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Abstract

Background: Pragmatic trials often consist of cluster-randomized controlled trials (C-RCTs), where staff of existing
clinics or sites deliver interventions and randomization occurs at the site level. Covariate-constrained randomization
(CCR) methods are often recommended to minimize imbalance on important site characteristics across intervention
and control arms because sizable imbalances can occur by chance in simple randomizations when the number of
units to be randomized is relatively small. CCR methods involve multiple random assignments initially, an
assessment of balance achieved on site-level covariates from each randomization, and the final selection of an
allocation that produces acceptable balance. However, no clear consensus exists on how to assess imbalance or
identify allocations with sufficient balance. In this article, we describe an overall imbalance index (/) that is based on
the mean of the absolute value of the standardized differences in means on the site characteristics.

Methods: We derive the theoretical distribution of /, then conduct simulation studies to examine its empirical
properties under the varying covariate distributions and inter-correlations.

Results: / has an expected value of 0.798 and, assuming independent site characteristics, a variance of 0.363/k,
where k is the number of site characteristics being balanced. Simulations indicated that the properties of / are
robust under varying covariate circumstances as long as k is greater than 3 and the covariates are not too highly
inter-correlated.

Conclusions: We recommend that values of / below the 10th percentile indicate sufficient overall site balance in
CCRs. Definitions of acceptable randomizations might also include individual covariate criteria specified in advance,
in addition to overall balance criteria.

Keywords: Pragmatic trials, Cluster-randomized trials, Re-randomization, Half-normal distribution, Covariate-
constrained randomization

Pragmatic trials are increasingly proposed as a way to  components that are delivered by existing staff persons
implement and evaluate new intervention or treatment at clinics or other facilities (e.g., [3, 4]). Consequently,
programs directly into clinical practice settings [1, 2].  cluster-randomized controlled trials (C-RCTs)—where
Many interventions, particularly for older adults and structural units or sites such as clinics, hospitals, com-
their family members, involve multiple intervention munity centers, or residential facilities are randomized
to intervention or control conditions—are becoming in-
creasingly popular to test the efficacy or effectiveness of
these interventions. Multiple individual patients, clients,
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or residents from each site typically serve as participants
and provide person-level outcome data [5, 6].

In many C-RCTs, the number of sites to be random-
ized can be relatively small. A simple randomization of
experimental units to two or more intervention condi-
tions is assured of achieving relative balance across con-
ditions on measured and unmeasured potential
confounding variables only if the number of units to be
randomized is relatively large. When the number of clus-
ters or sites to be randomized is relatively small, prob-
lematic imbalances on potentially important and
confounding site characteristics are likely to arise purely
by chance. Optimized randomization procedures are
often recommended to ensure balance on cluster charac-
teristics across treatment conditions in C-RCTs [6].
Pragmatic trails that use C-RCT methods could be
strengthened and made more comparable methodologic-
ally by the adoption of rigorous and more uniform pro-
cedures in the randomization process.

Optimized randomization procedures for achieving
site balance in C-RCTs have been categorized into four
general types [7]. These include stratification, matching,
minimization, and covariate-constrained randomization
(CCR). Ivers and colleagues [7] provided detailed de-
scriptions of these types of procedures, including the
strengths and limitations of each approach. Of the four
types, CCR is becoming increasingly popular as a
method that has numerous advantages, but questions re-
main about its implementation and the optimal metrics
for assessing the balance achieved [8-10]. All CCR ap-
proaches share the following features: (1) data on key
site characteristics are available to investigators before
randomization occurs; (2) multiple random assignments
of sites to the treatment arms are conducted before the
trial begins, sometimes referred to as re-randomization
[11]; (3) the balance achieved on the set of site charac-
teristics is examined for each randomization; and (4) a
random assignment to be used in the trial is selected,
usually randomly, from among the multiple randomiza-
tions deemed to be acceptable.

Moulton [12] developed a classic CCR approach that
consisted of specifying, in advance, the minimal degree
of imbalance desired on each specific cluster characteris-
tic, conducting all possible randomizations, identifying
the subset of possible randomizations that meet balance
criteria, and randomly selecting one random allocation
from that subset of acceptable randomizations. However,
as the number of sites increases, the number of total
possible randomizations expands rapidly, and questions
remain on how “acceptable balance” should be defined.
Ciolino and colleagues [10] endorsed a threshold of ac-
ceptable balance that required all p values from non-
parametric analyses of individual site characteristics by
assigned treatment condition to be 0.30 or higher.
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Although this recommendation ensures that a retained
randomization will not have any significant or margin-
ally significant imbalances on any site characteristic, p
values are somewhat dependent on the number of sites
being randomized, and notable but non-significant im-
balances may still remain if the number of sites being
randomized is relatively small. In addition, as the num-
ber of balancing site variables increases, a smaller and
smaller proportion of all randomizations will be identi-
fied as satisfactory using this criterion.

