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Abstract

Background: Neurological injuries remain the leading cause of death in comatose patients resuscitated from
out-of-hospital cardiac arrest (OHCA). Adequate blood pressure is of paramount importance to optimize cerebral
perfusion and to minimize secondary brain injury. Markers measuring global cerebral ischemia caused by cardiac arrest
and consecutive resuscitation and reflecting the metabolic variations after successful resuscitation are needed to assist a
more individualized post-resuscitation care. Currently, no technique is available for bedside evaluation of global cerebral
energy state, and until now blood pressure targets have been based on limited clinical evidence. Recent experimental
and clinical studies indicate that it might be possible to evaluate cerebral oxidative metabolism from measuring the
lactate-to-pyruvate (LP) ratio of the draining venous blood. In this study, jugular bulb microdialysis and immediate
bedside biochemical analysis are introduced as new diagnostic tools to evaluate the effect of higher mean arterial
blood pressure on global cerebral metabolism and the degree of cellular damage after OHCA.

Methods/design: This is a single-center, randomized, double-blinded, superiority trial. Sixty unconscious patients with
sustained return of spontaneous circulation after OHCA will be randomly assigned in a one-to-one fashion to low (63mm
Hg) or high (77mm Hg) mean arterial blood pressure target. The primary end-point will be a difference in mean LP ratio
within 48 h between blood pressure groups. Secondary end-points are (1) association between LP ratio and all-cause
intensive care unit (ICU) mortality and (2) association between LP ratio and survival to hospital discharge with poor
neurological function.

Discussion: Markers measuring cerebral ischemia caused by cardiac arrest and consecutive resuscitation and reflecting
the metabolic changes after successful resuscitation are urgently needed to enable a more personalized post-resuscitation
care and prognostication. Jugular bulb microdialysis may provide a reliable global estimate of cerebral metabolic state
and can be implemented as an entirely new and less invasive diagnostic tool for ICU patients after OHCA and has
implications for early prognosis and treatment.

Trial registration: ClinicalTrials.gov (ClinicalTrials.gov Identifier: NCT03095742). Registered March 30, 2017.
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Background
In comatose patients resuscitated from out-of-hospital
cardiac arrest (OHCA), anoxic brain injuries remain
the leading cause of death [1]. The overall mortality,
though improved considerably over the last decade,
continues to be significant and in most countries is as
high as 90% [2, 3]. Despite successful resuscitation and
admission to an intensive care unit (ICU), the
in-hospital mortality is reported to be 30–50% [4, 5].
Functional favorable outcomes among OHCA survivors
remain low, and global anoxic brain injury represents a
major mechanism of long-term disability [6, 7]. During
the post-resuscitative phase, the most significant clin-
ical challenge is to limit secondary brain injury. Tar-
geted temperature management (TTM) targeting 33–36 °C
may mitigate cerebral ischemia–reperfusion injury and is
recommended in current international guidelines [8–10].
However, managing post-cardiac arrest patients is far more
complex than TTM alone, and brain-directed therapies in-
clude maintenance of normal oxygenation, ventilation,
hemodynamic support to optimize cerebral perfusion, and
glycemic control [10, 11].
Reduced cerebral blood flow (CBF), which is mainly

dependent upon mean arterial blood pressure (MAP),
can result in brain ischemia and enhance secondary
brain injury after cardiac arrest. Arterial hypotension
may exacerbate brain injury following cardiac arrest be-
cause of ongoing cerebral hypoperfusion. Cerebral auto-
regulation is frequently impaired after cardiac arrest
[12, 13], and brain perfusion declines when the MAP
falls below 80 to 100 mm Hg. Thus, the generally rec-
ommended MAP of above 65 mm Hg [11] to reverse
the acute shock state may be inadequate to maintain
adequate cerebral perfusion.
When considering blood pressure goals, clinicians

should balance the metabolic needs of an ischemic
brain with the potential for overstressing a decompen-
sated heart. Post-cardiac arrest myocardial dysfunction,
caused by coronary infarction and ischemia–reperfu-
sion injury, is common after CA and resuscitation.
Excessive vasopressor use may cause increased after-
load and augmented oxygen consumption of the heart,
thereby aggravating the myocardial damage [14].
High-dose vasopressor use has been associated with in-
creased mortality [15].
Randomized control trials addressing specific MAP

