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Abstract

Background: In intensive care units (ICUs), nosocomial infections are prevalent conditions and they have been
related to high mortality indexes. Some studies have suggested that inefficient oral hygiene and ventilator-
associated pneumonia (VAP) are related. Nowadays, in the Brazilian public health system there is no well-defined
protocol for oral hygiene in an ICU. Due to the drawbacks of the use of antibiotics, photodynamic therapy (PDT)
has emerged as an interesting technique in order to reduce antimicrobial-resistant pathogens. Methylene blue (MB)
is the most common chemical agent for PDT in Brazil. However, new formulations for improved effectiveness are
still lacking. The objective of this study is to evaluate the use of an MB mouthwash as an effective oral-hygiene
procedure in an ICU and to show that oral hygiene using PDT with MB mouthwash may reduce VAP frequency to
rates similar to, or higher than, chlorhexidine.

Methods: Phase 1 will evaluate the most effective cleaning procedure, while phase 2 will correlate oral hygiene
to VAP incidence. At the start of phase 1, the ICU patients will be randomly allocated into three different groups
(10 patients/group): the efficacy of chlorhexidine, classical MB-PDT, and mouthwash MB-PDT will all be measured
for the quantification of viable bacteria, both pre- and post-treatment, by a Reverse Transcription Polymerase
Chain Reaction (RT-PCR). In phase 2, the most effective procedure found in phase 1 and a mechanical cleaning
with filtered water will be carried out daily, once a day, over 5 days, with a total of 52 ICU patients randomly
allocated into the two groups. The clinical records will be evaluated in order to find any pneumonic diagnoses.

Discussion: Since a variety of bacterial species are related to VAP, a universal primer for bacteria will be used in order
to quantify the total bacteria count in the participants’ samples. In order to quantify only the living bacteria before DNA
extraction, the samples will be treated with propidium monoazide. This will infiltrate the dead bacteria and will
intercalate the DNA bases, avoiding their DNA amplification. This will be the first trial to evaluate MB-PDT in a
mouthwash formula that can increase the effectiveness due to the control of MB aggregation. The results of this study
will be able to generate an easy and low-cost protocol to be used in an ICU for the Brazilian public health system.

Trial registration: This protocol was approved by the Research Ethics Committee of the Conjunto Hospitalar do
Mandaqui (1.317.834, CAAE: 49273515.9.3001.5551) and it was registered in Registro Brasileiro de Ensaios Clínicos
(ReBEC number: RBR-94bvrc;). First received: 12 July 2015; 1st version 6 June 2016. Data will be published in a
peer-reviewed journal.
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Background
It has been proposed that the oral cavity may be the dis-
semination focus of potentially pathogenic organisms to
other body locations [1–4]. In intensive care units
(ICU), infectious diseases are prevalent and they are re-
sponsible for the high mortality index of inpatients. The
lung is the most affected organ mainly due to mechan-
ical ventilation [5]. Ventilator-associated pneumonia
(VAP) is defined as pneumonia in a patient receiving
mechanical ventilation for at least 48 h that is not pre-
existent at the moment of intubation [6]. The most
prevalent pathogenic agents related to pneumonia are
Pseudomonas aeruginosa 30.1%), Staphylococcus aureus
(19.6%), Acinetobacter spp. (13.0%), Klebsiella spp.
(9.5%) and Enterobacter spp. (8.4%) [7]. Both VAP con-
trol and prevention are important in an ICU since this
can reduce hospitalisation time and costs [8].
During a patient’s stay in an ICU, oral biofilms and

tongue coating increase simultaneously. Due to the oro-
tracheal intubation, a patient’s mouth is open during the
entire period, increasing bacterial plaque formation and
reducing saliva flow. Consequently, this reduces the in-
nate defence system and increases the risk of VAP [5].
Therefore, oral hygiene in an ICU is essential when
implementing VAP-prevention strategies. However, de-
veloping these new strategies is a challenge, since many
substances that have been suggested are associated with
bacterial resistance; for example, chlorhexidine [9, 10].
In this context, photodynamic therapy (PDT) has

