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Abstract

Background: In phase Il trials, the most efficacious dose is usually not known. Moreover, given limited resources, it is
difficult to robustly identify a dose while also testing for a signal of efficacy that would support a phase Ill trial. Recent
designs have sought to be more efficient by exploring multiple doses through the use of adaptive strategies.
However, the added flexibility may potentially increase the risk of making incorrect assumptions and reduce the total
amount of information available across the dose range as a function of imbalanced sample size.

Methods: To balance these challenges, a novel placebo-controlled design is presented in which a restricted Bayesian
response adaptive randomization (RAR) is used to allocate a majority of subjects to the optimal dose of active drug,
defined as the dose with the lowest probability of poor outcome. However, the allocation between subjects who
receive active drug or placebo is held constant to retain the maximum possible power for a hypothesis test of overall
efficacy comparing the optimal dose to placebo. The design properties and optimization of the design are presented
in the context of a phase Il trial for subarachnoid hemorrhage.

Results: For a fixed total sample size, a trade-off exists between the ability to select the optimal dose and the
probability of rejecting the null hypothesis. This relationship is modified by the allocation ratio between active and
control subjects, the choice of RAR algorithm, and the number of subjects allocated to an initial fixed allocation
period. While a responsive RAR algorithm improves the ability to select the correct dose, there is an increased risk of
assigning more subjects to a worse arm as a function of ephemeral trends in the data. A subarachnoid treatment trial
is used to illustrate how this design can be customized for specific objectives and available data.

Conclusions: Bayesian adaptive designs are a flexible approach to addressing multiple questions surrounding the
optimal dose for treatment efficacy within the context of limited resources. While the design is general enough to
apply to many situations, future work is needed to address interim analyses and the incorporation of models for dose
response.
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Background

In the context of a drug development program, the goals of
a phase II clinical trial are arguably the most nebulous and
most critical. In phase I, the number of subjects exposed
to a drug are limited, and the goals are most often focused
on assessing safety and identifying a maximum tolerated
dose. As the drug progresses to phase III, the number of
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resources (cost, sites, subjects) is significantly increased to
definitively test whether the new drug is superior to a con-
trol using a clinically meaningful outcome. A chasm exists
between these phases in which investigators must resolve
numerous scientific and practical questions, including
whether the maximum tolerated dose is also the maxi-
mum effective dose, and whether the selected dose shows
sufficient promise to justify expending the resources for a
phase III trial.

The definition of “dose” can have multiple compo-
nents — intensity, duration, frequency, and whether the
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drug is administered as a constant volume or some vari-
able algorithm (e.g., loading and maintenance doses). Fur-
thermore, the choice of dose may be defined as discrete
options or on a continuous range. It is impossible to
investigate all of these aspects in a single trial. Investi-
gators must decide, based on the scientific premise and
previously collected safety data, which dose should be
evaluated for a signal of efficacy. Several approaches have
been suggested in the literature, including phase I/1I tri-
als that search over a range of doses to identify the dose
which optimizes safety and efficacy [1], methods that rank
and select from a set of candidate doses [2], and hybrid
designs that incorporate both aspects [3]. Regardless of
the specific design, a trade-off exists between the breadth
and depth of information collected about the efficacy of
the doses under consideration.

Although several authors [4—6] have shown that testing
more treatments with fewer subjects per arm increases
the probability of identifying an efficacious treatment, this
also leads to less precision in the resulting estimate of
treatment effect. Response adaptive randomization (RAR)
designs have been proposed as a more ethical alterna-
tive by which patients are more likely to be randomized
to the best performing arm [7, 8]. In the context of dose
selection, RAR also allows investigators to collect more
information on the dose(s) that are most likely to pro-
ceed forward to phase III, though at the cost of loss of
information in other regions of the dose-response curve
[9, 10]. There is not, however, a consensus that RAR is
an improvement over fixed allocation when comparing a
single treatment to control; critics note that the adaptive
algorithm results in reduced power to test a hypothe-
sis comparing the selected treatment arm to the control
arm [11]. As a result, several authors have proposed con-
strained RAR algorithms that allow more subjects to be
allocated to the best performing arm while retaining desir-
able study design characteristics such as power [12—15].
Finally, note that it is assumed here that a trial using
RAR is based on an endpoint which is directly relevant to
patient health. (For a robust discussion on the ethics of
RAR, see [16]).

