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Abstract

Background: Many interventions against infectious diseases have geographically diffuse effects. This leads to
contamination between arms in cluster-randomized trials (CRTs). Pathogen elimination is the goal of many intervention
programs against infectious agents, but contamination means that standard CRT designs and analyses do not provide
inferences about the potential of interventions to interrupt pathogen transmission at maximum scale-up.

Methods: A generic model of disease transmission was used to simulate infections in stepped wedge
cluster-randomized trials (SWCRTs) of a transmission-reducing intervention, where the intervention has spatially
diffuse effects. Simulations of such trials were then used to examine the potential of such designs for providing
generalizable causal inferences about the impact of such interventions, including measurements of the
contamination effects. The simulations were applied to the geography of Rusinga Island, Lake Victoria, Kenya, the
site of the SolarMal trial on the use of odor-baited mosquito traps to eliminate Plasmodium falciparummalaria.
These were used to compare variants in the proposed SWCRT designs for the SolarMal trial.

Results: Measures of contamination effects were found that could be assessed in the simulated trials. Inspired by
analyses of trials of insecticide-treated nets against malaria when applied to the geography of the SolarMal trial, these
measures were found to be robust to different variants of SWCRT design. Analyses of the likely extent of contamination
effects supported the choice of cluster size for the trial.

Conclusions: The SWCRT is an appropriate design for trials that assess the feasibility of local elimination of a
pathogen. The effects of incomplete coverage can be estimated by analyzing the extent of contamination between
arms in such trials, and the estimates also support inferences about causality. The SolarMal example illustrates how
generic transmission models incorporating spatial smoothing can be used to simulate such trials for a power
calculation and optimization of cluster size and randomization strategies. The approach is applicable to a range of
infectious diseases transmitted via environmental reservoirs or via arthropod vectors.
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Background
Pathogen elimination is the goal of many intervention
programs against infectious agents, such as mass
chemotherapy, vaccine programs, behavioral change to
reduce contacts, and vector control. The objective of
interrupting transmission in whole populations impacts
the choice of trial study designs. Typical before-and-after
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comparisons of populations have no replication and no
contemporaneous control, and therefore, they have an
effective sample size of one. If transmission continues
post-intervention, it is impossible to know whether this
was the result of bad luck. If transmission is successfully
interrupted with a before-and-after design, it is unclear
whether the intensity of intervention was appropriate
or a massive overkill, or whether the disappearance of
the pathogen was fortuitous. In such studies, it is not
possible to distinguish changes in transmission due to
the intervention from stochastic fluctuations in trans-
mission levels or, when the pathogens are endemic, from
environmental variation.

© 2016 Silkey et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons
license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13063-016-1378-1-x&domain=pdf
mailto: Thomas-A.Smith@unibas.ch
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/


Silkey et al. Trials  (2016) 17:278 Page 2 of 16

Randomization is critical if a study is to provide
robust evidence of causality [1]. Where assignment at the
individual level is impossible, cluster-randomized trials
(CRTs) are often the best way to derive causal infer-
ences about infrastructural or behavioral interventions.
Clustering may be needed due to the nature of the inter-
vention or where effects at the community level are
anticipated that would be averaged across the whole popu-
lation in an individual-level randomized trial [2–4]. CRTs
are, therefore, the usual approach to achieve replica-
tion and contemporaneous controls in trials of infectious
disease interventions, which typically provide both indi-
vidual protection to the immediate recipients and also
induce community effects by reducing onward transmis-
sion. Cluster size is critical in such trials: if the clusters
are too small then the effect of the interventions will be
propagated beyond the cluster edges via the community
effect throughout the whole population. Such contami-
nation effects bias the difference between the trial arms
towards zero. If the clusters are too large, and hence few in
number, there are insufficient degrees of freedom to dis-
tinguish the intervention effect from residual stochastic
variation among clusters. Only with a sufficient num-
ber of adequately sized clusters is it possible to provide
convincing inference.
Unfortunately, standard parallel CRT designs cannot

provide a rigorous test of whether local elimination of a
pathogen is feasible. This requires scale-up to universal
coverage over the whole area, which cannot be achieved
if there are untreated control clusters. For this purpose,
we propose the stepped wedge cluster randomized trial
(SWCRT), in which the intervention is introduced one
cluster at a time until the whole area is covered. SWCRT
elegantly combines the elements of group randomization,
replication, contemporaneous controls, and complete
coverage.
Population-based trials of infectious disease interven-