In addition to defining balance based on individual site
characteristic criteria, overall balance across all site char-
acteristics collectively can be considered. Raab and
Butcher [8] proposed an overall balance metric that con-
sisted of the weighted sum of squared mean differences
across site characteristics, and Li and colleagues [9] de-
scribed a similar overall imbalance index based on a
weighted sum of absolute mean differences across site
characteristics. Thresholds of acceptable overall site bal-
ance sometimes include recommendations to only in-
clude those randomizations whose overall imbalance
metrics are in the lower 10% of their respective empir-
ical distributions [8, 9].

In this paper, we develop and describe an overall im-
balance index that is based on the absolute value of stan-
dardized mean differences calculated from multiple site
variables. We point out that the frequency distribution
of this imbalance metric is based on the folded normal
or half-normal distribution [13, 14]. We examine the
statistical properties of our imbalance (/) index and com-
pare it to Raab and Butcher’s [8] B index as an overall
site balance index for use in future C-RCTs with two
treatment conditions.

Calculation of the overall metric of site
characteristic imbalance (/)
The following procedures are used to determine I:

1. For each site characteristic for which balance is
desired, calculate the observed difference in means
between treatment arms (e.g., intervention —
control) after each random allocation to those
conditions.

2. Calculate the standard deviation of the mean
difference between treatment arms, then divide the
observed mean differences by their respective
standard deviations to standardize those mean
differences.

3. Take the absolute value of each of those
standardized mean differences.

4. Calculate the mean of those absolute values from
step 3 across the multiple site balancing variables.
This mean is the I index.
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For one site variable and one simple random assign-
ment to two conditions, the expected value under the
null hypothesis of a raw mean difference between the
two treatment arms is 0. However, the absolute value of
this mean difference will not have an expected value of
0. When the absolute value of a normally distributed
variable with a mean of 0 is taken, the normal distribu-
tion is folded at that population mean (4 =0) and be-
comes the positively-skewed, half-normal distribution
[13, 14]. The mean of the absolute value of this differ-
ence in means (AVDM) is:

E(AVDM) = Spm*y/2/m = Spm*0.798, where Sp (

standard deviation of the difference in means)

= /S1/m + S3/ny , and §; is the standard deviation of

the raw variable in treatment arm j. Furthermore, the
variance of AVDM is given by:

Var (AVDM) = S%,#(1 - 2/7) = S%,,+0.363.

For a standardized difference in means, where Spy; is
scaled to be equal 1.0, the expected value and variance
of AVDM become 0.798 and 0.363, respectively, and the
standard deviation of AVDM = /.363 = .602. Because
this half-normal distribution for AVDM is positively
skewed, the expected values for the mean and median
are not equal, and the expected value for the median is
0.674.

When calculating /, the standardized AVDMs are aver-
aged across multiple balancing variables (k), and the cen-
tral limit theorem applies to the distribution of this
average. This results in a distribution that approximates
the normal distribution as k becomes sufficiently large.
As k increases, the median approaches the mean of
0.798, and if the covariates are assumed to be independ-
ent, then the variance of I becomes 0.363/k (SD = 0.602
/Vk). Thus, the imbalance metric I should approximate
0.798 for any single randomization, and the extent to
which it is less than 0.798 will reflect the degree of re-
duced imbalance achieved by that particular random al-
location compared to what would be expected by
chance. Once the number of balancing variables (k) is
known, the degree of overall imbalance can be calculated
using either standard deviation units or percentile
rankings.

In order to examine the statistical properties of I in a
standard 2-arm C-RCT, we conducted multiple simula-
tion studies under a variety of conditions that might
occur in practice. Although there is no gold standard to
evaluate overall covariate imbalance, we compared the
index with the B index of Raab and Butcher [8] and with
the acceptability decisions that would have been pro-
vided by the criteria of Ciolino and colleagues [10]. We
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simulated cluster or site-level variables, where the vari-
ables were drawn from normal, Bernoulli, or lognormal
distributions, and with different levels of inter-
correlation for the multivariate normal simulations.
Under each distribution and inter-correlation combin-
ation, we examined simulated results when 12, 18, or 60
sites were randomized and whether randomization was
done in a 1:1 or 1:2 allocation ratio. These simulations
allowed us to examine the robustness of I and its distri-
butional properties under multiple varying conditions.