The current manuscript considers a trial wherein inves-
tigators wish to first select from a range of possible active
doses before evaluating whether the selected dose is suf-
ficiently promising when compared to a control group
to warrant a phase III trial. Borrowing from the adap-
tive design literature, the proposed design uses RAR to
allocate subjects to the most promising dose. However,
throughout the duration of the study, the number of sub-
jects allocated to the active doses versus control is held
constant to protect the power for a test comparing the
selected active dose arm and the control arm. The pro-
posed design is described in detail below. To provide
context for the design, an example trial for subarachnoid
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hemorrhage is described. Subsequently, different parame-
terizations of the design are considered and their relative
properties discussed.

Study design
Consider a trial where investigators wish to randomize
a total of N subjects to a control arm (Dg) and J active
dose arms (D, ..., Dy) at each of K stages, with the goal
of assessing whether the active treatment can reduce the
proportion of bad outcomes in the disease of interest. In
the proposed design (Fig. 1), the total number of subjects
is partitioned in the following ways, where Nj; represent
the number of new subjects randomized to the j arm at
the k" stage.

First, the proportion of subjects randomized to the con-
trol arm and the pooled active arms is held at a constant
ratio throughout the trial. That is,
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Second, to ensure that estimates of the effect size for
each active dose are stable, a burn-in period is required
wherein the number of subjects allocated to each of the
active doses is fixed during stage 1. This number is pre-
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Fig. 1 Generalized Bayesian response adaptive allocation design for
dose selection, where the allocation between control and active
doses is held constant
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specified to reflect the desired trade-off between the
risk of randomizing subjects to a suboptimal dose and
the degree of flexibility in the design. Thus, for stage 1,
Ni1 = ... = Nj. For stages 2 through K the number of
subjects randomized to each of the active doses is:

J
Njx =rgNp, 0=ry =<1, Z’"jk =1
j=1

where rj; is the allocation ratio to the j" active dose
at the k™ stage as defined by the RAR allocation
ratio, and Ny is the total number of subjects allo-
cated to the active dose arms for stage k, that is,
N = Y]y Nic-

The following sections describe how to estimate the
treatment effect for each arm and set the RAR algorithm,
as well as how the choice of partition for active and control
arms, fixed and adaptive stages, and aggressiveness of the
RAR algorithm will affect the design properties. For sim-
plicity, it is assumed that each of the adaptive stages are
equally spaced, Ngz = ... = Nok and Z]]il Np=..=
Z]I\i 1 Njk. 1t is straightforward to generalize the design
to the case of interim updates that are not equally
spaced.

Methods

For Bayesian trials, the fundamental unit of analysis is
the posterior probability of an event for each of the arms
to which a subject may be randomized, Dy, ..., D;. From
this, secondary quantities can be derived, including the
probability that each active dose yields the maximal effect,
the probability that a treatment difference comparing an
active dose to the control is greater than a minimal clin-
ically significant difference, and the relative allocation
of subjects. The approach to calculating these quanti-
ties is first discussed, followed by a comparison of their
application in different RAR schemes.

Posterior probability of treatment effect

The primary outcome measure is the proportion of
subjects who experience an event within the follow-up
period, where the goal of treatment is to reduce this
proportion when compared to the proportion of events
in the control arm. As is true of any trial, the treat-
ment effect in each arm can be estimated using simple
summary statistics (i.e., the proportion of events in each
arm) or as estimates from a model, with dose mod-
eled alternatively as a categorical or continuous func-
tion. Here, the simple case is presented where the effect
of each dose is estimated independently. Generaliza-
tions to model-based methods of estimation are dis-
cussed in the “More complex dose selection algorithms”
section.
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The prior probability of observing an event in each of
the j treatment arms has an independent uniform beta
distribution:

7 (6) ~ Beta(1,1),j =0,...,].

This distribution is chosen to be uninformative, and
can be alternatively interpreted as having observed two
subjects worth of data where one subject has an event
and the other does not. At the k' analysis, Y; total
subjects have experienced the event of interest out of N;
total subjects randomized to the j# arm, which can be
described as a binomial likelihood where Y; and N; are
taken to represent the sum of events up to the kK stage
(i.e.,Nj =Np+...+Ny,andYj =Yg +...+ ij).
Thus, the posterior probability distribution of an event in
each arm is

7 (61 N)) ~ Beta (14 Y, 1+ N; - Y)).

