 2 summarises the skewness and variance-ratio
test p-values obtained for each outcome by trial. Colour
coding indicates the selected distributional approach
based on the skewness value and p-value from the
variance-ratio test. In this limited number of outcomes,
there were three cases (alanine aminotransferase, plate-
lets, and potassium) where the method chosen by the
automated procedure for the same outcome varied
across trials. For example, for potassium, the automated
procedure selects the normal distributional method with
unequal variance in the METREX [19] trial but selects
the normal distributional method with equal variance in
the MUSCA [20] and SIRIUS [18] trials. Section 4 of the
supplementary material shows the resulting differences
in distributions between the outcomes across trials in
which it can be seen that the distributions do look dif-
ferent, but this could be owing to multiple testing which
will increase the chance of finding a difference.

MUSCA METREX SIRIUS
Sk¥ Var? Sk¥ Var? Sk¥ Var?
Alanine Aminotransferase (IU/L) 3.19 0.01 3.86 <0.01 0.99 0.57
Calcium (mmol/L) 0.02 049 -0.08 0.11 0.27 0.46
Eosinophils (1079/L) 3.70 <0.01 3.63 <0.01 2.07 <0.01
Glucose (mmol/L) 3.97 <0.01 3.88 0.21 3.25 0.09
Hematocrit (fraction of 1) -0.26  0.11 0.05 0.61 -0.26 0.29
Hemoglobin (g/L) -0.37 010 -0.17 0.57 -0.50 0.07
Lymphocytes/Leukocytes (%) 0.36 0.20 0.44 0.72 0.25 0.35
Platelets (1019/L) 1.01 046 0.80 0.69 1.15 0.07
Potassium (mmol/L) 0.60 0.72 0.50 <0.01 0.46 0.37
Sodium (mmol/L) -0.04 024 -0.39 0.25 -0.48 0.10
¥Skewness value, © Variance comparison test (p-value)
- Normal distributional method with equal variance
- Normal distributional method with unequal variance
- Normal distributional method with unequal unknown variance
- Skew-normal distributional method
Fig. 2 Skewness values and p-values obtained from variance comparison tests used in the automated procedure
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Table 2 presents results for the proportion of partici-
pants with abnormally low values at the final time point
for the SIRIUS trial. This trial is presented as it had the
smallest sample size and therefore will be the least
powerful to detect statistically significant differences in
binary outcomes. Equivalent results for the MUSCA [20]
and METREX [19] trials are in tables A.1 and A.2 of
section 5 of the supplementary material.

Use of the automated distributional approach identi-
fied three signals (p < 0.05 for eosinophils, haematocrit,
and haemoglobin) compared to one when using the
Fisher’s exact test (eosinophils). Use of the 95% CI for
the difference in proportion identified two statistically
significant differences (eosinophils and potassium). We
note that these should be interpreted with caution owing
to the standard error being calculated based on assump-
tions for large sample statistics and also use of a 95% CI
as a proxy for a hypothesis test will lead to an inflated
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type I error when multiple outcomes are being exam-
ined. Given that small event rates are common in AEs,
analysts should be aware of the calculation used to cal-
culate the 95% CI for differences in proportions to en-
sure the assumptions are appropriate. Note that the
prtest approach incorrectly indicates no uncertainty in
the difference of zero for the outcome’s alanine amino-
transferase and platelets, whereas the distributional ap-
proach is able to provide an estimate.

The significance of the linear regression results will
correspond to signals with the distributional approach as
power is retained. For example, Table 2 shows a 0.48 or
a 48% difference in the number of participants between
treatment arms with eosinophils below 0.05 10°/L (95%
CI 38 to 59%) (the raw proportions show that the mepo-
lizumab arm has a higher event rate (42% versus 3%)).
The linear regression results show a mean reduction of
0.36 in the mepolizumab arm compared with placebo

Table 2 Differences in proportions of patients with abnormally low values at the endpoint of the SIRIUS study