targets in post-resuscitation care have not yet been per-
formed. This study addresses strategies for neuroprotec-
tion and will randomly assign a total of 60 unconscious
resuscitated patients after OHCA in a double-blinded
one-to-one fashion to low (mean 63mm Hg) or high
(mean 77mm Hg) MAP target.
Secondary brain injury processes throughout the

post-resuscitation period remain complex and involve

numerous pathophysiological pathways that result from
secondary ischemia and reperfusion injury. These in-
clude cerebral edema, inflammation, unbalanced CBF,
and mitochondrial dysfunction [16]. Markers measuring
global cerebral ischemia and reflecting the metabolic
variations after resuscitation are needed for a more
individualized post-resuscitation care and target-driven
therapy to improve patient outcome [17, 18].
Microdialysis (MD) allows biochemical variables of

the extracellular interstitial fluid to be monitored con-
tinuously and provides data on substrate supply and
metabolism at the cellular level in the brain [19].
Cerebral energy metabolism is strictly aerobic, and
the parameters monitored (glucose, pyruvate, lactate,
glutamate, and glycerol) are closely linked (Fig. 1)
[20]. Under clinical conditions, the cerebral cytoplas-
mic redox state is conventionally evaluated from the
lactate-to-pyruvate (LP) ratio obtained from intracere-
bral MD and bedside biochemical analysis. Compro-
mised energy metabolism will cause a shift in the
cytoplasmic redox state that is immediately reflected
in an increase of the LP ratio [21].
Clinical MD monitors the supply of glucose and its

metabolism via glycolysis to pyruvate, which under
oxidative conditions enter the tricarboxylic acid
cycle. During hypoxic conditions or if mitochondrial
function is compromised, pyruvate is metabolized to
lactate. Therefore, the LP ratio is used as a marker
of aerobic versus “anaerobic” metabolism not requir-
ing oxygen [22]. High LP ratio is considered a robust
indicator of anaerobic metabolism and the redox sta-
tus of the tissue and is an independent predictor of
mortality and unfavorable outcome in traumatic
brain injury among patients monitored with MD
[23–27]. An increased LP ratio could result from a
failure of oxygen delivery (ischemic hypoxia) or no
ischemic causes (e.g., mitochondrial dysfunction)
[28]. An increase in the LP ratio in the presence of
low pyruvate (and low oxygen pressure) indicates
ischemia. In contrast, an increase in LP ratio in the
presence of normal or high pyruvate (and normal
oxygen pressure) indicates mitochondrial dysfunc-
tion. With intracerebral MD, the normal upper limit
for the LP ratio of the human brain has been
defined as 30 [22, 24]. Increased levels of glutamate
and glycerol indicate hypoxia/ischemia and have
been defined as indicators of excitotoxicity and cell
membrane breakdown, respectively [19].
The LP ratio obtained from MD of cerebral venous

blood may be a sensitive indicator of impending cerebral
damage and secondary neurological deterioration and
might play a critical role in detecting the early responses
of post-resuscitation care. The use of global cerebral
MD may potentially aid clinicians in providing
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individualized and tailored brain resuscitation strat-
egies that prevent secondary brain injury and lead to
improved survival and neurological outcomes after
cardiac arrest.
Our group recently reported how it is technically

simple and feasible to place an MD catheter in the
jugular bulb and monitor biochemical variables re-
lated to global cerebral energy metabolism at the
bedside during cardiac surgery [29]. In the study, we
evaluated a new method of cerebral metabolic moni-
toring, namely MD of cerebral venous blood drain-
age. The cerebral venous blood drains mainly to the
jugular bulbs. Most of the outflow is to either the
left or right side, depending on dominance. The
study concluded that metabolic monitoring in the
central venous outflow (jugular bulb) is representa-
tive of the overall cerebral metabolism and can be
used in the diagnosis of compromised global cerebral
metabolism during cardiac surgery.

Methods/Design
This study is a double-blinded, randomized, superiority
clinical trial assessing the effect of different blood

pressure levels on global cerebral metabolism in addition
to TTM in adult comatose patients resuscitated from
OHCA. Patients are enrolled at one Danish university
hospital with a population background of about 1.3
million citizens for highly specialized cardiac care. The
SPIRIT (Standard Protocol Items: Recommendations for
Interventional Trials) 2013 Checklist, together with the
Statement, facilitated with drafting of the trial protocol
(Additional file 1).