shown effective results in killing microorganisms by a
suitable combination of a photosensitiser dye, light and
oxygen [11–19]. PDT’s advantages over other antimicro-
bial treatments are an efficacy that is independent of
microorganism resistance and its broad spectrum of ac-
tion. This is because a photosensitiser can act on bac-
teria, fungi, viruses, parasites, etc. [11, 16, 20–24]. This
technique is minimally invasive, with no collateral effects
to the host and it can be considered to be economically
viable. The topical application of a photosensitiser is in-
teresting since it is in direct contact with the microor-
ganisms and it causes low collateral effects in the patient
[12, 25]. In PDT treatment, after light absorption by the
photosensitiser and the generation of excited states, two
main photochemical mechanisms of damage to biomole-
cules are involved: in Type-I reactions, due to electronic
transfer, the photosensitiser in its triplet excited state
generates reactive oxygen species (mainly radicals); in
Type-II reactions, there is the generation of singlet oxy-
gen after energy transfer (1O2) [19]. The reaction type
can affect the therapeutic efficacy since the reactivity to
the targets can differ considerably [19, 26]. However,
there is a lack of information regarding the relationships
between the photochemical mechanisms and the inacti-
vation efficiencies in different microorganisms. While

some articles have affirmed that singlet oxygen is the
main oxidising agent [27], others have suggested that
reactive oxygen species (mainly radicals) are more ef-
fective at killing Gram-negative bacteria and that sing-
let oxygen is more effective at killing Gram-positive
bacteria [21, 28].
Since microorganism membranes are negatively

charged, the photosensitiser must be positively charged
in order to efficiently penetrate these membranes [29].
Therefore, methylene blue (MB) has been broadly used
due to its positive charges, its effectiveness and its low
cost [30, 31]. Besides, MB has been frequently used in
medicine, since its safety and toxicity are well known
and the concentrations used in PDT are lower than
those used for other medical purposes [32–35]. Methy-
lene blue has been shown to be effective against bacteria,
viruses, parasites and fungi [22, 36–39]. However, the ef-
ficacy is dependent on the microorganisms (structure,
thickness and the composition of the biofilm matrix,
efflux pumps, etc.) and on the treatment parameters
such as MB concentrations and irradiance [29, 40–42].
Besides, the MB vehicle can affect the efficacy of PDT,
although this is rarely considered. Depending upon the
physicochemical environment, MB may aggregate and
this feature modulates the photochemical reactions
[43, 44]. While MB monomers generate singlet
oxygen, MB dimers induce the production of other
reactive oxygen species, mainly radicals [43]. Some
studies have shown ways to control MB aggregation
and these strategies can be used in order to develop
specific MB formulations in which monomers or
dimers are preferred [43, 45–49]. For example, Nunez
et al. showed a greater ionic strength in physiological
media and that saliva induced the formation of MB
dimers, reducing their efficacy [46]. On the other
hand, urea drives monomer formation and enhances
MB PDT effectiveness [45]. Based on this informa-
tion, we have designed a mouthwash formula contain-
ing MB with the aim of stabilizing MB monomers
and improving the PDT outcomes. The mouthwash
formula is under a patent requirement.
Regarding these circumstances, the objective of this

study will be to compare classical PDT with MB in water
to a mouthwash formula for oral-hygiene procedures for
ICU patients. The outcome to be measured will be the
oral bacteria count, measured in pre- and post-
intervention samples, with three experimental groups,
by using a Reverse Transcription Polymerase Chain
Reaction (RT-PCR) in samples pre-treated with propi-
dium monoazide (PMA). Finally, it is also an objective of
this work to show that oral hygiene using PDT with MB
mouthwash may reduce VAP frequency to rates similar
to, or higher than, chlorhexidine. The outcome will be
to constitute a VAP diagnosis by checking the patients’
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medical cards, after 5 days of daily oral-hygiene proce-
dures. The results of this protocol will yield interesting
tools that will raise attention to ICU oral-hygiene proce-
dures. Additionally, it will establish an easy and low-cost
oral-hygiene protocol to be used in an ICU for the
Brazilian public health system, as well as being an
important observation regarding the MB vehicle in PDT
clinical protocols.