Outcome Placebo, Mepolizumab, Linear regression Automated procedure Empirical estimates
( n/Nt. ) ( n/Nt_ ) Adjusted* Adjusted* Fisher's exact  Difference in
proportion proportion mean difference difference in proportion test p-value proportion
[95% Cl], p-value [95% DCl], p-value® [95% Cl]
Alanine 0/61 (0.00) 0/66 (0.00) - 071 0.003 NE 0.00
Aminotransferase(IU/L) [-3.97, 2.56], [~ 0.01, 0.071], [0.00, 0.00]
067 067
Calcium (mmol/L) 0/61 (0.00) 1/66 (0.02) 0.005 —0.0008 > 0.99 0.02
[— 0.03, 0.04], [ 0.005, 0.004], [~ 0.01, 0.05]
0.85 0.85
Eosinophils (109/L) 2/62 (0.03) 27/65 (0.42) - 036 0.48 <001 039
[~ 043,-0.28], [0.38, 0.59], [0.26, 0.52]
<001 < 001
Glucose (mmol/L) 1/61 (0.02) 2/66 (0.03) 0.01 —0.002 > 0.99 0.01
[- 0.34, 0.36], [- 0.07, 0.06], [ 0.04, 0.06]
0.96 0.96
Haematocrit 1/62 (0.02) 4/66 (0.06) - 003 0.02 037 0.04
(fraction of 1) [- 0.04, — 0.01], [0.01, 0.03], [~ 0.03,0.11]
<001 <001
Haemoglobin (g/L) 4/62 (0.06) 8/66 (0.12) - 818 0.06 037 0.06
[-1273,—362], [0.03, 0.09], [~ 0.04, 0.16]
<001 < 001
Lymphocytes/ 12/62 (0.19) 10/65 (0.15) 0.69 - 002 0.64 - 004
Leukocytes (%) [— 285, 4.22], [ 0.09, 0.05], [-0.17,0.09]
0.70 0.70
Platelets (107/L) 0/61 (0.00) 0/65 (0.00) 18.75 - 0.004 NE 0.00
[— 3.86,41.37], [~ 0.01, 0.002], [0.00, 0.00]
0.10 0.10
Potassium (mmol/L) 4/61 (0.07) 0/66 (0.00) 0.10 - 002 0.06 - 007
[~ 0.003, 0.20], [~ 0.03, — 0.001], [-0.13,-001]
0.06 0.06
Sodium (mmol/L) 0/61 (0.00) 1/66 (0.02) - 043 141e7"° > 0.99 0.02
[~ 1.03,0.17], [~ 123e7"°, 404", [~ 0071, 0.05]
0.16 0.16

y-value from the adjusted linear regression model

Cl confidence interval, DCI distributional confidence interval, SE standard error, NE non-estimable

N.B: Positive estimates correspond to a greater proportion in the placebo arm; shaded results are significant at p < 0.05
*Adjusted for country and duration of previous use of oral glucocorticoids (< 5 years vs. >5 years)
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(95% CI - 0.43, — 0.28) which may be harder to interpret
as clinicians often think in terms of normal/abnormal
for decision-making.

Another example is the haemoglobin result which
has a mean difference of - 8.18 (95% CI - 12.73, -
3.62) in the mepolizumab arm compared with pla-
cebo. Had this been analysed by examining the differ-
ences in proportions of participants in each arm (6%
versus 12%), the Fisher’s exact test would not have
found a signal (p-value = 0.37). In contrast, the distri-
butional approach found a statistically significant dif-
ference of 6% (95% CI 3 to 9%, p-value < 0.01). This
significant result would flag a signal for investigators
to study further and help inform the monitoring of
future trials, which would otherwise not be detected
using standard analysis methods.

The examples in the supplementary material for the
equivalent outcomes for the other trials (MUSCA [18]
and METRIX [20]) found one additional significant re-
sult for lymphocytes/leukocytes.

Discussion
Despite the abundance of evidence in the literature
highlighting the statistical downfall of dichotomising
outcomes, the practice is still prevalent, and often justi-
fied on the need to have a replicable threshold by which
to diagnose patients by. This practice is not only limited
to the efficacy arena but is also prevalent when analysing
harm outcomes, with over half of published trials having
been shown to use the Fisher’s exact test or 95% confi-
dence intervals around the difference in proportion as a
means to detect significant differences between arms for
harm outcomes [10]. Testing between arm differences
after dichotomisation leads to a reduction in statistical
power. This means that important signals may be
missed, especially when the event rate is low (as is often
the case in AEs) or the true treatment difference is mod-
erate or small. However, in the context of harm, dichot-
omisation can offer an easy interpretation for clinicians
and researchers for outcomes where units are not always
meaningful. In this setting, it can be more generalisable
and hence easier to think in terms of the difference in
the proportions of patients with abnormally low or high
values between two groups. For example, the 6% differ-
ence in proportions between arms with abnormally low
potassium levels is arguable easier to interpret than
interpreting a between arm mean difference of 0.10
mmol/L. For these cases, the distributional approach for
the dichotomisation of continuous outcomes offers a
straightforward interpretation of the difference in pro-
portions whilst retaining the statistical power of analys-
ing a difference in means.

One solution when the data deviates from normality is
to use transformations such as the log transformation or
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a Box-Cox approach. These are useful approaches and
for context to the harm setting, when there are many
outcomes, a practical approach to implementation will
be required. Alternative distributional approaches are
based on the assumed distribution of the continuous
outcomes, rather than using the empirical estimates
from the observed data. The method proposed by Borm
et al. uses prior knowledge of the reliability of the out-
come and implements an adjustment based on this [11].
Suissa et al. propose a method based on the normal dis-
tribution [12], but it does not support deviations from
this assumption. The methods proposed by Sauzet and
Peacock applied in this study rely on the assumption
that a shift in means and the chosen threshold is mean-
ingful [13]. This approach uses the degree of overlap be-
tween the distribution of results from the treatment and
control group as a way to estimate differences. Such ap-
proaches strongly rely on the distribution of the result in
each trial and hence varies from trial to trial [26]. Des-
pite this, the distributional approaches proposed by Sau-
zet and Peacock are able to cover a wider range of
distributional assumptions and have been validated in
the single efficacy outcome setting using simulation
studies [15, 16].