tions do not directly estimate the efficacy of an inter-
vention in reducing the rate of transmission that would
be observed in a laboratory setting. This is both because
interventions are generally not applied perfectly, and also
because what is measured (the effectiveness) is generally
the cumulative effects of recurrent transmission events,
conditional on the pattern of contacts. Different effective-
ness measures can be estimated for CRTs (and SWCRTs),
either by comparing clusters before intervention with
those that have already been intervened, or by compar-
ing the whole study area with a non-intervention area (or
possibly the same area, pre-intervention) [5, 6]. With an
appropriate cluster size, the contamination effect can also
be estimated from the range and gradient of the interven-
tion effect across cluster boundaries. These possibilities
are exemplified by an analysis of CRTs of insecticide-
treated nets (ITNs) [7–9] for the control of malaria. These

analyses confirm that if the central area of the intervention
clusters is far enough away from the intervention bound-
aries, an estimate of the locally maximum intervention
effect can be made, unaffected by contamination from
control clusters. These studies also provide information
about the effects of imperfect coverage, which can be used
to parameterize process models for predicting the impact
of sub-optimal deployment in other settings.
With SWCRT designs, while the individual cluster size

may be approximately constant in terms of either area
or population, the boundaries between the arms are con-
stantly changing, and hence, the size of coalescing inter-
vention areas increases during the study. Eventually, the
entire population receives the intervention, so the max-
imal intervention population is obtained [10]. Thus, the
overall size of such a trial is likely to be very large, with
the costs of intervention deployment large in relation to
those of data collection. An adequate sample size in terms
of the total number of individuals enrolled or volume of
data is a given [as in our application example, the Solar
Power for Malaria Control trial (SolarMal)] and so these
trials are likely to be powered to allow analysis of the
temporal pattern of effectiveness. In this spirit, we eval-
uate designs under the assumption of one large overall
sample size, as per section “Simulated trial designs for ran-
dom geographies with uniform initial incidence”, so that
the assessment of power is a comparison of power and
time-dependent measures of effectiveness among designs
rather than a calculation intended for estimating the abso-
lute sample size needed to detect a given size of signal.
Empirical power and sample size calculations for CRT

and SWCRT designs have been proposed [10, 11], but
these do not directly address the issue of commu-
nity effects, either in contaminating the control arm
of the study or as a potential target for measure-
ment. Our approach, to address the impact of commu-
nity effects directly, is compatible with that of Halloran
et al. [12], where each household in our simulation
is a mini-community with its own population, and its
own location relative to other mini-communities on the
landscape.
In this paper, simulations of SWCRTs are used to con-

sider how these designs might be analyzed to provide
generalizable causal inferences about an intervention, giv-
ing particular consideration to the impact of variations in
the cluster size relative to the extent of community effects.
We use a generic model of disease transmission for the
simulations, so that the results are broadly applicable to
a range of infections transmitted either directly via envi-
ronmental reservoirs or via arthropod vectors. Two new
measures of effectiveness, inspired by analyses of CRTs of
ITNs as protection against malaria infection, are proposed
and their merits for inferring causality from the data
produced in a SWCRT design are considered. The new
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measures are applied as an example to the design of a trial
of odor-baited mosquito traps (OBTs) to reduce mosquito
population size, reduce biting intensity, and eliminate P.
falciparum malaria from Rusinga Island, Lake Victoria,
Kenya (SolarMal) [13].

Methods
Simulation model of infection
The core of all simulations presented in this paper
is a simple individually based susceptible–infected–
susceptible model of infection transmission. The model
does not aim to reproduce the within-host dynamics of
any particular pathogen, since each infection is recorded
only at one point in time, and each individual is available
to be infected again at the next time step. The model aims
to capture the force of infection at each time step before,
during, and after the intervention is introduced across
the study area. Once the behavior of the model is con-
firmed, then the theoretical impacts and interactions of
the pathogen’s initial incidence, the extent of the commu-
nity effect, and the efficacy of the proposed intervention
are explored via simulations of three study design schemes
for assigning sequences to clusters of uniform physical
size. For this discrete time model, incidence is defined
as the proportion of individuals with disease recorded at
the specified time step. Empirical power estimates and
confidence interval widths of model predictions are used
to evaluate the proposed experimental designs, in terms
of both optimal design structure and most informative
measures of effectiveness. From these general results, a
preferred design structure is selected for the SolarMal
trial [13].
Discrete-time stochastic simulations of disease

transmission are implemented using a one-week time step
and a population of simulated individuals indexed with
i, where N(t) is the cumulative number of individuals
having received the intervention for the first time at time
step t. The simulation approach is as follows:

