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The mixed model for repeated measures
for cluster randomized trials: a simulation
study investigating bias and type I error
with missing continuous data
Melanie L. Bell* and Brooke A. Rabe

Abstract

Background: Cluster randomized trials (CRTs) are a design used to test interventions where individual randomization
is not appropriate. The mixed model for repeated measures (MMRM) is a popular choice for individually randomized
trials with longitudinal continuous outcomes. This model’s appeal is due to avoidance of model misspecification and
its unbiasedness for data missing completely at random or at random.

Methods: We extended the MMRM to cluster randomized trials by adding a random intercept for the cluster and
undertook a simulation experiment to investigate statistical properties when data are missing at random. We simulated
cluster randomized trial data where the outcome was continuous and measured at baseline and three post-intervention
time points. We varied the number of clusters, the cluster size, the intra-cluster correlation, missingness and the data-
generation models. We demonstrate the MMRM-CRT with an example of a cluster randomized trial on cardiovascular
disease prevention among diabetics.

Results: When simulating a treatment effect at the final time point we found that estimates were unbiased when data
were complete and when data were missing at random. Variance components were also largely unbiased. When
simulating under the null, we found that type I error was largely nominal, although for a few specific cases it was as high
as 0.081.

Conclusions: Although there have been assertions that this model is inappropriate when there are more than two
repeated measures on subjects, we found evidence to the contrary. We conclude that the MMRM for CRTs is a good
analytic choice for cluster randomized trials with a continuous outcome measured longitudinally.

Trial registration: ClinicalTrials.gov, ID: NCT02804698.

Keywords: Missing data, Dropout, Variance components, Intention-to-treat, Cluster trials, Group randomized trials

Introduction
Cluster randomized trials (CRTs) are a design that random-
izes clusters, rather than individuals, to intervention arms.
The design may be used because the intervention is at the
cluster level, such as behavioral group therapy, or due to
potential contamination between participants, or because of
ethical or logistic considerations [1]. Clusters may be
households, clinics, schools or towns, and individuals within

clusters are usually correlated, thereby violating the inde-
pendence assumption of common statistical methods. The
intracluster correlation (ICC), defined as the ratio of the
between-cluster variance to the total variance, is the meas-
ure of this non-independence [1]. CRTs are increasingly
being used as they are a good design for comparative effect-
iveness research and pragmatic trials [2].
Many trials, both individually and cluster randomized,

have repeated outcome measures over time. For example,
a cardiovascular disease (CVD) prevention trial may meas-
ure weight, body mass index and stress at baseline, at 3
months post intervention and a year [3]. The longitudinal
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design must be accounted for in the analysis because
repeated measures on the same individual are not inde-
pendent. Maximum-likelihood-based mixed models are
one common statistical approach for handling non-
independence. One particular type of mixed model, com-
monly referred to as the mixed model for repeated mea-
sures (MMRM), is a popular choice for individually
randomized trials with longitudinal continuous outcomes
measured at set time points [4–7]. This model uses an un-
structured time and covariance structure and its appeal is
due to (1) avoidance of model misspecification and (2) its
unbiasedness for data which are missing completely at ran-
dom (MCAR) or missing at random (MAR). Although
many researchers use simple methods, such as a t-test to
compare arms at a given time point, or single imputation
such as last-observation-carried-forward [8–10]. these ap-
proaches can result in biased estimates; t tests make an
MCAR assumption (defined below) and last-observation-
carried-forward has been shown to give unpredictable re-
sults [11–13]. In addition to unbiased estimation when
data are MAR or MCAR, mixed models are more powerful
than t tests when data are missing [14].
Data are MCAR if missingness is unrelated to any ob-

served or unobserved data (covariates or outcomes). Data
are MAR if missingness is related to observed outcome
data (such as the previous weight, in the CVD example
above), but not unobserved data, such as the subject’s
current weight. Data are said to be missing not at random
(MNAR) if the missingness is dependent on unobserved
data (such as the current weight measurement in the CVD
example), even after taking observed data into account. A
fourth category is sometimes used, which is covariate-
dependent missing data. (Note that some researchers have
called this type of missing data MCAR [15], whereas
others have called it MAR [7, 16]) Statistical methods that
result in unbiased estimation when data are MAR or
MCAR include mixed models, multiple imputation, and
inverse probability weighted generalized estimating equa-
tions. Reviews show that most trialists use methods that
make the strong assumption that data are MCAR (e.g., t
tests on available data, single imputation) [8–10]. A more
conservative approach is to use a primary analysis that as-
sumes that data are MAR, followed by a sensitivity ana-
lysis that weakens this assumption [11, 12].
CRTS can be analyzed at the individual or the cluster