Given the posterior probability for each treatment arm,
it is now possible to calculate the probability that each
active dose is the most effective (i.e., the basis of the RAR
algorithm) and the probability that a given dose, when
compared to control, is sufficiently promising for further
investigation (i.e., the primary outcome).

Response adaptive randomization (RAR) algorithm

The goal of the RAR algorithm is to randomize the maxi-
mum number of subjects to the most effective active dose,
Dy, ...,Dy. Initial estimates of the posterior probability
are made using the data observed from the Nj; subjects
enrolled to each of the j > 0 active doses in stage 1. For
each subsequent stage, k = 2, ..., K, the RAR algorithm
updates the allocation ratios rj such that more subjects
are randomized to the dose which has the greatest proba-
bility of a favorable outcome (i.e., a smaller proportion of
events).

Probability of maximum treatment effect
After each of the k stages, the probability that each active
dose yields the maximum treatment effect (i.e., the great-
est reduction in poor outcomes), denoted P (9,' = thn), is
estimated as:
1
P (61 = Omin) =/0 7 (011YL,N1) P (62,...,6; > 61)
00y ... 002001
1 1 1
=/ x (01|Y1,N1>/ 7 O] Y2, Na) - / 7 (6/1Y),N))
0 61 61

00y ...0362001

for the case of 01, with 6. . .. §; being specified similarly:
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1 1 1
P(92=9min)=/0 ﬂ(92\Y2,N2)/6 71(91|Y1,N1)--~/6 7 (671Y7,Ny)
2 2

30y ... 001362

1

1 1
P(9;=0mm):/0 ﬂ(G/IYJ,N/)/e n(enYl,Nl)mfe
/A /A

7 (6g—1)|Yg-1):Ng-1)) 96g_1)--.06106].

The probability is estimated through simulation from
the empirical distribution. Note that the interest is in esti-
mating which active dose is the most effective; as a result,
it is not necessary to compare the active doses to the
control group in this calculation.

RAR algorithm

Although the goal of the RAR algorithm is to allocate the
majority of subjects to the most promising active dose
arm, if the algorithm is overly sensitive to spurious trends
in the observed outcome rates, there is an increased risk
of allocating an excess of subjects to a suboptimal dose.
At stage k we define a raw weight /;; for each active dose
arm, j > 0, as a function of the probability that the arm
is the best, and the standard error of the treatment effect,
where the sensitivity of the algorithm is determined by
two tuning parameters, y and A:

b= [P (6 = )] {‘/‘Z’(Q’)]X

(N;+1)

Note that this equation is comparable to other RAR
algorithms currently proposed in the literature [17-19].

Once the raw weight [;x has been estimated for each
active dose, the allocation ratio is rescaled so the final ratio
rj for each active dose arm sums to 1. That is, for stage k:

Jj

J
Zj>1 I/

Vl'k =

When y,1 = 0 the RAR allocation ratios are equiva-
lent to fixed equal allocation among the doses (i.e., [ = 1
which implies rj = 1/(J — 1)).

Primary analysis

The primary analysis is based on the posterior probability
that the absolute risk difference of an event, comparing
the selected dose to the control, is greater than a minimum
clinically interesting difference, C. Here, the selected dose
is identified as the dose most likely to reduce the number
of poor outcomes. That is, define the primary analysis as
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P (9,' — 6y > C), where j = max [P (91' = Qmin)], and the
posterior probability is calculated as:

1
P(Qj —9() > C) =/ T (91|Y1,N1)
0
0;—C
X/ 7T(90|Y0,N0) 39039/'.
0

If this posterior probability exceeds the prespeci-
fied cutoff, &, the null hypothesis Hy:6; — 6y > C is
rejected with £100% level of certainty. For instance,
P(6j — 6o > 0) > 0.8 can be interpreted as at least 80%
probability that the absolute risk difference is greater than
0 (i.e., 80% probability that the selected dose is no worse
than the control).