Methods
Study design
This study will be a randomised controlled, double-
blind, single-centre, clinical trial. This study protocol
was written based upon the Standard Protocol Items:
Recommendations for Interventional Trials (SPIRIT)
guidelines (see Additional file 1) and will be carried out
at an ICU of a hospital in the Brazilian public health sys-
tem in the city of São Paulo, Brazil (Hospital Assembly
of Mandaqui). Since the patients will be unconscious
during the procedures, the oral-hygiene procedures will
be conducted by researcher GAC, together with a sam-
ple collection by researcher MLFM, both authors of this
protocol study. This trial can be considered to be double
blind. For better understanding, this study will be de-
scribed in two phases, although two different studies will
be performed, nested into each other. In phase 1, PDT
with an MB mouthwash will be compared to PDT with
MB in water, using chlorhexidine as positive control for
oral hygiene. In phase 2, the frequencies of VAP occur-
rence will be measured in the two groups: (1) the most
effective procedures found in phase 1 group and (2) the
mechanical cleaning with filtered water group.

Sample size calculation
First, a published paper using the same method of sam-
ple analyses (PCR + PMA pre-treatment) is to be used to
determine the effect size (Δ). The largest and the smal-
lest mean values (1.69 and 0.27, respectively), as well as
the standard deviation (σ = 0.36) of the PCR quantifica-
tion of living bacteria using PMA were taken from the
Àlvarez article, 2013 [50]. The n value is to be the
number of treatment groups, i.e., 3:

Δ ¼ Largest−smallest

σ
ffiffi

n
p

� �2 ¼ 1:69−0:27

0:36
ffiffi

3
p

� �2 ¼ 32:8

G*Power software (version 3.1.9.2, Dusseldorf,
Germany) was used to calculate the sample size. Using
the calculated effect size, F tests will be chosen for the
repeated measures and for the within-between interac-
tions. Three groups will be studied and each group will
be measured before and after the oral-hygiene proce-
dures (i.e. three groups and two measurements). The
sample size was determined by setting a two-sided error

at 5% and the test power at 95% of the test. According to
the calculations, a sample of six patients per group will be
necessary in order to detect the differences in oral hygiene
in phase 1. When considering this result and the possibil-
ity of difficulties in the sample processing, phase 1 will be
conducted with 10 patients per group.
The sample size calculation for phase 2 was based on

the percentages of patients with VAP before and after
the implementation of oral-dental care, as published by
Garcia et al. [8]. Using G*Power software, when choos-
ing the Exact Family Test and Fisher’s Exact Test as stat-
istical tests (inequality, two independent groups) and by
inserting the proportions of 0.086 and 0.041 [8], the
sample size was found to be 52, i.e. 26 patients per
group. It is important to highlight that at this phase, a
5-day protocol will be evaluated. Due to the condition
of the patients, some of them may recover and the
mechanical ventilation will be removed, while some
may get worst or even die. Due to these potential drop-
out patients, a sample size of 70 patients (35 per group)
will be used.

Sample size
In phase 1, 30 patients will be divided into three experi-
mental groups (10 patients per group: chlorhexidine,
classical MB-PDT and mouthwash MB-PDT). In phase
2, a total of 70 patients will be selected, 35 patients in
each experimental group.

Inclusion/exclusion criteria
The inclusion criteria are: ICU patients with 0- to 24-h
orotracheal intubation; patients whose family signs the
Consent Form; both genders, aged above 18 years old;
and edentulous. The exclusion criteria are: reintubation;
readmission in the ICU; smokers and ex-smokers for less
than 5 years.