level, where data from each of the clusters is summarized
by a single value, such as the mean (thereby removing the
issue of intra-cluster correlation) [1]. For a small number
of clusters (< 40 total) the recommendation is to use a
cluster-level analysis [17]. particularly if unweighted gen-
eralized estimating equations are used, as type I error can
be severely inflated otherwise [18]. With respect to miss-
ing data, Hossain et al. compared individual-level analysis
versus cluster-level analysis for CRTs with covariate-

dependent missing data where the continuous outcomes
were measured twice (baseline and follow-up) [19]. They
found that using mixed models or multiple imputation at
the individual level resulted in unbiased estimation in all
considered scenarios, whereas analysis at the cluster level
did not always result in unbiased estimates. The focus of
this paper is on analysis at the individual level, which is
how most CRTs are analyzed [9, 17].
When the CRT has outcomes measured longitudinally

on the same individual, both types of non-independence
must be accounted for. Research into the most appropri-
ate analytical approach for this type of design has been
limited, particularly with respect to missing data. Johnson
et al. [20] investigated type I error for several analytical ap-
proaches at the individual and cluster level for CRTs with
imbalanced cluster size, but did not consider outcomes
that were measured longitudinally. They recommended
using the Kenward-Rogers denominator degrees of free-
dom, a small sample correction that has been shown to
have favorable properties [21, 22]. Murray et al. investi-
gated analytical approaches for CRTs with longitudinally
measured outcomes, and concluded that mixed-model
analyses of variance (ANOVAs) are inappropriate when
there are more than two time points [23]. However, their
conclusions may be too broad, as they did not test the
model that we propose here.
We extend the MMRM to cluster trials (MMRM-CRT)

by simply adding a random effect for cluster. While this
model is not necessarily new; for example, Littell discusses
this model in the context of repeated measures with clus-
tering due to schools [24], the choice of similar models
has been criticized when outcomes are measured at more
than two time points (as mentioned above) [23, 25, 26].
Furthermore, to our knowledge, this model has not been
investigated for its statistical properties when outcome
data are incomplete. The objective of this research was to
extend the MMRM to CRTs with continuous outcomes
measured longitudinally on the same subject at more than
two fixed time points, and to investigate this model’s stat-
istical properties using simulation, particularly with re-
spect to missing data. Specifically, the aims of this study
were to investigate the bias of treatment effects and vari-
ance estimates, as well as the type I error rate of the
MMRM-CRT. We aimed to investigate the impact of
varying the ICC; the number of clusters per arm; cluster
size; missingness mechanism; and underlying covariance
structure. We demonstrate using a CRT for CVD preven-
tion among diabetics, where the clusters are clinics from
the state of Sonora, Mexico.

Methods
The MMRM in general
The mixed model for repeated measures uses an unstruc-
tured time and covariance structure [27]. Unstructured
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time means that time is modeled categorically, rather than
continuously as a linear or polynomial function, and al-
lows for an arbitrary trajectory over time. While the con-
tinuous time models may use fewer degrees of freedom
and may, therefore, be more powerful, it can be difficult to
anticipate the outcome’s time trajectory in advance. Since
clinical trials often require a pre-specified analysis plan,
unstructured time can be appealing [27]. In the context of
randomized controlled trials, fixed effects of time, treat-
ment and their interaction are included in the MMRM
model. The interaction term accommodates different pat-
terns of change over time between the arms. Baseline
values of the outcome are sometimes included [28].
Maximum-likelihood-based mixed models provide un-
biased estimation for data that are MCAR or MAR, as
long as the model is not misspecified [29, 30]. All outcome
data are used, regardless of whether an individual has
complete data or not, making these models consistent
with an intention-to-treat analysis [31–33].
Cluster randomized trials with longitudinally measured

outcomes have two sources of non-independence: the
cluster and the repeated measures over time. Linear
mixed-effects models are one option for handling the
non-independence of measurements over time. In the
mixed-model context, one may use a random-
coefficients model, using random effects for a subject’s
intercept and sometimes slope. Alternatively, one may
use covariance pattern models, where the covariance be-
tween repeated measures on the same subject is mod-
eled explicitly from the residual effects [28, 30]. Some
commonly used covariance structures, available in statis-
tical software, include compound symmetric, autoregres-
sive, Toeplitz or unstructured. A compound symmetric
structure assumes that any two measurements on the
same individual have the same covariance, regardless of
timing. An autoregressive structure assumes that mea-
surements’ correlation drops over time exponentially.
The Toeplitz structure has homogeneous variance over
time, and a banded correlation structure, so that the (r,
c) element of the matrix is the same as the (r + 1, c + 1)
and the (r + 2, c + 2) elements, etc. (i.e., when the degree
of adjacency is the same) [28]. Unstructured covariance
makes no assumptions about the correlation between
measurements, thereby rendering misspecification not a
problem; however, it can require that a large number of
parameters must be estimated [30]. However, many clus-
ter trials have a fairly small number of assessments on
each subject.
The general mixed model for the ith subject is given by:

Yi ¼ Xiβþ Ziγi þ εiγi∼N 0;Gð Þεi∼N 0;Rið Þ

where γi is independent of εi; Yi is the ni × 1 response
vector; n is the number of planned assessments for

each subject i = 1, …, N and ni is the number of ob-
served assessments for the ith subject; β is the p × 1
fixed-effects vector; Xi is the ni × p fixed-effects design
matrix; Zi is the ni × q matrix of random-effects de-
sign matrix; γi is the q × 1 vector of random effects
and εi is the ni × 1 vector of residuals. G is the q × q
covariance matrix for the random effects, and Ri is
the ni × ni covariance matrix for the residuals.