Finally, note here that while this procedure makes no
explicit assumptions about the relative ranking of the
effect size for each active dose, D1, ..., Dj, it is implied
that the dose j which satisfies j = max [P (9; = Qmin)]
also maximizes P(0; — 6p > C). This is true so long as
0o < {61, ...,0;}. Similarly, because the posterior probabil-
ity is one-sided, this is true regardless of whether the effect
size in the control is better than some doses and worse
than others (e.g., 61 << 6y < 62 < ... < ;). However,
if the posterior probability were structured as a two-sided
hypothesis (e.g., P(6; — 6o # C)), it would still be desir-
able to select j = max [P (6j = Omin)] despite no longer
maximizing the power to reject the null hypothesis.

ALISAH lI: albumin in subarachnoid stroke

The impetus for this design is a phase II trial in sub-
arachnoid hemorrhage, a common neurological emer-
gency with high morbidity and mortality rates, and several
common neurological complications including aneurysm
rebleeding, hydrocephalus, and delayed cerebral ischemia
[20]. Despite the number of patients affected by subarach-
noid hemorrhage and the poor prognosis, few treatments
have been developed to improve outcomes and reduce
hospital stay [21]. Recent clinical trials investigating com-
pounds such as endothelin-1 antagonists and magnesium
sulfate have led to disappointing negative results [22—24].
The failure of these clinical trials may be due in part to
the fact that most of the treatments tested are posited
to have limited mechanisms of action. Given the com-
plex cerebral cascade of events unleashed by subarachnoid
hemorrhage, the administration of a multifunctional sub-
stance with the potential to target multiple pathways is
compelling. Intravenous administration of 25% human
albumin (referred to hereafter as albumin) is one such
potential treatment.

The Albumin in Subarachnoid Hemorrhage Pilot Clini-
cal Trial (ALISAH, ClinicalTrials.gov registration number
NCTO01747408) was a prospective, open-label, dose escala
tion study examining four dosages of albumin in increasing
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magnitude [25]. In this study, albumin was administered
for up to 7 days, and an optimal dose of 1.25 g/kg/d
of albumin was identified as safe, feasible to administer, and
associated with reduced resource utilization and possible
neuroprotective effects [25, 26]. However, evidence from
both the ALISAH pilot trial [25] and the Albumin in Acute
Stroke trial (ALIAS, Parts 1 and 2, ClinicalTrials.gov
registration number NCT00235495) [27-29], which
evaluated albumin in ischemic stroke patients, suggested
that administration of albumin could have deleterious
cardiovascular effects due to volume overload [25, 29].
Thus, although the ALISAH pilot study demonstrated
that the selected dose administered for up to 7 days
was tolerable, questions remain regarding the optimal
efficacious duration of continuous infusion. Specifically,
it is possible that a longer duration of infusion may be
associated with increased adverse events (e.g., acute left
heart failure due to volume overload) [25-29].

In the currently proposed study (ALISAH II), investiga-
tors want to identify the optimal duration (1, 3, 5, or 7
days) of albumin to administer in subjects with subarach-
noid hemorrhage and test whether there is preliminary
evidence of efficacy for this optimal duration when com-
pared to a saline infusion control. The goal of treatment is
to reduce the proportion of subjects with poor outcome,
defined as an Extended Glasgow Outcome Scale score
< 4 observed at 90 days. The proposed phase II Bayesian
restricted RAR design is presented in the context of the
ALISAH II trial development with specific focus on the
key design considerations.

Results

To calculate the total sample size, several quantities must
be specified a priori including the expected rate of events
in the control group, the clinically meaningful effect dif-
ference, and the desired design properties (i.e., type I
error rate, power, and/or probability of correctly selecting
the best dose) [30]. For simple designs, this information
is sufficient. However, for the proposed design, there is
no closed-form equation for the total sample size, nor is
it immediately obvious how to allocate the total sample
size among the arms or stages given a total sample size.
Instead, an iterative approach is used to first identify a
crude estimate for the total sample size, which is then
optimized using a series of diagnostic measures.

Total sample size

For phase II trials, a Go, No-Go criteria is predefined
as the minimum level of evidence to warrant a phase
IIT trial. That is, for this design the study results would
support progressing to phase III with the selected dose
if P(Oin — 6o > C) exceeds a prespecified level. Thus,
a key operating characteristic is the probability that the
trial will achieve this threshold under null and alternative
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distributions for treatment effect (i.e., the type I error rate
and power).