Randomisation
Randomisation will be conducted by a researcher not
involved in the treatment of the patients (ACRTH,
author of this study protocol) when using Excel 2013
(Microsoft, Redmond, WA, USA). Opaque envelopes
with sequential numbers will be used and a paper will
be received containing the experimental group’s infor-
mation according to the random draw. The envelopes
will be sealed and stored in a safe place. ACRTH will
be responsible for the storage and the confidentiality of
the research envelopes. Immediately before the treat-
ments, GAC will receive the envelopes from ACRTH,
open them (the first in sequence) and accomplish the
indicated procedures.
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Interventions in phase 1
Within 24 h of the start of the mechanical ventilation
and after checking the patients’ eligibility and obtaining
the Consent Form signed by the person responsible for
the patient, the intervention will be conducted. First, a
patient’s sample will be collected by MLFM. Following
this, the oral-hygiene procedure will be performed by
GAC with a gauze (7.5 cm × 7.5 cm size and sterile)
soaked in a solution that will be determined by random-
isation: (1) positive control group: chlorhexidine 0.12%,
(2) MB 0.05% aqueous solution, (3) MB 0.05% blue
mouthwash (this will be prepared in a pharmacy – the
formula is under patent requirement). Oral hygiene will
be initiated from the right upper arcade (the labial sur-
face), passing to the left arcade (no return). Then, the
palatal hygiene will be conducted from left to right.
When the upper arch has been completed, the left buc-
cal mucosa will be hygienised, then the lower arch mov-
ing from left to right. At conclusion, the mouth floor,
the tongue and the lips will be hygienised (due to the
dryness caused by the salivary reduction). After the
mechanical cleaning and the active application of
mouthwash, 5 min of incubation will be necessary before
starting the light exposures. The light system will be a
Lineaxul Bucal (Cosmedical, Brazil) which is a light-
emitting diode (LED) device emitting at the red region
of the spectra (660 nm). The device is a flexible lollipop-
shaped instrument composed of six LED points on both
sides, allowing for simultaneous illumination. Three de-
vices will be used simultaneously: one above the tongue,
promoting the illumination of the palate region and two
others positioned on the buccal mucosa (right and left).
Using this composition, the oral cavity will be illumi-
nated as a whole for 15 min. Another sample will be
collected by sterile swabs soaked in a physiological
solution (sodium chloride 0.9%), 30 min after the
procedure in the retromolar trigone region. These swabs
will be stored in sterile tubes containing Tris-EDTA buf-
fer (Tris 10 mM, pH 8, EDTA 1 mM) and will be identi-
fied with a patient number (received at randomisation)
and a pre- and post-treatment label (T0 – before
treatment; T1 – after treatment) [35]. Any modifications
in the protocol will be informed in the results paper.

Sample processing
The samples will be treated with PMA 100 μmol/L for
10 min in the dark followed by 10 min of light exposure
(LED device emitting at 470 nm, 3.2 MW/cm2) [50].
After the photoactivation, the cells will be centrifuged
(8000 g, 10 min) and the deoxyribonucleic acid (DNA)
extractions will be carried out using the manufacturer’s
instructions (Master Pure DNA Extraction Kit –
Epicentre Technologies Corp., Chicago, IL, USA). The
total bacteria analyses will be carried out by real-time

PCR (StepOnePlus Real-Time PCR System, Applied Bio-
systemsTM, Waltham, MA, USA) and the products will
be detected by fluorescence when employing a Quanti-
mix Easy SYG Kit (Biotools Biotechnological & Medical
Laboratories SA, Madrid, Spain) using the manufac-
turer’s protocol. During the PCR, a universal primer will
be used in order to analyse the total bacteria count be-
fore and after the treatments. The reactions will start
with a denaturation (95 °C for 2 min), 36 cycles of 30 s
at 94 °C, 1 min at 55 °C and 2 min at 72 °C, with a final
extension of 10 min at 72 °C. After each cycle, the fluor-
escence will be detected and a graph will be presented.
All of the samples will be analysed twice and each dilu-
tion in a standard curve will be performed in triplicate.
Figure 1 will describe a complete flow diagram for phase
1 from the patients’ enrolment, the interventions, the
sample collections, the processing and the analyses.