The MMRM for CRTs
Our proposed model, for a two-arm trial, has p = 2n + 2
fixed effects: a fixed effect for each assessment for each
treatment arm, an intercept and a treatment indicator.
The only random effect is for cluster, so q = 1, and G is
a scalar. Ri is unstructured. This model is easily extended
to include more than two arms, the baseline value of the
outcome variable as a covariate (instead of in the out-
come vector as shown here), and/or a baseline by treat-
ment arm interaction [28].

The ICC

The ICC is defined as σ2C
σ2Total

where between-cluster

variance is σ2C and σ2Total is the total variance. In the
MMRM-CRT model, σ2Total is σ2C þ σ2B þ σ2W , where
σ2W is the within-subject (or residual) variance and σ2B
is the between-subject variance. These variance com-
ponents are functions of the elements of the G and
R matrices. The ICC is used to calculate the design
effect = 1 + (m − 1) × ICC, where m = cluster size,
which is the factor used to inflate the required sam-
ple size of an individually randomized trial to ac-
count for clustering, while maintaining the same level
of power.

Simulation study
We undertook a set of simulation studies to investi-
gate the MMRM for CRTs in the presence of missing
data. We simulated data from a two-arm CRT where
the outcome was continuous and measured at base-
line and three post-intervention time points. We var-
ied the ICC, the number of clusters per arm k, the
cluster size m, missingness (complete or MAR), and
the missingness mechanism direction (described
below). To show the generality of the MMRM-CRT
we simulated data using three methods, which created
different underlying covariance structures. The values
for the simulation to investigate bias are shown in
Table 1. We also simulated under the null hypothesis
to investigate the type I error rate. We used 1000
replications for each parameter combination. We sim-
ulated MAR data only: MCAR data were not simu-
lated because analyses which are unbiased for MAR
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data are also unbiased for MCAR data. Methods for
MNAR data are beyond the scope of this paper.

Data generation
Multivariate normal data were generated using three
methods, none of which are based directly on the
model that we are proposing. To investigate bias, the
means of y over time were (50, 50, 50, 50) for the
control arm and (50, 55, 60, 55) for the treatment
arm. To investigate type I error, we simulated under
the null, with no differences in trajectories over time
between the arms. Each method simulated data with
ICCs of 0.01 and 0.1, values that are consistent with
empirically estimated ICCs [34].
The first simulation method was a mixed-effects

model with fixed effects for categorical time, treatment
arm, and their interaction; random effects (intercepts)
for subject and cluster; and a single residual-variance
component, σ2w. The number of random effects is q =
2, so G is a 2 × 2 matrix comprised οϕ σ2Χ and σ2B.
This model induces a compound symmetric covariance
structure for measurements on the same subject. The
correlation for subjects within the same cluster is the
ICC. For ICC = 0.01, we set σ2C=1, σ2B = 60, and
σ2w = 39. For ICC = 0.1, we set σ2C = 10, σ2B = 60, and
σ2w = 30.
In the second simulation method we used the same

fixed-effects structure as method 1, but with a single
random cluster effect and a within-subject covariance
over time governed by the following Toeplitz covari-
ance matrix. For ICC = 0.01, we set σ2C = 1 and σ2w =
99. For ICC = 0.1, we set σ2C = 10 and σ2w = 90.

R ¼ σ2W

1 :8 :7 :6
:8 1 :8 :7
:7 :8 1 :8
:6 :7 :8 1

2
664

3
775

The third data-simulation method used the same
fixed-effects structure as the previous two methods, but
included random effects for subject, cluster intercepts
and cluster slopes. Each cluster k had a random effect
generated ~ N(0, σ2C), which represents a constant offset
from the overall mean trajectory over time, and add-
itional random effects at each of the four time points ~
N(0, 0.4σ2C). he number of random effects is q = 5, so G
is a 5 × 5 matrix. For ICC = 0.01,we set σ2C = 0.714,
σ2B = 60, and σ2w = 39. For ICC = 0.1, we set σ2C = 7.14,
σ2B = 60, and σ2w = 30. The simulation code is given in
the Additional file 1.