A crude estimate of the total sample size is first
estimated by fixing the number of stages as K = 1
and equally allocating the total number of subjects
among the four active arms and control (i.e., No; =
Niy=...=Np= N/5). The total sample size is the
minimum N that yields the desired probability of selecting
the best dose and probability of meeting the Go, No-Go
criteria under the alternative hypothesis. Figure 2 demon-
strates this process for ALISAH II, where investigators
hypothesize that the event rate in the control group will be
28%, the clinically meaningful reduction is 10%, the effect
rate among the doses is linear (i.e., 25.5%, 23%, 20.5%,
18%), and there is a minimum 50% probability of select-
ing the correct dose (blue line) and an 80% probability of
meeting the Go criteria (P (9,' — 6y > 0) > 0.8, red line).
With 1000 simulations each, sample sizes ranging from 20
subjects per arm to 200 subjects per arm were considered.

A total of 60 subjects per arm was identified as the
minimum sample size that achieves the desired prop-
erties. Note that as the sample size per arm increases,
the probability of meeting the Go, No-Go criteria (i.e.,
power) increases until approximately 60 subjects, after
which point there are diminishing returns of adding addi-
tional subjects. However, if selecting the optimal dose is
of higher priority, it would be reasonable to select a larger
sample size regardless of the relatively minimal additional
gain in power. Finally, note that for the adaptive design
to be worthwhile, it must perform better than this simple
approach.

Base Sample Size

% Event

] N=60/arm

—=— P(Selecting Best Dose)
-®- P(Meeting Go, No-Go Criteria)

Power >80%
1 Dose>50%

T T T
0 50 100 150 200
Number of Subjects per Arm

Fig. 2 Crude estimation of the total sample size needed to achieve

the minimum probability of selecting the optimal dose and meeting
the Go, No-Go criteria
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Design optimization: allocation ratio, number of stages,
and burn-in

Within the constraints of total sample size (N = 60/arm)
and the basic proposed design (Fig. 1), additional simula-
tions were conducted to assess the global design proper-
ties: ability to select the optimal dose and probability of
proceeding to phase III under different specifications. A
range of possible design choices for the number of stages,
allocation between control and pooled active doses, and
choice of tuning parameters for RAR were assessed,
with each scenario repeated for 1000 iterations to obtain
estimates.

Figure 3 demonstrates how different allocations of sub-
jects among the stages and arms affect the probability
of selecting the optimal dose (here 7 days, assuming a
linear dose response) and the probability that the pri-
mary analysis will reject the null hypothesis (i.e., pass
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the Go, No-Go criteria and proceed to phase III). Note
that a 1:4 allocation ratio would be equivalent to equally
allocating among the five arms if no RAR is used; sim-
ilarly, 1:2 would be equivalent to a 1 : 4/J allocation
ratio (i.e., Dunnett’s allocation [31]). As the total number
of subjects allocated to the active doses increases from
1:2 to 1:4, the probability of selecting the correct dose
increases. However, the probability of meeting the Go,
No-Go criteria decreases. For a given allocation ratio, the
percentage of active subjects allocated to the fixed burn-in
period (stage 1) is positively correlated with the proba-
bility of selecting the optimal dose. However, there is not
a strong correlation between the percentage of burn-in
subjects and the probability of meeting the Go, No-Go
criteria. Finally, the optimal number of RAR updates (i.e.,
increased number of stages) is strongly dependent on
the other design choices, with a slight tendency towards
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Fig. 3 Under the alternative hypothesis of a linear treatment effect, the figure evaluates the effect of allocation between treatment and control,
number of stages, and percentage of active subjects used in stage | on the global design properties: the probability of passing the Go, No-Go criteria
and the probability of correct dose selection. Results are presented for four possible crude weights, l of the RAR specifications
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increased updates yielding better properties. Given these
results, a 25% burn-in and k = 4 stages offered the best
balance of dose selection and power.