1. Specification of simulated population: A
simulated population of total size N(T) is defined,
where T is the last time step of the intervention.
Simulated individuals are allocated to random point
locations in a defined geometry.
2. Establishment of initial endemic stable state:
To initialize the simulation to a stable state, infections
are independently assigned to each individual with a
probability equal to a specified incidence, y0, for each
week of the initial 10 weeks of the simulation.
3. Updating via transmission model: For
subsequent time points, t > 10, new infections were
generated via a two-state auto-regressive process
with distributed lag, such that, for each individual i at
time step t, the incidence is:

y(i, t) ∼ Bernoulli (E[ y(i, t)] ) (1a)

E[ y(i, t)]= 1 − exp (−β0yr(i, t)) (1b)

where β0, the transmission parameter, is the expected
number of infectious contacts received by each host
per time step. yr(i, t) is the infectious reservoir for
each simulated individual at time step t, defined as the
percentage of infected members in its neighborhood:

yr(i, t) =
10∑

τ=6
wτ

∑
j
y(j, t − τ)Ir(i, j)

∑
j
Ir(i, j)

(2)

where Ir(i, j) is an indicator variable taking the value 1
if hosts i and j are located a distance less than r from
each other, and is otherwise 0. The weights wτ (which
sum to 1) specify a kernel defining the lag times and
vary between 6 and 10 time units (weeks). To align
the transmission parameter with the predefined
initial state and the constraint that transmission must
be strictly positive, the parameter β0 is assigned a
value based on the mean infectious reservoir across
the whole study population at time 0, yr(0):

β0 = − ln (1 − yr(0))
yr(0)

(3)

leading to a susceptible–infected–susceptible model
of infection dynamics with the generation time
distributed according to the lag.
4. Incorporation of intervention effects: The
direct effect of the intervention is to reduce the force
of infection in the intervention clusters, by the
protective efficacy against infection, so that the
individual and time-specific transmission is modeled
as:

y(i, t) ∼ Bernoulli (E[ y(i, t)] ) (4a)

E[ y(i, t)]= (1 − exp (−β0yr(i, t)(1 − Cr(i, t)Es))
(4b)

where yr(i, t) is defined as before and captures the
state of the reservoir for each individual at each time
step, Es is the efficacy of the proposed intervention in
protecting users from any single infection event (i.e.,
the proportionate reduction in the probability that
infection occurs), and Cr(i, t) is the percentage of
each individual’s neighborhood that has received the
intervention at time t. Thus, 1 − Cr(i, t)Es represents
the proportion of transmission that withstands the
effect of the intervention.

Rationale
The generation time and spatial averaging of the infectious
reservoir yr(i, t) over each neighborhood is intended to
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approximate the spatial and temporal pattern of P. fal-
ciparum transmission. It is intended to approximate to
proportionality the data that might be generated in a trial
in which the outcome is the incidence of clinical disease,
which in turn is assumed to vary proportionately to the
force of infection. A latent period equivalent to six weekly
time steps is simulated to capture the delay between the
infection process and clinical disease and the approximate
generation time of the infection. (This is a very simple
approximation to the generation time of P. falciparum
malaria.)
The simulation does not aim to capture the effects of the

changing immune status during the trial, i.e., the transmis-
sion parameter β is held constant at β0. Es can capture the
effects achieved by reducing the infectious reservoir with
chemotherapy, vaccines, and isolation of infectious cases,
or by reducing the vectorial capacity for vector-borne
diseases.

Simulated trial designs for random geographies with
uniform initial incidence
To evaluate the impact of various initialization param-
eters, ten island landscapes were simulated. For each
landscape, 1000 households were allocated to random
point locations in a square grid of dimension 9 × 9 km.
Then, 4000 individuals were randomly assigned across
these households, with each household constrained to
have at least one member. Once the locations of these
households were assigned, the neighbors of each inhab-
itant were calculated as all those individuals within a
community of radius r, the maximum physical extent of
the postulated community effect. The landscape descrip-
tion was completed by dividing the grid into 81 equal-
area (but not equal-population) clusters and calculating
a median location of all households within each
cluster.
Three possible CRT designs were simulated for each