Aim
The study aims are to (a) investigate whether the LP
ratio obtained by MD of the cerebral venous outflow
reflects a derangement of global cerebral energy state
after OHCA, (b) investigate the effect of higher
MAP on global cerebral metabolism and LP ratio in
comatose patients resuscitated from OHCA, and (c)
investigate the correlation between LP ratio and
neurological outcome (cerebral performance cat-
egory, or CPC). The null hypothesis is that a higher
MAP will not reduce LP ratio within 48 h compared
with lower MAP.

Fig. 1 Schematic diagram of cerebral metabolism. Schematic illustration of cerebral intermediary metabolism is shown with a focus on the glycolytic
pathway and its relation to glycerol, glycerophospholipids, and the citric acid cycle. Abbreviations: α-KG α-ketoglutarate, DHAP dihydroxyacetone-phosphate,
F-1,6-DP fructose-1,6-diphosphate, FFA free fatty acid, G-3-P glycerol-3-phosphate, GA-3P glyceraldehyde-3-phosphate. Underscored metabolites are
obtained at the bedside with enzymatic techniques.
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Trial procedure
Phase 1 (hospital admission to intervention onset)
Comatose patients after OHCA admitted to the hospital
with sustained return of spontaneous circulation (ROSC)
are eligible for screening. Acute computed tomography
(CT) scan or acute coronary angiogram performed be-
fore ICU admission is also included in this phase. The
inclusion window is 220 min from ROSC to screening.
Patients eligible for the trial must comply with all inclu-
sion criteria according to Table 1 at randomization. In
accordance with Danish legislation, if no exclusion cri-
teria are met, proxy informed consent is obtained from
next of kin and from one independent medical doctor
not involved with the trial.
Enrollment of patients will be performed by the at-

tending physician who is not involved in data collection

or assessment. Randomization of blood pressure target
was performed by a computerized algorithm using
STATA (StataCorp LLC, College Station, TX, USA) in
varying block sizes of 4, 8, and 12 patients. Baseline
characteristics are obtained.

Phase 2 (intervention period)
OHCA patients are randomly allocated to either low-
or high-blood pressure target during ICU stay: Alloca-
tion of patients resuscitated from OHCA to low- or
high-blood pressure target during ICU stay):. The
first invasive blood pressure using the trial blood
pressure module is marking the start of the interven-
tion, most often coinciding with initiation of TTM.
Interventions are considered emergency procedures, and
study blood pressure measurement using the study blood
pressure modules (HP/Philips M1006B Invasive Pressure
module) is commenced as soon as possible after sustained
ROSC, screening, and randomization. Study target blood
pressure will be blinded. In half of the modules, the
calibration factor will be adjusted in order to show the
blood pressure measurements about 10% lower than the
patients’ actual blood pressure at 100mm Hg, and in half
of the patients, the blood pressure measurements will be
shown to be about 10% higher at 100mm Hg. Targeting
an MAP of 70mm Hg during treatment in both groups
will mean a blinded comparison of 63 and 77mm Hg,
both of which are within the usually acceptable ranges of
blood pressure. A prospective, randomized, controlled
clinical study has validated this method for double-blinded
comparison of MAP targets in the ICU setting [30]. The
intervention continues for as long as the patient has inva-
sive blood pressure measurements.

Blood pressure management during ICU stay MAP is
increased by administration of (a) volume resuscitation
until CVP is at least 10 mm Hg and distensibility index
of the inferior vena cava is less than 12%, unless pul-
monary edema is clinically apparent, and (b) norepin-
ephrine (μg/kg per min solution) is administered in
increments of 0.02 μg/kg per min until a dose of 0.2 μg/
kg per min is reached. A higher dose will be used at the
discretion of the attending physician; (c) dopamine (μg/
kg per min solution) will be used in addition to norepin-
ephrine at a maximal dose of 10 μg/kg per min.
As part of the routine hemodynamic monitoring, a

pulmonary artery catheter (PAC) is inserted via the
internal jugular or subclavian vein under ultrasound
guidance. During ICU stay, cardiac index, mixed ven-
ous oxygen saturation (SvO2), central venous, and
pulmonary pressures were measured continuously by
PAC (CCOmbo PAC®, Edwards Lifesciences, Irvine,
CA, USA) linked to the correct monitor (Vigilance
II®, Edwards Lifesciences). These data, together with