Missingness
We created MAR dropout data by using thresholds,
above or below which data were deleted with a given
probability at each post-baseline time point. The prob-
ability and thresholds were tuned so that data were
missing at a rate of 30% in both arms at the final time
point. Missingness at the jth time point was based on
the outcome value of the j−1th time point, which creates
MAR data. All baseline data were complete, and miss-
ingness was dropout only. Two mechanisms were used:
“same direction,” where values of lower y were deleted
for both arms; and “opposite direction,” where high
values of y were more likely to be deleted in the control
arm, and low values were more likely to be deleted in
the treatment arm. In practice, missingness is likely to

Table 1 Simulation method 1a. Estimates (percent bias) of the difference at the fourth time point and variance components, where
k = number of clusters per arm and m = cluster size

k m ICC = 0.01 ICC = 0.1

effect = 5 σ2c ¼ 1 σ2w ¼ 39 σ2b ¼ 60 effect = 5 σ2c ¼ 10 σ2w ¼ 30 σ2b ¼ 60

5 10 4.97 (− 0.7) 2.2 (120.8) 39.2 (0.4) 58.5 (− 2.5) 5.07 (1.5) 9.9 (− 0.8) 30.0 (0.0) 59.4 (− 0.9)

20 4.94 (− 1.2) 1.4 (35.6) 39.1 (0.2) 59.6 (− 0.6) 5.04 (0.8) 10.4 (3.5) 30.0 (0.0) 60.0 (0.0)

50 4.96 (− 0.8) 1.0 (4.4) 38.9 (− 0.2) 59.9 (− 0.2) 4.93 (−1.3) 10.3 (2.9) 30.1 (0.2) 60.2 (0.3)

10 10 5.02 (0.4) 1.8 (75.0) 39.0 (0.0) 59.3 (−1.2) 4.95 (− 1.0) 10.2 (1.7) 30.0 (0.0) 60.3 (0.5)

20 5.01 (0.3) 1.2 (24.0) 39.0 (− 0.1) 59.7 (− 0.5) 4.98 (− 0.3) 9.8 (− 1.7) 30.0 (0.1) 59.8 (− 0.3)

50 5.01 (0.1) 1.1 (5.0) 39.0 (0.1) 59.8 (− 0.3) 4.97 (− 0.6) 10.3 (2.8) 30.0 (0.0) 60.1 (0.1)

20 10 5.02 (0.5) 1.4 (36.9) 38.9 (− 0.2) 59.5 (− 0.9) 5.04 (0.8) 10.2 (1.7) 30.0 (0.0) 59.8 (− 0.4)

20 5.01 (0.3) 1.1 (5.1) 39.0 (0.1) 59.9 (− 0.1) 5.02 (0.3) 10.0 (− 0.4) 30.0 (0.0) 60.1 (0.1)

50 5.01 (0.1) 1.0 (3.3) 39.0 (0.0) 59.9 (− 0.2) 4.96 (− 0.7) 10.1 (0.8) 30.0 (0.0) 60.0 (0.0)

50 10 5.04 (0.7) 1.1 (13.6) 39.0 (0.0) 59.8 (− 0.4) 4.97 (− 0.6) 10.0 (0.5) 30.0 (0.0) 59.9 (− 0.1)

20 4.98 (− 0.3) 1.0 (3.4) 39.0 (− 0.1) 60.0 (0.0) 5.06 (1.1) 10.0 (0.0) 30.0 (− 0.1) 59.9 (− 0.1)

50 5.00 (− 0.1) 1.0 (− 0.8) 39.0 (0.0) 60.0 (0.1) 5.01 (0.2) 10.0 (− 0.1) 30.0 (0.0) 60.0 (0.0)
aRandom effects for subject and cluster ≥ compound symmetric
ICC intracluster correlation
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be a result of a combination of mechanisms, and we use
this mechanism as an extreme case. However, a possible
scenario where this type of missingness might occur is
when the toxicity for the experimental arm is high so
that patients with low quality of life are likely to drop
out, whereas the control arm’s toxicity is low, and pa-
tients with higher quality of life might be likely to drop
out, as they feel better, or possibly cured.

Analysis
We analyzed each of the datasets using the MMRM-CRT
as described above using the SAS Mixed procedure (ver-
sion 9.4, Cary, NC, USA) with a random intercept for clus-
ter, and fixed effects of categorical time, treatment, and the
interaction time x treatment. The unstructured covariance
is indicated within the repeated statement. The SAS and R
code to fit this model is given in the Additional file 1. Our
interest was focused on the difference at the fourth time
point between the treatment arms, which we estimated
using a contrast within the model. We used restricted
maximum-likelihood estimation, and the Kenward-Rogers
denominator degrees of freedom [22].