landscape: the random, the oil drop, and the hierarchi-
cal designs, represented schematically in Fig. 1. For the
first design, the order in which clusters are selected to
receive the intervention was completely random, i.e., the
intervention sequences for the random design are sin-
gle permutations of the cluster numbering. For the sec-
ond design, a cluster was initially selected at random
from among the 81 possible clusters; clusters were then
chosen at increasing median cluster distance from the
initial cluster, forming a single intervention zone that
increased in size until the grid was completely covered.
The third, hierarchical, design is a compromise between
the random and the oil drop, motivated by the desire to
retain comparators remote from the intervention while
maintaining sufficient randomness not to bias experimen-
tal outcomes. For the hierarchical design, the grid was
divided into nine equal-sized meta-clusters, which were

further subdivided into nine equal-sized clusters. Hierar-
chical sequences were generated with the following algo-
rithm: one cluster of the 81 was selected at random; all
clusters within the same meta-cluster as the initial clus-
ter were then selected at random until all had received
the intervention and the meta-cluster was full. The next
cluster was then chosen at random from the remaining
72 clusters. The procedure was repeated until all clus-
ters in all meta-clusters on the grid had received the
intervention. The relative randomness of these design
structures can be stated in terms of the number of suit-
able sequences that could be generated for each design.
A total of 81! possible sequences exist for the random
design, 81 possible sequences exist for the oil-drop design,
and (9)!×(9)! possible sequences exist for the hierarchical
design.
The simulated intervention was introduced to all

households within a single cluster during each time step.
The duration of the introduction of the intervention
across the study was 81 time steps (weeks), T = 81.
The total number of individuals in the study was N(T),
so that at each time t, some number n(t) of individu-
als moved to the intervention arm, which had a total

size at time t of
t∑

τ=1
n(τ ). The non-intervention arm was

divided into those who have neighbors in the interven-
tion arm and were, thus, susceptible to first-order com-
munity effects and a pure comparator group who were
neither recipients of the intervention nor neighbors of
any recipients of the intervention. The total number of
individuals in these three groups and the numbers of clin-
ical cases occurring within each group (intervened, non-
intervened but nearby, and non-intervened but remote)
were tallied during the initialization period and at all
subsequent time steps, as per Figure S2 in Additional
file 1.
In total, 80 simulations were run for each of 100 ran-

domly generated cluster allocation sequences correspond-
ing to the random, oil drop, and hierarchical designs
for 45 parameterizations comprising five levels of initial
pathogen incidence (10 %, 20 %, 30 %, 50 %, and 80 %),
three levels of neighborhood radius (0.5, 1.0, and 1.5 km),
and three levels of intervention efficacy (0 %, 30 %, and
80 %) across ten randomly generated landscapes, where
each landscape was a set of 1000 randomly distributed
households across the island, with a total population of
4000 inhabitants.

Simulated trials for non-uniform population densities and
initial incidence
If there are underlying spatial trends in the disease, corre-
lated with the spatial pattern of the rollout, it is difficult
to interpret the results of a SWCRT. To evaluate the
performance of the different designs in such situations,
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Fig. 1 Schematics of three SWCRT design sequences on a grid of 81 equal-area clusters. Clusters are numbered in the order of the design rollout
sequence. In the diagram as shaded, clusters 1–20 have received the intervention and clusters 21–81 have not yet received the intervention. All
sequences begin at one randomly selected cluster. a Hierarchical SWCRT sequence: the sequence begins at one randomly selected meta-cluster.
Clusters within that meta-cluster are filled in a random order until the meta-cluster is complete, then the next meta-cluster is selected. b Oil-drop
SWCRT sequence: the sequence begins at one randomly selected cluster and spreads across adjacent clusters until the grid is filled. c Random
SWCRT sequence: clusters are selected at random until the grid is completely filled. For all SWCRT designs, by the end of the intervention rollout
there will be an equal number of cluster-days with and without the intervention. However, at almost all time points during the rollout, the
populations in the two study arms will be unequal. SWCRT stepped wedge cluster randomized trial

simulations were run assuming spatial heterogeneity in
initial incidence, with a smooth spatial pattern in initial
incidence described by bivariate probit distributions:

N
(

μ1,μ2,
[
1 ρ

ρ 1

])

and with the maximum incidence at a random location on
the 9 × 9 km grid. These spatial distributions of infection
were simulated with a range of different spatial patterns
for the rollout of the intervention.
Similarly, heterogeneity in host population density

might also affect the efficiency of different designs. To
evaluate this, simulations were run assuming a population
concentrated at the grid edges, a distribution, e.g., typical
of many islands. Half of the households initially assigned
to the 21 most central grid squares were reallocated to
randomly sampled locations (and clusters) further from
the center than this, thereby depleting the population in
the core region. For these simulations, 700 randomization
sequences corresponding to the three design structures
were evaluated at one level of initial incidence (20 %),
two levels of efficacy (30 % and 80 %), and one level of
community radius (1 km) for a total population, N(T), of
4000 individuals. For each randomization sequence, 800
simulations were carried out.