Table 1 Inclusion and exclusion criteria

Inclusion criteria

1. Age of at least 18 years

2. Out-of-hospital cardiac arrest (OHCA) of presumed cardiac cause

3. Sustained return of spontaneous circulation (ROSC), defined as
ROSC when chest compressions have not been required for 20
consecutive minutes and signs of circulation persist

4. Unconsciousness (Glasgow Coma Scale (GCS) score of less than 8)
after sustained ROSC

5. Target temperature management (TTM) is indicated.

Exclusion criteria

1. Conscious patient (GCS score of at least 8)

2. Female of child-bearing potential, unless a negative human
chorionic gonadotropin (hCG) test can rule out pregnancy within
the inclusion window

3. In-hospital cardiac arrest (IHCA)

4. OHCA of presumed non-cardiac cause, such as after trauma,
dissection/rupture of major artery or arrest caused by hypoxia
(i.e., drowning, hanging, etc.)

5. Known bleeding diathesis (medically induced coagulopathy does
not exclude patient)

6. Suspected or confirmed acute intracranial bleeding

7. Suspected or confirmed acute ischemic stroke

8. Unwitnessed asystole

9. Known limitations in therapy and do-not-resuscitate order

10. Known disease making 180-day survival unlikely

11. Known pre-arrest cerebral performance category (CPC) score
of 3 or 4

12. More than 4 h (240 min) from ROSC to randomization

13. Systolic blood pressure of less than 80mm Hg in spite of fluid
loading/vasopressor and/or inotropic medication and/or
mechanical circulatory support*

14. Temperature of less than 30 °C on admission

15. Uncorrected blood glucose of less than 2.5 mmol/L at admission

* If systolic blood pressure is recovering during the inclusion window the
patient can be included

Mölström et al. Trials          (2019) 20:344 Page 4 of 10



information on blood temperature, oxygen saturation,
and MAP measured from a radial artery line, were
transferred electronically to a computer with a
2-second time interval. If echocardiography, and ther-
modilution suggest that low cardiac output addition
of an inotropic agent may be appropriate). The follow-
ing agents may be considered: (a) milrinone (0.375–
0.75 μg/kg per min) and (b) levosimendan (0.1 μg/kg per
min). If an inotropic agent at maximal dose combined
with vasopressors cannot maintain cardiac output, mech-
anical circulatory support may be considered.

Neuromonitoring during ICU stay At ICU arrival, pa-
tients will be implanted with a jugular bulb MD catheter
and monitored for 96 h or until arousal. MD samples are
collected in microvials and analyzed every 1 h at the
bedside. Regional cerebral oxygen saturation will be
monitored by using bifrontal NIRS (Somanetics INVOS
Cerebral Oximeter system). Right and left frontal
regional oxygen saturation (rSO2) values will be re-
corded simultaneously during ICU stay, and values will
be recorded every hour for 96 h or until arousal.

Mechanical ventilation and oxygenation during ICU
stay Patients will be mechanically ventilated, sedated, and
when necessary paralyzed with neuromuscular blocking
agents to reduce shivering and subsequent heat generation
and energy consumption. The study is targeting normal
oxygenation (13–14 kPa) during TTM and mechanical
ventilation. Ventilation is adjusted, targeting normocapnia
of partial pressure of carbon dioxide (paCO2) of 4.5–6.0 in
all patients.
Serial arterial blood gas will be analyzed open-label by

using commercially available equipment adjusted to
37 °C (alpha-stat). The TTM intervention period of 24 h
commenced at the time of randomization by using an
automated feedback device with temperature control to
achieve a target core temperature of 36 °C. After TTM,
patients are rewarmed to a core temperature of 37 °C
with no more than 0.5 °C per hour. Phase 2 ends when
sedation is withheld.