Design optimization: RAR algorithm

In addition to identifying the optimal allocation ratio of
subjects between control and active doses, fixed and adap-
tive stages, and the number of adaptive updates, the choice
of the RAR algorithm has a significant impact on the
design properties. Figures 3 and 4 display the properties
for four possible raw RAR weights, [;: No RAR (y = 0,
A = 0), using only the probability that an active dose yields
the minimum treatment effect with tuning parameter of
either 1/2 or 1 (y = 1/2 or y = 1,A = 0), and a raw
weight that also incorporates the variability of the esti-
mate with a tuning parameter of 1/2 (y = 1/2,A = 1/2).
When no RAR is used, the choice of number of stages or
burn-in period is trivial because the number of subjects
in each arm is equal under all possible specifications. For
all other scenarios, the design is sensitive to the choice of
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RAR; however, no general statements can be made (Fig. 3).
Moreover, while the results presented here consider only
the case of a linear trend, the optimal RAR algorithm will
be dependent on the hypothesized shape and spread of the
dose-response distribution.

The literature notes that while frequent updates (i.e.,
obtained by increasing the number of stages) will increase
the responsiveness to true treatment effects, there is an
increased risk that subjects may be allocated to the worse
performing arm due to an ephemeral treatment effect
[17]. Thus, in addition to the global design properties
specified above, the number of subjects assigned to each
treatment arm at each stage is assessed (Fig. 4). In each
plot, the horizontal line indicates the total number of
subjects allocated to the control group. An optimal RAR
algorithm would have a mean total number of subjects
in the highest dose that yields a final ratio of 1:1, with
the smallest possible variance. For the hypothesized trend,
fixed allocation (i.e., no RAR, 1/(J — 1)) minimizes the
variability in the number of subjects allocated to the best

1:4 Allocation Ratio
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arm (and thus reduces the number of subjects allocated
to suboptimal doses). However, because it does not incor-
porate accumulating information on the dose-response
trend, it also consistently allocates the fewest number of
subjects to the optimal arm relative to the other algo-
rithms. The two algorithms which randomize subjects
solely based on the treatment effect (y = 1/2ory =1,
A = 0) allocate more subjects to the best dose compared
to no RAR. However, particularly in the scenario with a
y = 1 tuning parameter, the high variability suggests
that it is still possible to allocate subjects to a suboptimal
arm (though rarely less than if no RAR were used). The
algorithm that incorporates the estimate variability (y =
1/2,A» = 1/2) performs slightly better than no RAR; the
separation between doses is insufficient to overcome the
estimate of variability, and thus the optimal dose does not
receive the majority of subjects. Finally, note that although
there are differences in the number of subjects allocated
to the optimal dose between algorithms, there are no sig-
nificant differences in the probability of meeting the Go,
No-Go criteria for all of the RAR algorithms except the
algorithm with tuning parameters y = 1,A = 0 (Fig. 3).
That is, unlike the two-arm scenario (but similar to other
multi-arm RAR designs [32]), we do not experience a loss
in power by allocating more subjects to the optimal active
arm. Thus, for the linear dose trend, the algorithm that
only accounts for the treatment effect but modulates the
strength through a y = 1/2 tuning parameter represents
the best balance between optimal design parameters and
an overly sensitive RAR algorithm.

Discussion

The motivation for the ALISAH II trial was discussed,
and a design with 25% burn-in, four stages, and an RAR
algorithm with tuning parameters of y = 1/2,A =
1/2 was selected to optimize the trial properties if the
probability of poor outcome in the albumin doses was
linear. The choice of an optimal design is dependent on
the hypothesized magnitude and relationship of effect
between the doses. A linear dose-response trend is the
most difficult in terms of dose selection; thus, a design
that increases the number of observations used to esti-
mate the Go, No-Go criteria helps mitigate a smaller effect
size if a suboptimal but still effective dose is selected. The
above simulations would need to be repeated to identify
the optimal design if a different dose-response relation-
ship were hypothesized, though the general themes are
consistent.

The following section now considers whether the design
is sufficiently optimal for additional dose-response rela-
tionships and discusses further possible modifications the
study team might consider. Table 1 presents four possible
outcomes in the trial: (a) when all four active doses are
ineffective (i.e., 28% poor outcome rate in the control, day
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Table 1 Operating characteristics for different treatment effect
assumptions: (a) all four active doses are ineffective; (b) only the
maximum dose duration is effective; (c) linear dose-response
trend; and (d) all four active doses are equally effective

Tx effect N P(Dose) Uncond. power Cond. power
a 29.0 48 249 410 41.2
b 184 85 787 76.1 81.6
C 18.8 64 50.3 843 87.5
d 19.1 47 24.2 93.8 94.0