Interventions in phase 2
Based upon the results generated in phase 1, a new
group of patients will comprise phase 2 of this study.
Here, the oral-hygiene procedures described above will
be performed in two groups of patients: (1) the most ef-
fective procedures in phase 1 group and (2) the mechan-
ical cleaning with filtered water group. These procedures
will be performed daily, over 5 days, when the outcomes
will be evaluated. The clinical records will be checked
and the pneumonia diagnoses will be determined by at
least one of the following criteria: oximetry; body tem-
peratures above 38 °C or below 35 °C; a leukocytosis or
a leukopenia (leukocytes) count in the peripheral blood
that is below 4000/mm3 or above 11,000/mm3; the exist-
ence of new, persistent or progressive lung infiltrates, or
pleural effusion [51–54]. If any of the patients present
an adverse reaction, they will be removed from the study
and this will be reported in the published results paper.
All of the personal information of the patients will be
kept confidential. Figure 2 will describe the complete
flow diagram for phase 2.

Outcomes
Phase 1: the main outcome will be the efficacy of the
oral-hygiene procedures, evaluated by the total bacteria
count, before and after the treatments (three groups and
two time points). A secondary outcome that can be mea-
sured is the change in the pathogenic bacteria count that
is related to VAP after the oral-hygiene procedures.
Phase 2: the main outcome will be the rate of VAP,

evaluated by checking the medical cards, 5 days after the
daily oral-hygiene procedures.
The detailed schedule for the study is presented in the

SPIRIT figure (Fig. 3).
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Data analysis plan
The studied parameters in this work will aim to follow a
Gaussian (normal) distribution and they will be verified
by the Shapiro-Wilk test. Where the data are not para-
metric, they will be transformed by using a logarithm or

any other math transformation into normally distributed
data. In this manner, parametric methods will be used in
order to detect the differences among the groups. In
order to show the actual distribution of the measured
data, a graph based on the mean values and standard

Fig. 1 Phase-1 flow diagram

Fig. 2 Phase-2 flow diagram
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deviations will be used. For the data analyses, SPSS Sta-
tisticsTM Version 22 Software (IBM, Armonk, NY,
USA) will be used. The statistical analyses will be rea-
lised by using analysis of variance (ANOVA): this will
include the repeated measures as well as the within-
and between-group interactions since three groups will
be studied and each group will be measured before and
after the oral-hygiene procedures. The frequencies of
VAP occurrence will be measured in the two groups:
(1) the most effective procedures found in phase 1
group and (2) the mechanical cleaning with filtered
water group. The chi-square test will be used to verify
the difference between the observed frequencies. The
significance level for all of the tests will be p < 0.05. The
results of this study will be published in an inter-
national journal.

Discussion
Some studies have suggested that inefficient oral hygiene
and VAP are related [6, 8, 55–58]. Hua et al. recently
concluded in a systematic review that oral hygiene

reduces the risk of developing VAP from 25% to about
19%. Nonetheless, no differences in the outcomes of
mortality, the duration of the mechanical ventilations, or
the duration of ICU stay were detected [59]. This proto-
col will aim to specifically verify the efficacy of PDT in
the context of an ICU, when considering that a more ef-
fective oral-hygiene protocol can reduce VAP incidence.
This can help in a patient’s recovery, reducing their ICU
stay, together with the treatment costs to the Brazilian
public health system. Besides, it is known that critically
ill patients, such as ICU inpatients, present a different
oral microbiome, mostly composed of Gram-negative
bacteria and Staphylococcus aureus, being distinct from
healthy individuals, who present higher levels of Gram-
positive bacteria such as Streptococcus viridans [60, 61].
Chlorhexidine has been considered to be the ‘gold

standard’ for oral hygiene in an ICU. However, it has
also been associated with bacterial resistance. Due to the
known PDT effects against different microorganisms
and the absence of a microorganism resistance, this ap-
pears to be an interesting possibility. Some studies have