Phase 3 (from end of sedation to 72 h after OHCA)
Sedation is terminated after rewarming when the
temperature is at least at 37 °C. Normothermia of 37 °C
± 0.5 °C is maintained until 72 h after the cardiac arrest
as long as the patients are managed in the ICU and are
unconscious. Nevertheless, weaning from ventilation will
be attempted at the earliest possible time during this
phase on the basis of typical procedures for discontinu-
ation of mechanical ventilation. Blinded physicians
perform a neurological evaluation of patients who
remain in coma at 72 h or later after OHCA. The num-
ber of patients still comatose at 72 h after the end of

TTM who underwent neurological prognostication will
be reported. The number of patients who died before
neurological prognostication and their presumed cause
of death, including limitations in care and explana-
tions for that, will be described. If judged by attend-
ing physicians to be indicated, electroencephalogram,
somatosensory evoked potentials, and CT of the brain
will be performed.

Phase 4 (end of intervention period to hospital discharge)
This starts when invasive blood pressure measurement
is discontinued during the ICU stay.
Neurological outcome will be assessed at hospital dis-

charge in accordance with the CPC scale [31, 32]: CPC
1, no neurological deficit; CPC 2, mild to moderate dys-
function; CPC 3, severe dysfunction; CPC 4, coma; and
CPC 5, death. CPC scores of 1 and 2 are mostly consid-
ered “good” outcomes, and a CPC 3–4 “poor” outcomes.
Physicians performing the CPC assessment will be
blinded to patient’s LP ratio levels.

Phase 5 (hospital discharge/3 months after end of trial)
Vital status and neurological status (CPC) were evalu-
ated at 3 months after admission by clinical examin-
ation or telephone interview. Vital status will be
evaluated at the end of the trial by using the Danish
civil registration system. The SPIRIT timeline of
progress through the phases of the parallel-randomized
trial is shown in Fig. 2.

Inclusion
Patients at least 18 years old with sustained ROSC after
OHCA are eligible for inclusion if complying with all the
criteria presented in Table 1.

Bedside monitoring of cerebral energy microdialysis
Patients will be implanted with a jugular bulb MD cath-
eter (CMA 67 IV 130mm, MDialysis AB, Stockholm,
Sweden) and monitored for 96 h or until arousal. The
catheter allows energy-related metabolites to diffuse into
the catheter reflecting accurate concentrations in the
venous blood, CE marked according to the Medical
Device Directive, 93/42/EEC. MD catheters are inserted
in a retrograde direction into the jugular bulb, through a
peripheral intravenous 17 GA cannula by using ultra-
sound guidance, as performed in a previous study [29].
The positioning of the catheter tip in the jugular bulb
above the inlet of the common facial vein is con-
firmed on cranial CT scan in accordance with earlier
practice [33]. MD pumps (CMA 106, MDialysis AB)
at 0.3 μL/min perfuse MD catheters. The perfusates
are collected in microvials, analyzed every 1 h for
minimum 96 h by enzymatic photometric techniques,
and presented at the bedside (Iscus, Mdialysis AB).
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The analyses include the biochemical variables regu-
larly monitored during intracerebral MD: glucose,
pyruvate, lactate, glutamate, and glycerol. Clinical
data, radiology, electroencephalography, somatosen-
sory evoked potential, and NIRS will be recorded.

Logistics
The study is enrolling at one university hospital with
experience in conducting clinical trials. All investigators
have been qualified and are licensed in “good clinical
practice” (GCP).

Patient and public involvement
Patients were not involved in setting the research
hypothesis or end-points, nor were they implicated in
the design of the study. There are no plans to include
patients in the dissemination of results, nor will we pub-
lish results directly to patients.

End-points
The study focuses on the following end-points:
Primary end-point

1. Comparing mean LP ratio differences within 48 h
between blood pressure groups and comparing
individual LP ratio measurements using longitudinal
analysis.

Secondary end-points

1. Association between LP ratio and all-cause mortality
during ICU stay adjusted for blood pressure groups

2. Between-group difference in total duration (minutes)
of cerebral desaturation defined as an absolute rSO2

of not more than 50% during ICU stay
3. Between-group difference within 48 h in lactate,

pyruvate, glutamate, glycerol, and glucose measured
in jugular bulb

Fig. 2 Overall schedule and time commitment for trial participants. Abbreviations: CPC cerebral performance category, HA hospital admission, HD
hospital discharge, MAP mean arterial blood pressure, NIRS near infrared spectroscopy, PAC pulmonary artery catheter, TTM targeted
temperature management.