There are several advantages to the use of distribu-
tional estimates to examine the difference in proportions
between groups. The first is that we are able to adjust
these estimates for randomisation stratification variables
whereas empirical estimates are typically unadjusted.
Adjustment for randomisation stratification variables in
RCTs is in line with advice by the European Medicines
Agency (EMA) [23], and the adjusted distributional esti-
mates may in fact be correctly flagging the between-
group differences. Unadjusted results were also obtained,
and the unadjusted distributional estimates were com-
parable with the empirical estimates.

In addition, we found a greater number of signals
flagged using distributional methods. It is important to
interpret these as ‘signals’ for further research as we are
testing across multiple outcomes and will therefore have
an increased type I error rate. In the context of harm
outcomes, it is arguably preferable to have a false signal
than miss a true adverse reaction, as signals provide the
opportunity for further follow-up research to confirm or
allay the observation at a later stage. We also found that
when the data was examined over each time point the
distributional approach identified the signal at earlier
time points than the empirical methods (results not
presented).

A further advantage is that the distributional method
enables the estimation of differences in proportions des-
pite observing zero events in both groups, which is not
an uncommon scenario when analysing AE data. In such
cases, it is not possible to undertake a Fisher’s exact test
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and empirical estimates for the difference in proportion
are computable, but not meaningful. The distributional
approach is able to overcome the need for large samples
and the limitations of the Fisher’s exact test (requiring
75% of cells to be non-zero) and utilises available
information.

In the context of analysing abnormal clinical and bio-
logical values, dichotomisation will usually take place in
the tails of the distribution. Simply dichotomising in the
tail will lose a large amount of information and a further
advantage of the distributional approach is its ability to
overcome this issue of very few observations in the tail.
Although the saving of power in the statistical analysis is
greatest where thresholds are in the tails of the distribu-
tions [13], particular care should be taken in this case as
deviation of normality is more critical and there is a
chance that the distributional standard error will under-
estimate the true variability [16]. Due to the nature of
the setting, we have used to demonstrate the distribu-
tional approach, where the thresholds refer to abnor-
mally high or low values; we have tested these
assumptions and used correction factors where neces-
sary in order to validate the distributional confidence in-
tervals for the differences in proportions.

Basing the choice of model on what is known in the
population in advance requires strong assumptions,
which may not be practical when analysing harm out-
comes in a screening context in trials. We examined an
automated procedure that runs multiple tests on the
data in order to select the most appropriate distribu-
tional approach. We found that the method selected did
vary across trials for the same outcome, but we are not
able to verify if these are correctly identified. In this art-
icle, we have demonstrated use of a pragmatic approach
to select the distributional method for the analysis of ad-
verse events. We have not examined routine implemen-
tation or the impact of deviations from distributional
assumptions. This will form part of our future work.

Other points of note include that there is currently no
approach that supports skewed data for unequal variance
between groups and the automated method selects the
skew-normal method based only on the skewness of the
data. In addition, whilst we undertook our analysis on
the population who received the treatment allocated, in
line with the original trial analysis, in the context of
harm data, it may be of more interest to conduct ana-
lyses in an ‘on treatment’ population, as an intention-to-
treat analysis may be biassed where there is non-
adherence and treatment crossovers. Testing to choose
the distributional method is vulnerable to low power
when the sample size is small and will over identify
skew-normal distributions and unequal variance when
used multiple times. There is less of a concern for type
IT error as trials will often be of reasonable sample size.
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Conversely, with the multiple tests the automation pro-
cedure undertakes, there is an inflation to the type I
error. When distributions have been incorrectly identi-
fied as skew-normal when the distribution is normal due
to an inflated type I error, then the method will only use
a small skewness coefficient and therefore the results
will be similar to the normal distribution. When distri-
butions have been incorrectly identified as having un-
equal variance due to an inflated type I error, then the
method is less reliable than the equal variance method,
and therefore, we would recommend assuming equal
variance when uncertain.

The results suggest that different distributional
methods are needed for different harm outcomes. The
proposed practical approach using an automated proced-
ure based on the observed data to select the methods
may be useful in the context of signal detection within a
harm setting. More powerful methods than the standard
Fisher’s exact test are needed in order not to miss signals
but more research on the number and implications for
flagging false signals is required.

Conclusion

Dichotomisation of continuous harm outcomes in ran-
domised controlled trials is standard practice. This may
be motivated from the easy interpretation of propor-
tions, which enables the same perspective across all
harm outcomes regardless of units used. The use of dis-
tributional methods can enable the analyst to produce
proportional estimates to be produced whist retaining
the power of a comparison of means to detect a differ-
ence and allows for adjustment of randomisation stratifi-
cation variables. To select an appropriate distributional
method in advance when there are many harm outcomes
may be impractical, and we have demonstrated the value
for use of an automated approach using the observed
data as a practical solution.
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