STUDY PERIOD

Enrolment Allocation Post-allocation Close-out

TIMELINE Day 1 0 30 
min

60 
min

Day
1

Day 
8

TIMEPOINT -t1 0 t1 t2 t3 t4 t5 t6

ENROLMENT:

Eligibility screen X

Informed consent X

Demographic Data X

Allocation X

INTERVENTIONS
AT PHASE 1:

Group 1: 
chlorhexidine 

0.12%
X

Group 2: MB 0.05% 
aqueous solution X

Group 3: MB 0.05% 
blue mouthwash X

ASSESSMENTS AT 
PHASE 1:

Total amount of 
bacteria]

X X

Amount of 
pathogenic 

bacteria
X X

INTERVENTIONS 
AT PHASE 2:

Group 1: most 
efficient group at 

Phase 1

Group 2: filtered 
water

ASSESSMENTS AT 
PHASE 2:

Rate of VAP
x

Fig. 3 Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) Figure: schedule of enrolment, interventions and assessments
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shown that an MB vehicle can affect the efficacy of PDT
[45, 46, 49]. Due to these facts, the study design will in-
clude the treatment that is considered to be the gold
standard, together with PDT comprising two different
vehicles for MB.
The Hospital Assembly of Mandaqui is a public

hospital in the city of São Paulo, Brazil. The ICU
receives some adult patients suffering from poly-
trauma. However, most of the patients are older people
and are edentulous individuals. Due to the known dif-
ferences between oral microbiota and edentulous and
dentate individuals [4, 62], the panorama of inpatients
in the hospital where this study is going to be con-
ducted will only include those edentulous individuals
in this protocol. Since different pathogens can co-exist
in the same patient, the use of specific selective media
to grow and count colonies would be expensive and
time consuming. Therefore, our proposal is to perform
the quantification by PCR when using a universal (16S)
primer which can identify the total bacteria count.
However, bacterial quantification by PCR can be puz-
zling, since the DNA of both live and dead bacteria
would be measured together, generating conflicting re-
sults [63]. Bacterial quantification by PCR when using
PMA achieves the selective detection of living bacteria
by an easier method and is an innovation in terms of
the analysis of patient samples in phase 1 of this study.
PMA can be used as a viability marker as it is a
chemical that crosses the dead cell membrane and
when it is exposed to light, it intercalates the DNA
strands, preventing their amplification. PMA allows for
good results for different bacterial species in different
types of samples [50, 64–68].
When considering microorganism resistance to many

different antimicrobials [69], PDT appears to be an in-
teresting tool, since it can be considered to be effect-
ive, independent of microorganism resistance. In
addition, by using a low-cost photosensitiser and an il-
lumination device, it becomes attractive for use in the
Brazilian public health system. In this sense, MB is a
low-cost photosensitiser and it has been widely studied
in order to reduce pathogenic microorganisms in oral
microbiota [16, 70–72]. However, this is the first trial
to evaluate MB in a mouthwash formula that can in-
crease its effectiveness due to the control of MB
aggregation.

Trial status
This is an ongoing trial; thus, the recruiting of partici-
pants has not yet started. Patient recruitment has been
proposed for May 2018 (phase 1) and for May 2019
(phase 2). Since the approval of this protocol, some
modifications have been made. The treatment groups
have been reduced to three. The researchers’ role in this

research has been revised in order to produce a double-
blind trial. Additionally, the number of participants per
group has also been recalculated. All of these changes
will be duly updated in the REBEC Registry after the
publication of this protocol.

Additional file

Additional file 1: SPIRIT 2013 Checklist: recommended items to address
in a clinical trial protocol and related documents, and pages where the
items were addressed. (DOC 124 kb)
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