Intervention effectiveness measures
Following Halloran, Longini, and Struchiner [6, 14], a
series of effectiveness measures, ê1(t), ê2(t), . . . , ê6(t),
were computed from the results of the simulated trials.

These include estimates of direct, indirect, and over-
all effects, and two novel measures, ê5(t) and ê6(t),
that distinguish non-intervened individuals according to
whether they are considered to be close to or remote
from the intervention at time t. These measures, on which
we propose to base inferences about intervention effects,
are given in Table 1. To calculate these measures at each
time step, the population was classified into categories for
intervened, remote from the interventions, and neighbor-
ing the intervention but not yet intervened (see Figure
S1 in Additional file 1). Three of the effectiveness mea-
sures, ê1(t), ê2(t), and ê3(t), involve comparisons with the
baseline mean outcome at each time step, which is the
incidence at the time step before the first introduction of
the intervention to the island computed as

Yb =

τ=−1∑
τ=−b

∑
i
y(i, τ)

bN(T)
(5)

where b is the number of time steps included in the base-
line, y(i, t) is the observed value of the outcome (i.e.,
presenting with the disease or not), and N(T) is the total
population at risk.
ê4(t), ê5(t), and ê6(t) are contemporaneous measures

of effect that depend on the randomized assignments of
clusters, and so are particularly relevant for causal infer-
ence. The standard contemporaneous direct effectiveness
measure, ê4(t), directly compares the clinical case rate in
the intervened and non-intervened populations at each
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Table 1 Intervention effectiveness measures, as adapted from [14]

Measure Intervention Mean outcome Comparator group Time-dependent effectiveness measure
number group intervention group

Baseline comparison groups

1 Intervened
∑

i y(i,t)I(i,t)
N(t) Baseline ê1(t) = 1 −

∑
i y(i,t)I(i,t)
YbN(T)

2 Naive
∑

i y(i,t)(1−I(i,t))
N(T)−N(t) Baseline ê2(t) = 1 −

∑
i y(i,t)(1−I(i,t))

Yb(N(T)−N(t))

3 Trial population
∑

i y(i,t)
N(T) Baseline ê3(t) = 1 −

∑
i y(i,t)

YbN(T)

Contemporaneous comparison groups

4 Intervened
∑

i y(i,t)I(i,t)
N(t) Naive ê4(t) = 1 − (N(T)−N(t))

∑
i y(i,t)I(i,t)

N(t)
∑

i y(i,t)(1−I(i,t))

5 Intervened
∑

i y(i,t)I(i,t)
N(t) Naive remote from intervention ê5(t) = 1 −

∑
i y(i,t)I(i,t)

∑
i(1−I∗(i,t))

N(t)
∑

i y(i,t)(1−I∗(i,t))

6 Naive close to
∑

i y(i,t)(1−I(i,t))I∗(i,t)∑
i(1−I(i,t))I∗(i,t) Naive remote from intervention ê5(t) = 1 −

∑
i y(i,t)(1−I(i,t))I∗(i,t)

∑
i(1−I∗(i,t))∑

i y(i,t)(1−I(i,t))I∗(i,t)
∑

i y(i,t)(1−I∗(i,t))
intervention

y(i, t): Outcome measured for individual i at time t. Yb : Mean outcome at baseline. N(t): Total number of individuals in intervened clusters at time t. I(i, t): Indicator taking
value 1 if individual i is in an intervened cluster at time t, 0 otherwise. I∗(i, t): indicator taking value 1 if individual i is intervened or less than distance r from the nearest
intervened cluster at time t, 0 otherwise, so that (1 − I(i, t))I∗(i, t) indicates those individuals in the naive close to intervention category
Following Halloran [6], effectiveness measures ê1, ê2, and ê4 are direct measurements of intervention effectiveness, of which only ê4 is contemporaneous. ê3 is the overall
measure of effectiveness for a before-and-after study. ê5 and ê6 are novel contemporaneous measurements that separate the direct and indirect effects during intervention
rollout, avoiding the bias caused by contamination of the comparator group