The table presents the median observed effect size for the optimal dose arm (Tx
effect), the average number of subjects randomized to that arm (N) and the
unconditional and conditional power defined respectively as the percentage of
simulations where P(6; — 6y > 0) > 0.8 conditional and unconditional on whether j
was the true optimal dose

1, day 3, day 5, day 7); (b) when only the maximum dose
duration is effective (i.e., 28% poor outcome rate in the
control, day 1, day 3, and day 5, but 18% poor outcome
rate in day 7); (c) when there is a linear dose-response
trend ranging from 28% in the control arm to 18% in
the 7 day arm; and (d) when all four active doses are
equally effective (i.e., 18% poor outcome rate). For each
of these scenarios, the following statistical properties are
presented: the observed treatment effect; the number of
subjects allocated to the optimal dose, defined alternately
as the dose with the greatest effect size or the short-
est duration in the case of two or more equivalent doses
(i.e., 1 day for scenarios a, d; 7 days for scenarios b, c¢);
the probability of selecting the correct dose; the uncon-
ditional power, defined as the number of scenarios where
the posterior probability of a treatment effect exceeds 80%
regardless of the dose selected; and finally, the conditional
power defined similarly to the unconditional power but
restricted to those iterations where the correct dose was
selected. Each scenario was simulated for 10,000 iterations
under the assumption of 100 subjects in the control arm
and 200 subjects among the active arms.

When there is no difference between the four active
dose arms (scenarios a, d), the median number of sub-
jects allocated is equivalent to the scenario where no
RAR is used (i.e., the 200 subjects are randomized equally
among the four doses for approximately 50 subjects per
arm). Similarly, the probability of selecting the correct
arm is about 25%. When the doses are not equally effec-
tive, the use of RAR outperforms the no RAR scenario
with the optimal dose (7 days) receiving more subjects
and a higher probability of selecting the correct dose than
chance alone. Note that, as expected, when only one dose
is effective, the task of identifying the optimal dose is eas-
ier, as reflected in the greater number of subjects and
probability of picking that dose. However, in scenario c,
while the probability of selecting the best dose is almost
20% less than if a single optimal dose exists, the probabil-
ity of selecting the best or second best dose is much higher
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(results not shown). This is desirable, as the cost of select-
ing the second best dose is much less than if a dose with
no efficacy were selected.

To decide whether the current evidence is sufficiently
promising to continue with a future phase III trial, the
Go, No-Go criteria are defined as at least 80% probabil-
ity that the probability of poor outcome in the selected
active dose is less than the probability of poor outcome
in the control arm (i.e.,P(Qj — 6y < 0) > 80%). This is
conceptually similar to the frequentist concept of type I
error if the treatments are simulated under the null (sce-
nario a), or power if under the alternative (scenarios b—d).
Secondly, this quantity can be evaluated conditional or
unconditional on having selected the correct dose, where
the former is equivalent to the assumptions made for non-
adaptive trials (i.e., separate trials for dose finding and
testing of efficacy), and the latter is more typical of adap-
tive frameworks. Note that, by selecting for the optimal
dose, the design introduces a positive bias in the treatment
effect for the selected active dose [33, 34]. Although this
is a well-known problem in adaptive selection designs, it
is not straightforward to predict the magnitude of the bias
or adjust the resulting statistics. Nevertheless, as long as
the trial properties are transparent, the inflated power is
still a useful quantity for decision making. Here, when at
least one dose is effective, there is high conditional power
to proceed to phase III. Unconditional power is similarly
high but reflects the risk of selecting a suboptimal dose.
In the null case, the probability of proceeding to phase
III when no treatment effect exists, 40%, is higher than
would normally be accepted for a phase II trial. Histori-
cally, the use of type I error levels has been accepted as an
immutable requirement, although more recently discus-
sion in the statistical community has acknowledged that
the type I error rate should reflect the trade-offs specific
to a trial, and as such may be higher in certain situations
[6, 35, 36]. Given the severity of the patient population and
the lack of available treatment options, there is a greater
harm of stopping after the phase II trial given an effec-
tive treatment than to proceed to future testing with an
ineffective treatment (particularly given the ability to use
futility boundaries in the phase III trial). In this light,
approximately 60% of futile phase III trials would be pre-
vented, but only 5-20% of effective phase III trials would
be lost. However, if in other disease contexts this trade-off
is unacceptable, improved properties can be achieved by
increasing the total sample size, increasing the minimum
acceptable difference, or making the threshold to proceed
to phase III more strict.