Mölström et al. Trials          (2019) 20:344 Page 6 of 10



4. Association between LP ratio and cardiac index
adjusted for blood pressure groups

5. Association between LP ratio and survival to
hospital discharge with poor neurological function
(CPC 3–4) adjusted for blood pressure groups.

Sample size estimation
The sample size was calculated on the basis of the
primary hypothesis but taking into account only the
mean LP ratio and not the individual measurements; this
was due to insufficient information about interpretation
variation in LP values; this implies a conservative error
and hence the true power of the study is expected to be
higher than in this calculation. The trial is designed as a
randomized study, and we have chosen to power this
study according to differences in the LP ratio. A differ-
ence of 30% between groups is defined as the minimal
clinically relevant difference. Assuming an average LP
ratio of less than 20 over 48 h in the high MAP group
compared with more than 35 over 48 h in the low MAP
group, we will need to include 46 patients in total to
achieve a power of 0.9 using a patient-to-patient
variation with standard deviation (SD) of 15 in LP ratio
as motivated by an earlier study [29] in the power calcu-
lation and assuming normal distribution of LP ratio. To
take possible higher patient-to-patient variation in this
study as well as deviations from normality into account,
we plan to include at least 60 patients in total. Defining
an LP ratio of more than 30 averaged over 24 and 48 h
for both groups, we will analyze the proportion of
patients reaching that end-point in each group.

Statistical analysis plan
The statistical analyses will be the following:

1. Analyses will be performed in accordance with the
intention-to-treat principle and will take into account
patients lost to follow-up.

2. A two-sided significance level of 0.05 will be applied
to both primary and secondary end-points.

3. Unpaired t tests or Mann–Whitney U tests will be
conducted for unpaired comparisons of numerical
variables. A chi-squared or Fisher’s exact test will
be conducted to examine differences between
categorical variables.

4. Association between LP ratio and “poor” neurological
outcome (CPC 3–4) will be assessed with chi-squared
test and logistic regression. The overall expected rates
of unfavorable neurological outcome (CPC 3–4) are
5–7%, observed in earlier studies [34, 35]. The
multivariate logistic model will be adjusted for
time to ROSC, arterial carbon dioxide partial
pressure, baseline LP, and average LP ratio > 30
> 24 and 48 h as covariates.

5. Association between LP ratio and all-cause mortality
will be assessed with chi-squared test and logistic
regression.

6. Receiver operating characteristic (ROC) curves will
be constructed to determine the sensitivity and
specificity of the LP ratio levels at each time point
(and the maximal LP ratio level recorded during the
ICU period) for predicting outcomes.

7. Association between total duration (in minutes) of
cerebral desaturation (rSO2 ≤ 50%) and unfavorable
neurological outcome (CPC 3–4) and death will be
assessed with chi-squared test and logistic regression.

8. Time from start of randomization to death in the
two blood pressure groups will be assessed by using
the Kaplan–Meier method, and group differences
will be tested by log-rank test. Cox regression will
be applied for adjusted comparisons and estimation
of hazard ratios.

9. In regard to dynamic changes of MD variables in
the two blood pressure groups, longitudinal models,
applying linear mixed effects regression, will be
used to account for repeated measurements of MD
biomarkers across different patients over time.

10. In regard to dynamic changes of blood pressure,
longitudinal models, applying linear mixed effects
regression, will be used to account for repeated
measurements of blood pressure across different
patients over time.

All standard assumptions regarding statistical models
will be checked. Statistical analysis will be performed by
using STATA V.15 (StataCorp LLC).

Trial profile
A flowchart of the study participants will be presented
in accordance with the Consolidated Standards of
Reporting Trials (CONSORT) diagram [36, 37].