time step. We propose a new direct effectiveness mea-
sure, ê5(t), shown in Table 1, which restricts the con-
temporaneous comparator group to those hosts located
remotely from the intervention. While ê5(t) estimates the
direct effect of the intervention, as the trial proceeds
this becomes the cumulated effect of many transmission
events (so it is not an estimate of the efficacy Es used in the
generation of the simulated trials). We also define a new
indirect effectiveness measure, ê6(t), applying the same
contemporaneous comparator group as ê5(t) to measure
the influence of the intervention in the non-intervened
group (i.e., the community effect). As before, remote is
strictly defined as all members of the non-intervened
group who have no neighbors in the opposite arm of the
trial at a given time step, where neighbor status is deter-
mined from the given community radius, r, beyond which
the spillover effect of the intervention is anticipated to
be negligible. In practice, the community radius must be
defined on the basis of observations from previous tri-
als or the biology of the pathogen. Randomness in the
infection process cannot be separated from sampling vari-
ation. To enable comparisons among effectiveness mea-
sures for these simulations, the population at risk was
equivalent to the total simulated population, N(T), fixed
at a value of 4000, and the data from all simulated indi-
viduals contributed to the effectiveness calculations. We

further considered a range of r values, where community
membership for each individual is defined at each time
step. I∗(i, t) is an indicator, taking the value 1 if x(i, t) ≤ r
and 0 if x(i, t) > r.
Each of these six time-specific effectiveness estimates,

evaluated at each time step during the simulation, is of the
form:

ê(t) = 1 − Y1(t)
Y0(t)

where Y0(t) and Y1(t) are risks or rates in the compara-
tor and intervention groups, respectively. Corresponding
to each of these measures, cumulative effectiveness mea-
sures can be computed as:

Ê(t) = 1 −

τ=t∑
τ=0

Y1(τ )

τ=t∑
τ=0

Y0(τ )

where both the numerator and denominator are summed
over all time points up to t. An overall value for each
measure is obtained by cumulating up to the end of the
trial.
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Confidence intervals

In a real trial,
τ=t∑
τ=0

Y1(τ ) and
τ=t∑
τ=0

Y0(τ ) are estimated from

proportions of tested individuals positive for the infection
or disease. Estimates of the ratio of these two proportions,
and hence of the cumulated or overall effectiveness,

Ê(t) = 1 −

τ=t∑
τ=0

Y1(τ )

τ=t∑
τ=0

Y0(τ )

(see above), can thus be made using logistic regres-
sion models, with random effect terms to allow for
temporal variation, cluster differences in incidence, and
if necessary for re-testing of the same individuals at
repeated time points. Approximate model-based confi-
dence intervals for the ratio of the two proportions and,
hence, for the effectiveness, can then be made using the
delta method [15].
To compare simulated trials, the distribution of effec-

tiveness measures and their confidence intervals were
calculated by carrying out 1000 independent simulations
of each trial and analyzing the empirical distributions of
the outcomes.

Power, design, and sequence evaluation
A characteristic of the SWCRT design is that, as the mem-
bership of the populations shifts from non-intervened to
intervened at each time step, so does the power of the
chosen effectiveness measure. Point estimates were made
from the simulations for each of the six effectiveness mea-
sures, and the power of each design was estimated for
each time step. In each case, the same radius, r, was used
for defining neighbors in the calculation of effectiveness
measures ê5(t) and ê6(t) as was used in generating the
simulations (in an actual field trial, the effects of using
different radii to define neighbors will be analyzed to
estimate the best fitting r). Empirical two-sided 90 % con-
fidence intervals of direct comparisons with baseline ê1(t)
and ê2(t), and indirect comparisons with baseline ê3(t)
and the contemporaneous ê4(t), ê5(t), and ê6(t) effective-
nessmeasures were drawn at each time step across all sim-
ulations. Results for the randomly generated sequences
corresponding to the three different types of designs are
ranked inversely by confidence interval half-width.
We derived the power estimates by comparing simu-

lation results run under the null (H0: Es = 0) and two
alternative hypotheses (Ha: Es = 0.30 and Ha: Es =
0.80). Specifically, for each effectiveness measure, the
95 % quantile of the empirical null distribution was taken
as an estimate of the critical value corresponding to a
type I error of 5 % (α = 5%) for a one-sided test. This
value directly corresponds to the critical value under the

alternative hypothesis. The value of β for each effec-
tiveness measure (both summarized over the whole trial
duration and specific to a time step) was calculated as
the area-under-the-curve to the left of the critical value
under the alternative (empirical) distribution. The power
for each effectiveness measure at each time step was then
calculated as 1 − β .
All simulations were carried out at the High Perfor-

mance Computing Core at the University of Basel in R
version 3.02. Each simulation required only a few minutes
of processing time.