Performance evaluation
The percent bias was calculated for the mean difference
between the arms at the fourth time point by subtracting
the true difference from the estimated difference and
dividing by the true difference. Coverage was calculated
as the percentage of 95% confidence intervals that con-
tained the true value. We assessed the type I error rate
for data that were simulated under the null hypothesis
of no effect, by finding the percentage of tests (between
arms at the fourth time point) that were significant at
the 0.05 level. As bias was our performance measure of
greatest interest, we calculated the Monte Carlo stand-
ard error for percent bias as:

100�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var estimateð Þ=nsim

ph i
=5;

where 5 was the true treatment difference [35].
We also estimated the bias of variance components. The

estimates of variance generated by SAS are σ2c from the
random statement, and the 4 × 4 R matrix from the re-
peated statement, 10 elements of which are unique. Thus,
the bias for the variance of the random effect of cluster, σ2c,
was estimated directly, as this variance estimate is default
output for SAS Proc Mixed. For data that were simulated
using methods 1 and 3, the expected value of the average of
the diagonal elements of R is σ2B + σ2W and the average of
the off-diagonal elements should be equal to σ2W.
For data that were generated using method 2 (a Toe-

plitz covariance structure and a random effect for clus-
ter), we calculated bias by dividing each of the elements
of the estimated R matrix by its presumed correlation

due to the Toeplitz structure, and averaged these values
to get an estimate of σ2W. Diagonal elements were di-
vided by 1, one place off the diagonal were divided by
0.8, two places off the diagonal were divided by 0.7, and
three places off the diagonal were divided by 0.6.

Simulation results
The direction of missingness did not affect the results, so
we report results when missingness was in the same direc-
tion for both arms. Results for when missingness direction
differed between arms are given in the Additional file 1.

Bias of treatment effect
The estimates of the difference between arms at the
fourth time point were largely unbiased (Tables 1, 2 and
3). The true treatment effect was 5.0: estimates range
from 4.93 to 5.12 and the percent bias ranged from − 1.3
to 2.4%. There was no effect of the number of clusters,
the cluster size, the ICC, the simulation method or the
direction of missing data. The Monte Carlo standard
error for the percent bias of the treatment effect ranged
from 0.2 to 1.9%.

Bias of variance components
In general, variance component estimates were also un-
biased: of the 192 variance components estimated, 85%
had less than 10% bias. Smaller cluster sizes, particularly
when the number of clusters was small, and low ICCs
were associated with higher relative bias for σ2C. For ex-
ample, when k = 5, m = 10 and ICC = 0.01, simulation
methods 1–3 had percent biases of 121, 137, and 186%,
respectively. The estimates for σ2C were 2.2, 2.4, and 2.0
for true values of 1.0, 1.0, and 0.71. Using simulation
method 3 estimates of the variance for cluster effects and
within subject were slightly inflated and estimates for vari-
ance between subjects were slightly underestimated.

Coverage
When the ICC was small, at 0.01, coverage estimates for
the treatment effect were close to 95% for all three simu-
lation methods. There was noticeable under-coverage
when the ICC was 0.1 under simulation method 3 (ran-
dom slope effect for cluster) with coverage falling as low
as 89.7%. See Table 4.

Type I error
When simulating under the null with 30% missing data,
type I error ranged from 2.7 to 8.1% (Table 5). Larger
values occurred using simulation method 3 (random
intercept and slope for clusters) with larger ICC. Other
methods and ICCs yielded values that were close to
nominal.
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Motivating example
We demonstrate the MMRM-CRT with Meta-Salud
Diabetes, a CRT designed to reduce the risk of CVD in
diabetics in the Mexican state of Sonora by focusing on
improving healthy behaviors. Clusters were health
clinics where the intervention was implemented, and
randomization was stratified by region (north, south,
central). Informed consent from all participants was
given and ethical approval was obtained. Details can be
found elsewhere [3]. Briefly, the primary outcome was
the Framingham CVD risk score, which is a function of
age, sex, blood pressure, cholesterol, smoking, and

diabetic status, as detailed in D’Agostino et al. which
estimates the risk of CVD in the next 10 years [36].
Twenty-four clinics were randomized to intervention
(n = 293) or control (n = 242), with two clusters eventu-
ally being dropped from the control arm due to logis-
tical reasons. Participants were assessed at baseline, 3,
and 12 months. For this demonstration, we fit a
MMRM-CRT with fixed effects of time, arm, time x
arm, strata, and a random effect for clinics. Time was
fit categorically and the 3 × 3 covariance matrix for time
was unstructured. Inference focused on the difference
in CVD risk between the arms at 3 and 12 months.