Baseline data
The predefined baseline variables are the following:

1. Sex
2. Age
3. Comorbidities (premorbid CPC, ischemic heart

disease, heart failure, previous cardiac arrest,
arterial hypertension, stroke, epilepsy, diabetes,
chronic obstructive pulmonary disease, chronic
hemodialysis, and alcoholism)

4. Previous percutaneous coronary intervention
5. Previous coronary artery bypass graft
6. Previous valvular surgery
7. Implantable cardioverter-defibrillator or pacemaker

or both
8. Pre-hospital variables
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a. Location of cardiac arrest
b. Bystander-witnessed arrest
c. Bystander cardiopulmonary resuscitation
d. Shockable primary rhythm
e. Time to basic life support
f. Time to advanced life support
g. Time to ROSC

9. Admission variables
a. First measured temperature
b. Glasgow Coma Scale score
c. Shock at admission
d. Presumed cause of cardiac arrest (cardiac/

non-cardiac)
e. Acute myocardial infarction
f. Serum pH
g. Serum lactate
h. End-tidal carbon dioxide
i. Blood pressure
j. Result of angiogram
k. Cardiac troponin (TnI) and creatine kinase-

muscle/brain (CK-MB).

Differences in baseline variables between blood
pressure groups will be analyzed and presented in
tables. Continuous variables will be presented as
mean ± SD, and differences will be analyzed with the
unpaired t test. In case of non-normally distributed data,
continuous variables will be presented as median (inter-
quartile range) and a t test will be applied following loga-
rithmic transformation if the transformed data are
normally distributed; alternatively, the non-parametric
Mann–Whitney test will be applied. Categorical variables
will be presented as counts and percentages and differ-
ences will be analyzed with the chi-squared test or Fisher’s
exact tests if counts below 10 are observed.

Discussion
The mortality of patients who are admitted in a co-
matose state to an ICU following successful resuscita-
tion after cardiac arrest remains significant. The
necessity for early and accurate prognostic predictors
is important, especially since sedation and TTM
might change the neurological examination and post-
pone the recovery of motor response for several days.
Markers measuring global cerebral ischemia caused by
cardiac arrest and consecutive resuscitation and
reflecting the metabolic variations after successful re-
suscitation are urgently required to assist more per-
sonalized post-resuscitation care and prognostication.
Jugular bulb MD may provide a reliable global esti-

mate of cerebral metabolic state and can be imple-
mented as an entirely new and less invasive
diagnostic tool for ICU patients after OHCA and has

implications for early prognosis and treatment. The
LP ratio assessed from MD of cerebral venous blood
may play a critical role in detecting the early re-
sponses of post-resuscitation care and may predict
in-hospital and long-term prognosis in patients
affected by brain injury after cardiac arrest. In the fu-
ture, this might optimize and individualize the treat-
ment of post-cardiac arrest patients and potentially
improve outcome.

Surrogate end-point
The end-point defined as the LP ratio during ICU stay is a
surrogate marker for poor neurological outcome and
death. The surrogate marker is used as an alternative to a
hard end-point in order to power this study adequately.
Previously, LP ratio studies have been shown to be a reli-
able marker for poor outcome after traumatic brain injury
[22–26]. Hence, our surrogate end-point reflects the
clinically relevant question of whether higher MAP has a
potential neuroprotective effect in our population.

Strengths and limitations of this study

� Jugular bulb MD may provide a reliable global
estimate of cerebral metabolic state and can be
implemented as an entirely new and less invasive
diagnostic tool for ICU patients after OHCA and
has implications for early prognosis and treatment.

� This pragmatic trial is addressing the effect of
higher MAP on global cerebral metabolism in
patients resuscitated from OHCA.

� Randomized controlled trial design minimizes the
risk of selection bias.

� Clinicians are not blinded to data obtained at the
bedside from jugular bulb MD, so all outcome
assessors will be blinded to minimize the risk of bias.

� Until now, no established gold standard method
assessing global cerebral energy state has existed.
Therefore, it is not possible to compare jugular bulb
MD with an established method already in clinical
use.

Trial status
Protocol version 1.1. Date: March 8, 2018. The study
is ongoing and currently enrolling. Recruitment began
January 11, 2017, and is expected to be completed
around January 8, 2020.

Additional files

Additional file 1: SPIRIT (Standard Protocol Items: Recommendations
for Interventional Trials) 2013 Checklist: Recommended items to address
in a clinical trial protocol and related documents*. (PDF 144 kb)

Additional file 2: Informed consent. (PDF 183 kb)
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