Simulated trial design for the SolarMal trial
A baseline health and demographic surveillance survey
was carried out from May to July 2012 on Rusinga Island,
which enumerated 4062 households with a total mem-
bership of 23,337 inhabitants. Approximately 22 % of the
residents were diagnosed via rapid diagnostic tests as
infected with P. falciparum.
The cluster size for the trial was matched to the logis-

tical limit of the number of households that could receive
the intervention within a week (i.e., 50). Thus, in con-
trast to the simulations of regular grids, in the applica-
tion, the clusters were of approximately equal population
but not equal geographic size. A minimal spanning tree
algorithm [16], used to solve the classical traveling sales-
man problem, provided an optimal one-way path among
households across Rusinga. The 4062 households along
the path defined by the minimal spanning tree were then
counted off along the path into 81 clusters, 12 of which
were randomly selected to be assigned a total of 51 house-
holds, the remainder having 50 households assigned. A
large number of randomizations, each consisting of an
ordering of the 81 clusters thus defined, were randomly
generated, corresponding to either hierarchical, oil-drop,
or random SWCRT designs. For the hierarchical designs,
contiguous sets of nine clusters were amalgamated into
single meta-clusters (see Figure S2 in Additional file 1).
A trial, involving the rollout of one cluster per week
and based on each randomization, was simulated, with
each of the 23,337 individuals on the island modeled as
a single stochastic element. At each time step, individu-
als were identified within one of three groups: intervened,
non-intervened but within the community radius of at
least one intervened individual, or non-intervened beyond
the community radius of any intervened individual, and
each of the effectiveness measures listed in Table 1 was
computed.
To classify individuals into these groups, pairwise great-

circle distances among all households were calculated, and
used as a basis for identifying all the neighbors within
the community radius, r, for each individual within each
household. A value of 1 km for r was used, based on
the approximate scale of the effects in the trials of ITNs
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[7, 8]. The percentage of infections, Ir(i, j), averaged across
an individual’s neighborhood, was fed into the calcula-
tion for the infective reservoir at each time step. Likewise,
intervention coverage rates, Cr(i, t), for the neighborhood
of each house were calculated for each time step and fed
into the effectiveness calculation (Eq. 4a).

Analysis of effectiveness for the simulated trial design for
SolarMal and sequence selection
Point estimates and empirical 95 % confidence intervals
of the six direct and indirect effectiveness measures were
drawn for each time step from a set of 1000 independent
replications of the simulated trial. The duration of utility
of a given effectiveness measure is also of interest and is
defined as the number of weeks from the start of intro-
duction of the OBTs until the confidence interval width
of an effectiveness measure increased to 10 %. A further
ranking was made in order of total area under the con-
fidence interval width versus time step curve from the
18th to the 65th week of the 81-week rollout (complete
coverage). For this ranking procedure, confidence interval
widths from the first and last 2 months were discarded as
either the treatment or comparison groups were tending
to zero and the effectiveness measures began to fluctuate
wildly. Among those sequences with good statistical prop-
erties, additional sociological constraints were applied to
select a group of sequences acceptable to a community
stakeholder council; in particular, the intervention sched-
ule should be constrained so that entire villages receive the
intervention within 6 months.

Results
Model confirmation and explanation of the
interrelationship between effectiveness measures
Comparison of the average incidence in the intervention
arm with that in the non-intervention arm in illustrative
simulations (Fig. 2) clearly indicates that the transmission
simulator can capture the main features that we would
expect of a trial that succeeds in interrupting, or nearly
interrupting, transmission of a pathogen. There was con-
siderable variation in the incidence in the control arm in
the first part of the intervention period (following time
step 40). Only a very small number of individuals were
initially included in the intervention arm. The decrease
in incidence in the intervention arm was then rapid, and
only after about a further 20 time points was an effect
on the non-intervention arm evident. As the intervention
was rolled out further, the infection was almost elimi-
nated from the intervention arm, while the incidence in
the control arm became highly variable between time
points, presumably as a result of the reduced sample size
in this arm. Incidence in the intervention arm continued
to decrease, even once 100 % coverage was achieved, even-
tually reaching zero. This reflected the delay in the system