Table 2 Simulation method 2a. Estimates (percent bias) of effect (difference at the fourth time point) and variance components,
where k = number of clusters per arm and m = cluster size

k m ICC = 0.01 ICC = 0.1

effect = 5 σ2c ¼ 1 σ2w ¼ 99 effect = 5 σ2c ¼ 10 σ2w ¼ 90

5 10 4.94 (− 1.2) 2.4 (137.2) 97.4 (− 1.6) 5.02 (0.5) 10.5 (4.5) 90.4 (0.4)

20 4.94 (− 1.1) 1.6 (58.5) 98.8 (− 0.2) 5.09 (1.7) 9.7 (− 2.7) 89.8 (− 0.2)

50 5.01 (0.3) 1.1 (8.6) 99.0 (0.0) 4.95 (− 0.9) 9.7 (− 2.8) 89.7 (− 0.4)

10 10 5.01 (0.3) 1.9 (85.6) 98.1 (− 0.9) 4.94 (− 1.2) 9.8 (− 2.0) 89.6 (− 0.4)

20 5.03 (0.5) 1.3 (30.1) 98.6 (− 0.4) 4.99 (− 0.1) 10.0 (0.2) 89.8 (− 0.2)

50 5.02 (0.4) 1.0 (4.8) 98.9 (− 0.1) 4.98 (− 0.5) 9.9 (− 1.0) 90.0 (0.0)

20 10 5.05 (1.1) 1.4 (41.4) 98.6 (− 0.4) 4.98 (− 0.4) 10.0 (− 0.2) 90.2 (0.2)

20 4.97 (− 0.5) 1.1 (7.1) 98.6 (− 0.4) 4.96 (− 0.8) 10.1 (0.6) 90.1 (0.1)

50 5.00 (0.0) 1.0 (− 0.8) 99.0 (0.0) 4.99 (− 0.2) 10.0 (0.5) 90.1 (0.1)

50 10 5.02 (0.4) 1.2 (20.2) 99.1 (0.1) 5.00 (0.0) 10.0 (0.4) 90.0 (0.0)

20 5.02 (0.4) 1.0 (1.5) 98.9 (− 0.1) 5.02 (0.4) 10.0 (0.3) 90.0 (0.0)

50 5.00 (0.0) 1.0 (3.0) 98.9 (− 0.1) 5.03 (0.5) 10.0 (0.1) 90.0 (0.0)
aToeplitz covariance, random cluster effect
ICC intracluster correlation

Table 3 Simulation method 3a.. Estimates (percent bias) of effect (difference at the fourth time point) and variance components,
where k = number of clusters per arm and m = cluster size

k m ICC = 0.01 ICC = 0.1

effect = 5 σ2c ¼ 0:71 σ2w ¼ 39 σ2b ¼ 60 effect = 5 σ2c ¼ 7:14 σ2w ¼ 30 σ2b ¼ 60

5 10 5.03 (0.6) 2.0 (186.0) 39.6 (1.6) 58.9 (− 1.8) 4.99 (− 0.1) 8.2 (15.1) 32.4 (7.9) 59.7 (− 0.5)

20 5.00 (0.1) 1.3 (76.6) 39.3 (0.7) 59.4 (− 1.0) 4.97 (− 0.6) 7.8 (9.0) 32.2 (7.4) 59.7 (− 0.5)

50 4.95 (− 1.1) 0.8 (18.0) 39.2 (0.5) 60.0 (− 0.1) 4.97 (− 0.5) 8.0 (11.8) 32.3 (7.6) 59.5 (− 0.8)

10 10 5.03 (0.6) 1.7 (132.2) 39.2 (0.5) 59.1 (− 1.4) 4.98 (− 0.5) 8.0 (12.5) 32.7 (8.9) 58.9 (− 1.8)

20 5.03 (0.5) 1.0 (43.7) 39.3 (0.7) 59.7 (− 0.5) 4.93 (− 1.4) 7.8 (9.2) 32.5 (8.4) 59.2 (− 1.4)

50 4.96 (− 0.7) 0.8 (17.5) 39.3 (0.7) 59.7 (− 0.4) 5.12 (2.4) 7.8 (8.9) 32.5 (8.4) 59.3 (− 1.1)

20 10 4.98 (− 0.4) 1.2 (72.9) 39.3 (0.8) 59.5 (− 0.8) 5.04 (0.8) 7.8 (9.7) 32.8 (9.2) 59.5 (− 0.8)

20 5.00 (0.0) 0.9 (26.5) 39.3 (0.8) 59.9 (− 0.2) 5.03 (0.6) 7.8 (9.2) 32.7 (9.0) 59.4 (− 1.1)

50 5.01 (0.1) 0.8 (11.2) 39.3 (0.7) 60.0 (− 0.1) 4.95 (− 1.0) 7.9 (10.4) 32.7 (9.1) 59.4 (− 1.0)

50 10 5.00 (0.1) 0.9 (28.1) 39.3 (0.8) 59.7 (− 0.6) 4.98 (− 0.5) 7.8 (9.8) 32.8 (9.2) 59.3 (− 1.1)