Methods

Simulation 1 assessed the effect of varying number of
site balancing variables and correlation among these var-
iables on the statistical properties of the imbalance ()
index. We assumed that the site balancing variables
come from a multivariate normal distribution. We varied
the number of variables from 2 to 4 and examined a
range of 4 equally spaced correlations from 0 to 0.75
among these variables (i.e.,, 12 scenarios). Descriptive
statistics of I were computed from the simulated data
and compared with statistics theoretically derived based
on central limit theorem and with the simulated B
index.

Simulation 2 examined the dependence of the / index
on the distributions and skewness of the site-level vari-
ables. In addition to the normal distribution, Bernoulli
and lognormal distribution are commonly used non-
normal distributions in health care research. We gener-
ated the following data:

(1) X1, Xy, X3, X4 ~ MVN(y, Z), where 4 = (0, 0, 0, 0)’
and X =1

(2) X; ~ Bernoulli (0.3), X5 ~ Bernoulli (0.5), X5, X, ~
Normal (0, 1)

(3) Xy ~lognormal (0, 1), X, ~lognormal (0, 1), X3,
X4 ~Normal (0, 1)

We assumed the variables were drawn independently
in each of these scenarios.

The simulation studies focused on two treatment
arms. To evaluate the dependence on the number of
sites, we considered 12, 18, or 60 sites. Besides the 1:
1 design, which is most commonly implemented in
C-RCTs, we also examined a 1:2 allocation ratio as
well. For 18 and 60 sites, we simulated 10,000 unique
randomizations without duplicate by assigning the 18
or 60 sites into two treatment arms with 1:1 or 1:2
allocation ratios. For the 1:1 allocation ratio and 18
sites, there are 24,310 unique distinct splits of 9 vs. 9
sites, and there are over 1,000,000 distinct randomiza-
tions when the number of sites is 24 or larger. Earlier
simulations indicated that 10,000 unique randomiza-
tions were sufficient for examining the statistical
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Fig. 1 Distributions of the imbalance (/) index and estimated normal density curves with 2 cluster-level variables
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properties and distributions of the / index and that it
was not necessary to conduct all possible randomiza-
tions. For 12 sites, we conducted all possible ran-
domizations into the two treatment arms, which
involved 462 randomizations for the 1:1 allocation
ratio and 495 for the 1:2 allocation ratio. Random
assignments for each site were determined by ran-
dom numbers generated by the SAS statistical soft-
ware package (SAS 9.4, Cary NC).

For each randomization, we calculated the overall im-
balance metrics (I and B) and examined individual site
characteristic p values for differences by the two groups
using the Kruskal-Wallis (KW) statistic as recommended
by Ciolino and colleagues [10]. The randomizations were
identified as sufficiently balanced if the pre-specified bal-
ancing criteria were met. For I and B, we chose the low-
est 10% to signify sufficient balance. For KW, we
specified a min (P value) > 0.30 as the threshold of suffi-
cient balance [10].

Calculation of the overall balance metrics

We calculated the B index, which is a sum of weighted
squared differences across site-level variables, using the
method described by Raab and Butcher [8], namely:

k
B= Z wi(Foi - %11)°
p

where k denotes the number of site-level variables to be
balanced, 2 to 4 in our simulations; w; is a pre-specified
weight for the ith site-level variable; and %;, X;; are the
means of site-level variable for the two treatment arms.
Consistent with guidance from Raab and Butcher [8], we
used the inverse of the variance of the difference in
means for each variable as its weight (w;). This results in
each site variable being equally weighted in the calcula-
tion of B. If the k site-level variables are independent of
each other, then this weighting results in B being distrib-
uted as a chi-square statistic with k degrees of freedom.
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For I, we first calculated absolute values of standard-
ized mean differences for each site characteristic and
then averaged across multiple balancing variables.

1 1
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where Sp,; is the standard deviation of the difference in
means for the ith site-level variable. As stated previously,
if the k site-level variables are assumed to be independ-
ent of each other, then I ~ N (0.798, 0.602/v/k).