In the context of designing the ALISAH II trial, the
most basic aspects of implementing the restricted RAR
design have been presented. One of the strengths of this
approach, however, is its flexibility. Although it is beyond
the scope of the current paper to evaluate in detail how
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additional modifications would affect the probability of
selecting an optimal dose which also meets the Go, No-
Go criteria, what follows is a discussion of the main
possibilities and their expected effect.

More complex dose selection algorithms

It may be desirable to consider a more complex dose
selection rule wherein, for instance, the shortest duration
which achieves at least 90% of the maximum effect size is
selected (i.e., an ED-90 type rule). Clinically, this would be
the case if the higher dose significantly decreases the fea-
sibility of implementation or is associated with increased
risk of harm. To implement this rule, the dose selection
criteria of selectj = max [P (9; = Omm)] could be replaced
with j = min(j) € P (Qj > 0.9 (Qmm)), though additional
simulations would be required to identify the optimal
RAR algorithm in this scenario (e.g., randomize equally to
all doses meeting the ED-90 duration or proportional to a
“relative-value” weight). It is anticipated that this selection
rule would perform similarly to the simple rule in the case
of a clear winner, but have improved ability to select the
optimal dose when there are small differences in the effect
size. Conversely, since a less than maximally efficacious
dose may be promoted, the power may be reduced.

The model presented in the “Methods” section assumes
the observed probability of poor outcomes has a sim-
ple binomial distribution; however, in practice there are
often covariates that modulate this effect. For instance, in
ALISAH II it is anticipated that baseline stroke severity
will be a significant predictor of outcome. Here, a hierar-
chical logistic regression model could replace the current
binomial distribution. The resulting posterior probabil-
ity of poor outcome in each arm could then be com-
pared using the above RAR algorithms and Go, No-Go
criteria, with likely mild to moderate improvement in
the design properties. It is important to note, however,
that optimal methods for simultaneous covariate adaptive
and response adaptive randomization are relatively new
and, generally speaking, a tight balance of covariates will
diminish the benefit of RAR.

Once a hierarchical logistic regression model has been
considered, another logical extension is the inclusion of
effects in the model which no longer treat the doses as
categorical but rather introduce polynomial terms (e.g.,
a linear dose-response trend) and/or borrow information
between the doses (e.g., similar to a normodynamic linear
model). As above, this is relatively simple to implement,
though it requires careful consideration of the appropri-
ate priors for each coefficient in the model. However, the
use of a dose-response model will significantly increase
the number of simulation scenarios that are required. That
is, in addition to the considerations above, it will also
be necessary to evaluate the model’s performance if the
dose-response shape is incorrectly specified. In practice
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this is well worthwhile, as it is likely that the resulting
improvement in dose selection and power is non-trivial.

Conclusions

The proposed Bayesian adaptive phase II design is a
flexible approach to balancing the need to identify the
optimal dose from several possible doses and making a
statement with a certain level of confidence about the
relative efficacy when compared to a control group. Sev-
eral design components were introduced (allocation of
subjects, choice of burn-in, RAR algorithm), and simu-
lation results were presented showing how these aspects
can affect the resulting statistical design properties. An
example design was considered for the case of albumin
use for patients with subarachnoid hemorrhage. How-
ever, the design is broadly applicable for trials where the
primary endpoint is binary and two or more active treat-
ments are available (i.e., the treatments may be doses
or even different drugs). One limitation of this design is
that it requires the primary endpoint to be available in
a timely manner relative to the rate of recruitment, or
an appropriate validated surrogate endpoint should exist.
If not, too many subjects are recruited before a suffi-
cient number of outcomes are observed to implement
the RAR.

While the design does not include any additional fea-
tures such as interim analyses for efficacy and futility,
or logistic regression models that leverage the additional
information available from the non-selected arms or mea-
surements of the primary outcome at earlier time points,
the authors posit that these additions are straight-forward,
and in the case of modeling will improve the overall
design properties so long as the choice of model is reason-
able. Moreover, the statistical design properties presented
above are conservative, and use of these additional fea-
tures will likely improve the final interpretation of results.
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