20 4.98 (− 0.5) 0.8 (10.1) 39.2 (0.6) 59.9 (− 0.1) 5.02 (0.4) 7.9 (10.5) 32.8 (9.4) 59.4 (− 1.1)
aRandom effect for subject, cluster, and cluster slope
ICC intracluster correlation
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Results
By month 12, the rates of missing outcome data were
21% and 11% for the intervention and control arm re-
spectively. We found statistically significant differences
in CVD risk at both 3 and 12months. CVD risk was 4.8
percentage points higher in the intervention arm than
the control arm at 3 months (95% CI 1.2, 8.5, p = 0.01);
at 12 months the difference was 3.9 percentage points
(95% CI 0.3, 7.4, p = 0.03). See Table 6. The ICC was es-
timated to be 0.031, similar to what other studies have
found for various psycho-social and behavioral outcomes
[34]. This trial had differential retention. While rates of
missingness/retention should always be monitored and

investigated by trial staff, unbiased estimation is still pos-
sible, as shown by Bell et al. [37]. In this particular case,
it may have been due to the higher rate of participants
who had just joined the health clinic in the intervention
arm (34.1) versus the control arm (9.4), and were not
fully committed to the clinic.

Discussion
We aimed to investigate the mixed model for repeated
measures for CRTs, for complete data and for data
MAR, where assessments of the continuous outcome are
made at fixed time points. When simulating a treatment
effect at the final time point we found that estimates

Table 4 Coverage values for treatment effect (difference at the fourth time point) with 30% missing data in the same direction for
each of the three simulation methodsa

k, clusters
per arm

m, subjects
per cluster

Method 1 Method 2 Method 3

ICC = 0.01 ICC = 0.1 ICC = 0.01 ICC = 0.1 ICC = 0.01 ICC = 0.1

5 10 95.1 92.8 95.2 93.3 95.6 94.0

20 92.1 93.3 94.4 92.9 95.3 92.0

50 94.2 91.5 94.4 92.6 95.6 93.3

10 10 95.1 93.6 95.7 94.8 95.6 93.5

20 94.1 94.8 95.6 94.6 95.3 90.7

50 94.2 93.2 94.0 94.5 94.8 91.4

20 10 94.8 95.9 94.0 94.3 95.9 91.8

20 94.4 94.2 94.6 93.8 94.4 92.9

50 94.1 94.1 94.8 92.9 93.1 89.7

50 10 94.8 94.4 94.7 95.5 94.1 91.6

20 94.2 94.5 94.8 95.3 95.1 90.3

50 94.2 93.2 95.9 93.4 95.0 92.9
aSimulation method 1 = compound symmetry; method 2 = Toeplitz; method 3 = random intercepts and slopes
ICC intracluster correlation

Table 5 Type I error rate when estimating under the null hypothesis of no difference between arms, with 30% missing data in same
direction for each of the three simulation methodsa

k, clusters
per arm

m, subjects
per cluster

Method 1 Method 2 Method 3

ICC = 0.01 ICC = 0.1 ICC = 0.01 ICC = 0.1 ICC = 0.01 ICC = 0.1

5 10 3.9 6.3 2.7 4.4 4.9 6.5

20 4.1 5.6 3.7 6.1 4.7 7.8

50 5.2 4.4 5.4 4.1 4.8 6.8

10 10 4.1 6.0 4.8 5.6 5.0 5.6

20 5.0 6.2 4.9 5.7 5.3 7.0

50 4.7 4.2 5.3 5.4 6.4 8.1

20 10 5.0 4.3 5.3 4.1 4.3 6.4

20 4.3 6.2 5.8 3.8 5.0 5.7

50 4.8 5.2 4.8 4.3 5.6 5.7

50 10 5.0 5.8 4.8 4.9 6.5 6.5

20 5.5 5.5 5.1 5.0 6.1 6.3

50 5.2 4.7 4.5 5.1 6.4 6.7
aSimulation method 1 = compound symmetry; method 2 = Toeplitz; method 3 = random intercepts and slopes
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were unbiased when data were complete and when data
were MAR. Estimates of variance components were
mostly unbiased, although cluster effects were, in some
cases, overestimated, particularly when the number of
clusters per arm was small (k = 5) and when the data were
simulated with random intercept and slopes for cluster.
Although the percentage bias was large in some cases, up
to 186%, this is due to a small true value of σ2C = 0.71, and
an average estimate of 2.0. In practice, this may not have
much effect, but caution should be used whenever sample
sizes are small, including when there are a small number
of clusters with small cluster size.
Type I error rate was close to nominal for most of our

simulation methods, ranging from 2.7 to 8.1% when simu-
lating under the null. Generalized estimating equations, an-
other popular approach for analyzing CRTs, also suffers
from increased type I error when there is a small number of
clusters. Huang et al. showed type I error of 47 to 12% when
the number of clusters per arm ranged from two to five.
The worst performance for the MMRM-CRT occurred