The B and [ indices, therefore, are both designed to as-
sess overall imbalance across multiple site-level variables
and are conceptually somewhat similar. The 7 index re-
lies on absolute values of standardized mean differences
and approximates the normal distribution regardless of
the number of site characteristics, and the B index relies
on squared mean differences and can be weighted to ap-
proximate the chi-square distribution.

Results

Across all simulations, the differences by allocation ratio
(1:1 vs. 1:2) were minimal. Thus, because the 1:1 alloca-
tion ratio is the most commonly used approach in prac-
tice, only the results from that allocation ratio are
further presented here.

The distributions of the I index from 1:1 allocation ra-
tio simulations using 2, 3, and 4 multivariate normal dis-
tributed cluster-level variables with correlations ranging
from 0 to 0.75 (simulation 1) are illustrated in Figs. 1, 2,
and 3. The estimated normal density curves are overlaid.
The observed distributions were found to closely ap-
proximate the normal distribution when correlations
among the site variables were low (0.25 or less) with
three or more cluster-level variables across the 12-, 18-,
and 60-site simulations. For more moderately correlated
(r =0.50) or highly correlated (r =0.75) site variables,
the observed distributions tended to more closely ap-
proximate the normal distribution as the number of
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simulation sites increased to 60 and as the number of
site variables increased to 4, but some moderate devia-
tions from normality were still evident. The more ex-
treme the correlation, the greater the deviation of the
distribution from normal distribution due to the viola-
tion of independent covariate assumption in central limit
theorem. Because the empirical I index could never be
less than 0, deviations between the observed distribu-
tions and the overlaid normal density curves tended to
be greatest in the lower tails of those distributions.
Figure 4 illustrates the distributions of the I index
from simulations that included 4 uncorrelated site-level
variables with different combinations of normal, Ber-
noulli, and lognormal distributions (simulation 2). There
were minimal differences in the distribution of the I
index regardless of the distributions of the site-level vari-
ables, suggesting that the / index of imbalance can be
confidently used with a mix of different variable types as
long as those site variables are minimally correlated.

We anticipate that the mean difference of site-level
variables between two arms equals zero, while the stand-
ard deviation of the group mean difference for alloca-
tions deemed as sufficiently balanced should be
markedly reduced compared with insufficiently balanced
allocations. To examine this, we selected one site-level
variable (X3) from the four variable simulations and ex-
amined the distributions of group differences of X3 sep-
arately for sufficiently and insufficiently balanced
allocations as determined by the 10th percentile of the I
index. These results are displayed in Fig. 5. For each sce-
nario, sufficiently balanced randomizations demon-
strated much smaller variations in differences by
assigned treatment condition.

Tables 1 and 2 contain comparative information from
uncorrelated multivariate normal simulations for the
overall balance indices (I and B) and for the criterion
that each individual characteristic have a KW p value >
0.30. As the number of site variables increased, the mean



Huang and Roth Trials (2021) 22:190

Page 7 of 11

Multivariate normal, r=0, n=12

Multivariate normal, r=0, n=18

Multivariate normal, r=0, n=60

15.0
12.5
10.0
754
5.0
254

?

00

%

%

Bernoulli + normal, r=0, n=12

Bernoulli + normal, r=0, n=18

Bernoulli + normal, r=0, n=60

15.0
12.5
10.0

754

5.0 4
2.5
0.0

Percent

Lognormal + normal, r=0, n=12

Lognormal + normal, r=0, n=18

Lognormal + normal, r=0, n=60

15.0

1254
10.0 A
7.5

504
2.5 4
0.0 “— T

Fig. 4 Distributions of the imbalance (/) index and estimated normal density curves for cluster-level variables with various distributions

L] T
2 3 4 54 0 1 2 3 4 5

for I stays relatively constant and the SD decreases per
the central limit theorem, whereas both the mean and
SD of B increase, consistent with the increasing degrees
of freedom of the chi-square distribution. Additional
analyses examined the associations between I and B from
the multivariate normally distributed variables. The two
metrics were closely correlated with Spearman correlation
coefficients ranging from 0.96 to 0.99. Across all simulated
scenarios, I and B were in agreement for over 96% of the
simulations in terms of whether those indices were in the
bottom 10% of their respective distributions, with kappa
agreement statistics ranging from 0.84 to 0.91. For the KW
p value criterion, the proportion of acceptable randomiza-
tions is much larger when the number of site characteristics
is small but steadily decreases as the number of site charac-
teristics increases. Kappa statistics of agreement between
the KW p value criterion and both I and B were small to
medium in magnitude, ranging from 0.21 with both 7 and B
when only 2 site characteristics were examined and increas-
ing steadily as the number of site characteristics increased.
Kappa was 0.44 in relation to 7 and 0.47 in relation to B for
4 uncorrelated, multivariate normal site characteristics.

Table 3 provides descriptive information from theoret-
ical normal distributions of I for up to 10 independent
site characteristics. Theoretical percentile cutpoints are
provided for thresholds of both highly balanced (10th
percentile) and moderately balanced (25th percentile)
randomizations. The theoretical percentile cutpoints for
2, 3, and 4 site variables in Table 3 can be compared to
the empirical cutpoints from the 60-site simulations re-
ported in Table 1. The theoretical 10th percentile values
are slightly lower than the empirical values, whereas the
theoretical 25th percentile values are slightly higher. Add-
itional analyses examined the concordance of acceptable
balance based on 10th percentile for theoretical and em-
pirical cutpoints. In over 98% of randomizations, the same
acceptability decision was made. Because the theoretical
10th percentile cutpoints were slightly lower, discordant
decisions occurred when the observed I index was accept-
able in comparison to the empirical thresholds but not ac-
ceptable in relation to the theoretical cutpoint. The 10th
percentile theoretical cutpoints in Table 3, therefore, are
slightly conservative and may identify as acceptable
slightly less than 10% of the actual randomizations.
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Discussion

This paper builds on previous efforts [8, 9] to develop
and apply overall balance criteria that aggregate informa-
tion across multiple covariate characteristics from ran-
domized controlled trials. Such methods are often
helpful for balancing clusters or sites across treatment
conditions in C-CRTs, although these methods can be

used in other types of randomized trials as long as the
units to be randomized and their characteristics are
known ahead of time. We showed that the average of
standardized absolute mean differences between two
arms (e.g., treatment vs. control) across multiple site
characteristics is an index that is relatively normally dis-
tributed with a mean of 0.798 and a variance of 0.363/k

Table 1 Properties of / and B based on simulations of uncorrelated multivariate normal distributed variables using the 1:1 allocation

ratio for 60 sites

# of site- Mean 1 Mean B

:lea‘:"iaalbles sD 10th percentile 25th percentile sD 10th percentile 25th percentile
2 0.815 0435 0.291 0486 2.100 2.109 0.210 0.598

3 0.809 0.357 0372 0.545 3.114 2.580 0.573 1216

4 0.807 0307 0434 0.584 4.125 2961 1.082 1.955

SD standard deviation
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Table 2 Number of randomizations that met pre-specified
balance criteria from 10,000 randomizations of uncorrelated
multivariate normal distributed variables using the 1:1 allocation
ratio for 60 sites

# of site-level variables 1 B All KW p values > 0.30
2 1000 1000 4757
3 1000 1000 3433
4 1000 1000 2388

KW Kruskal-Wallis

as long as k, the number of site characteristics being bal-
anced, is sufficiently large and the correlations among
the site characteristics are minimal.

The [ index is an advance over previous work in
that it provides a standardized metric that can be
used for multiple purposes. Like the B index de-
scribed by Raab and Butcher [8], the I index can be
used to guide the selection of random allocations in
C-CRTs that demonstrate sufficient overall balance on
a set of covariates or site characteristics collectively.
Due to its standardization and the distributional
properties illustrated here, the I index also provides a
metric of the overall degree of imbalance across all
site characteristics that can be interpreted, at least ap-
proximately, into percentile ranks from the theoretical
normal distribution. Percentile ranks can also be ob-
tained from the chi-square distribution for the B
index and used similarly. The metrics could be used
to conduct comparisons of the level of imbalance ob-
tained in other trials that might use a different num-
ber of sites or site characteristics. Both I and B can
be calculated for quantitative or categorical variables;
for categorical variables with j different categories, j —
1 dummy-coded (1 vs. 0) variables can be created and
the method otherwise proceeds as outlined here.