when the ICC was larger, at 0.1, and when simulation
method 3 (random intercepts and slopes) was used. Em-
pirical estimates of several ICCs in family practice settings
had a median of 0.01; a similar study in the field of
psycho-oncology had a median ICC of 0.0007 for longitu-
dinal studies with a maximum value of 0.09 [34, 38]. This
suggests that in certain research settings the ICC may be
unlikely to be as high as 0.1. A way to reduce the ICC is to
adjust for covariates within the models [34]. Real data are
not generated from a model, and in practice, it is likely
that multiple mechanisms are involved.
At the request of a reviewer, further simulations using

non-linear trajectories for both arms were undertaken.
The results are in the Additional file 1, and are similar to
the main results: unbiased treatment estimation and vari-
ance components, except for slightly inflated between-
cluster variance estimates when using simulation method
3, random intercepts and slopes. Type I error rate was
similar to the primary results, with values slightly inflated
for simulation method 3 and higher ICCs.
There have been multiple reviews that have asserted

that the analyses for CRTs are incorrect based on whether
a mixed-model ANOVA is used, if there are more than
two time points, unless a random-
coefficients model is used [25, 26, 39]. Our results

contradict this, as the MMRM-CRT appears, as a whole,

to have good statistical properties. The simulation study
upon which these assertions are based, however, did not
test the MMRM-CRT as we have defined it, and was
based on measurements on the same clusters over time,
but not the same individuals over time [23]. Other differ-
ences include the low number of clusters simulated (five
per arm); the assumption of a compound symmetric co-
variance structure, as opposed to the unstructured covari-
ance in the MMRM-CRT; simulation under the null only;
and the use of empirical sandwich standard errors as well
as restricted maximum likelihood (REML). A low number
of clusters, along with empirical sandwich errors, has been
shown to increase type I error [18]. Hossain et al. recom-
mend linear mixed models for the analysis of CRTs with
missing data over cluster-level analyses, but their simula-
tion study only used two time points.
While our study focused on endpoint analysis, i.e., com-

parison of arms at a single time point by using a contrast,
the MMRM, for both individual and cluster randomization,
can also assess response profiles over time. This allows for
testing the difference in patterns of change over time be-
tween arms via the interaction of treatment and time [33].

Strengths and limitations
A strength of this study is that we used three different
data-generation models, none of which were directly the
analysis model, as well as two mechanisms within these
simulation methods (same and opposite direction missing-
ness). Our results were fairly consistent, indicating that
the MMRM-CRT is flexible and general. A limitation of
this research is that, as a simulation study, we could not
investigate all possible scenarios, of which there are an in-
finite number. However, this is a limitation of all simula-
tion studies, and we varied several parameters that are
important in practice. We only used three post-baseline
time points; however, we see no reason why more time
points would yield substantively different results. We did
not simulate data that were MNAR. Although some stud-
ies have shown that MNAR data are modeled fairly well
(in terms of bias) using MAR methods such as mixed
models and multiple imputation, this is not true in general
[31]. Another limitation is that we did not explore the case
of unequal-sized clusters.
Most trials, both individual and cluster randomized,

use analyses that make the strong and unlikely assump-
tion that data are MCAR [8–10]. The MMRM makes a

Table 6 Cardiovascular disease (CVD) risk from the Meta-Salud Diabetes cluster randomized trial at 3 and 12months post
intervention

Month Nint missing (%) Nctl missing (%) CVD risk (%) intervention N = 293 CVD risk (%) control N = 225 Difference (95% CI) p value

0 1 (0.3) 6 (2.7) 21.0 (18.5, 23.6) 22.9 (20.1, 25.7)

3 47 (16.0) 33 (14.7) 19.1 (16.6, 21.7) 24.0 (21.2, 26.8) 4.8 (1.2, 8.5) 0.01

12 61 (20.8) 31 (10.7) 19.3 (16.8, 21.9) 23.2 (20.5, 26.0) 3.9 (0.3, 7.4) 0.03
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MAR assumption, which is more plausible than MCAR.
While it is possible that longitudinal trial data are
MNAR, MNAR models can be complex and most re-
quire strong untestable assumptions. We recommend
that MNAR models be considered for sensitivity ana-
lyses. MNAR models for CRTs, particularly ones with
repeated measures on the same subject, are an emerging
research topic; for example, Fiero et al. extended the
MNAR pattern-mixture model to longitudinal cluster
trials [40]. Future research should include more MNAR
models for CRTs, as well as analytical approaches for
longitudinal binary and ordinal outcomes.

Conclusion
The MMRM for individually randomized trials is popu-
lar because it uses all the data collected over time; is un-
likely to misspecify the functional relationship between
time and the outcome; and yields unbiased estimates for
data that are MCAR or MAR. Our extension to cluster
trials has similar properties, and can be considered as a
primary analysis when continuous outcome data are col-
lected at fixed time points.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13063-020-4114-9.

Additional file 1. Mixed model for repeated measures-cluster random-
ized trials (Bell, Rabe).
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