Our simulations generally indicate that 3 or more min-
imally or only moderately correlated site characteristics
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are sufficient to assume normality in most cases, espe-
cially if 18 or more sites are available to be randomized.
The theoretical percentile ranks and cutpoints should be
particularly useful to investigators in these cases because
they allow an estimation the degree of imbalance in a
particular randomization without conducting all possible
randomizations and calculating empirical cutpoints. As
the number of sites increases, it becomes unnecessary
and perhaps even cumbersome to conduct all possible
randomizations, which quickly can expand to hundreds
of thousands or even millions of distinct random alloca-
tions. Using the [ index, a few hundred randomizations
will typically be adequate to identify a sufficient number
of acceptable randomization allocations from which one
might be randomly selected for implementation in the
trial. In cases where the number of sites is relatively
small (e.g., <18) or the correlations among some site
characteristics are high (e.g., > 0.50), the theoretical cut-
points from the normal approximation may be mislead-
ing. We recommend that empirical percentile cutpoints
using either / for B from a sufficiently large number of
randomizations be used to identify suitable randomiza-
tions in these situations.

Limitations to our work include the many restrictions
we implemented in our simulations. We recognize that
only a small and finite number of variable conditions
were simulated, including no more than 4 site character-
istics and only two treatment conditions. We are
confident that the distributions of I would continue to
even more closely approximate the normal distribution
as the number of site characteristics increases or as the
number of sites to be randomized increases. Future sim-
ulations might examine modifications to the I index
when randomizations to more than two treatment con-
ditions are desired. Future work is also needed to exam-
ine additional mixtures of site characteristic distributions
and inter-correlation patterns.

Table 3 Properties of / based on the normal distribution results from the central limit theorem applied to the half-normal

distribution for 1 to 10 site-level variables

# of site-level variables Mean SD 10th percentile 25th percentile
1° 0.798 0.602 0.026 0392
2 0.798 0426 0.252 051
3 0.798 0.348 0.352 0.563
4 0.798 0.301 0412 0.595
5 0.798 0.269 0453 0616
6 0.798 0.246 0483 0.632
7 0.798 0.228 0.506 0.644
8 0.798 0213 0525 0.654
9 0.798 0.201 0.541 0.663
10 0.798 0.191 0.554 0.669

SD standard deviation

“Distribution is clearly not normal with only 1 site variable, so theoretical percentile values may be misleading in this case
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Another important area where future research is
needed is on the implications of optimized
randomization procedures for the statistical analysis of
treatment effects on outcomes. In most cases, the in-
creased balance achieved on covariates from optimized
randomization procedures is expected to result in more
precise estimates of treatment effects and greater power,
potentially rendering traditional parametric analyses
overly conservative [11, 15]. Because the [ index is a
standardized, comparative metric of reduced imbalance,
it may be useful as a metric for future simulation studies
that examine associations between the degree of balance
achieved and the alterations in observed type I or type II
error rates.

As pragmatic trials continue to evolve and become
more dominant sources of evidence for both the efficacy
and effectiveness of interventions [16], it will be import-
ant for methodological and research design innovations
to keep up with the increased complexity that is often
encountered in such investigations. Pragmatic trials that
use C-CRT designs should generally not rely on simple
randomizations or limited approaches such as stratified
random assignment [7]. While seeking greater
innovation, it will be important for investigators using
C-CRTs to exercise caution and ensure that treatment
allocation decisions are not impacted improperly by spe-
cific site preferences or other interim decisions that
might introduce an appearance of bias [12]. Any time
multiple possible randomizations are conducted and
reviewed, sources of bias might creep in if sufficient safe-
guards are not in place.

We recommend that randomization method decisions
and balance acceptability thresholds be established be-
fore individual allocations to treatment conditions are
reviewed. Moulton [12] has previously discussed the
risks of tightening or relaxing study-specific covariate
criteria at interim stages of a trial and stated that these
and other overly constraining manipulations can convey
impressions that investigators have “rigged the outcome
(p. 301)” or “manipulated the design to his or her advan-
tage. (p. 304).” It is important, therefore, to establish
such procedures and decision thresholds before the final
allocation is determined and treatment assignment infor-
mation is communicated to the sites. Typically, this
means that randomization procedures are executed be-
fore the trial begins by statisticians or research design
experts who have no direct contact with project sites or
their personnel. In some cases, an overall balance criter-
ion, such as the 10th percentile or the 25th percentile of
the theoretical distribution for I as provided in Table 3,
will be sufficient. In other studies, an overall balance cri-
terion might be used in conjunction with specific criteria
for one or more individual site characteristics, such as
some minimum p value for all statistical comparisons of
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those individual site characteristics. In general, as inves-
tigators hope to optimize research designs and maintain
rigor in their pragmatic trials, making these decisions
carefully before the trial is initiated should ensure suftfi-
cient balance across treatment conditions and eliminate
any opportunities for biased treatment assignments.
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