resulting from the assumed generation time of the infec-
tion, together with the fact that the final extinction event
was stochastic.
The effectiveness measures, computed for a specific

time from a single theoretical random design simula-
tion in which y(0) = 0.2, Es = 0.8, and r = 1
km, are shown in Fig. 3. During the initial ten time
steps after the introduction of the intervention, the direct
effectiveness measures ê1(t), ê4(t), and ê5(t) were much
lower than the efficacy in preventing infection since
many of the infections at the start of the implemen-
tation were received before the hosts joined the inter-
vention arm. These infections were initially pre-patent,
that is, pre-symptomatic. Once the pre-patent period
was exceeded, the direct effectiveness estimates rapidly
reached and then exceeded the efficacy against infection,
reflecting the cumulative effect on multiple generations of
parasites.
The indirect baseline ê2(t) and direct contemporane-

ous ê4(t) effectiveness measures diverged quickly at the
beginning of the simulation and converged at the end of
the simulation run. The baseline measure ê2(t) was ini-
tially much lower than the direct effectiveness, and first
climbed steeply towards the end of the simulation, when
most residual non-intervention areas were close to the
intervened clusters. Reflecting that the non-intervention
arm was only a small part of the simulation at the start
(when there was a low indirect effect) but predominated
at the end (when there were few infections to avert), the
addition of the indirect effect into the effectiveness cal-
culation made little difference, so that when direct and
indirect effects (computed by comparison with the base-
line) were added together, the effectiveness profile was
similar to that for the direct effect alone. The proposed
contemporaneous indirect effectivenessmeasure ê6(t) ini-
tially climbed quickly (within the first 2 months of rollout)
to its maximum value and then oscillated due to sample
size fluctuations as new clusters were brought into the
intervention arm.
The overall effect ê3(t), computed by comparison with

the baseline, was dominated by the effect of the scale-up
of the intervention and therefore, increased approximately
linearly with time.
Cumulation of the numerators and denominators of the

effectiveness estimates led to smoother curves than those
in Fig. 3, each of them tending towards a clear value at
the end of the intervention. Cumulation did not change
the inferences to be made by examining each measure
independently.

Results from design and landscape simulations
In the simulated trials, regardless of initial parameteriza-
tion or landscape (uniform or random hotspot, random
geography, or central depletion geography), the simulated
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Fig. 2 Example single random SWCRT sequence runs of the transmission simulator. Incidence of clinical events in intervened (red) and non-intervened
(blue) populations as modeled by the transmission simulator for three levels of community radius, a 0.5 km, b 1.0 km, and c 1.5 km. The cluster width
is held constant at 1 km, corresponding to an area of 1 km2. The transmission model input efficacy is 80 %. During the first 40 time steps of each
simulation, the incidence of clinical events is an auto-regressive moving average process that oscillates around the initial incidence value of 20 %.
The intervention commences at time step 41 and from time steps 41 to 121, the incidence of the pathogen decreases sharply in both arms due to
the direct effect of the intervention and the community effect. The community effect has more impact at greater radii. SWCRT stepped wedge
cluster randomized trial

interventions in all cases had a cumulative impact of elim-
inating the pathogen by the end of the rollout. Details of
the effectiveness measures and power computed from the
simulations are given in the tables provided in Additional
file 1. In all cases, the efficacy estimates and power of
comparisons against baseline measures is high because
the sample size of the comparator group is the largest
possible—i.e., the entire study population.
For all design structures and radii of effect, r, the values

of initial incidence, ε5, are higher than the other measures
of contemporaneous effectiveness (i.e., the gold line is
always above the light green and dark green lines in Fig. 4).
This is because ε5 compares intervened individuals with
only those naive individuals remote from any contami-
nation effects, and for whom, therefore, the intervention

effects are minimal. In contrast, the comparator group for
ε4, the conventional CRT effectiveness measure, contains
individuals influenced by the spatial effect of the interven-
tion and so measures an effect diluted by contamination.
ε6 measures the magnitude of this contamination effect,
and so increases when ε4 and ε5 diverge. Similar trajecto-
ries of these measures over time were observed for each
of the three designs, but the effectiveness increased much
more steeply over time when the initial incidence was low,
and increased only gradually with y0 = 80 %.
The optimal cluster size is one in which the direct and

contamination effects are clearly separable, so an appro-
priate cluster size achieves high values of ε6 and large
differences between ε4 and ε5. In our simulations, this cor-
responds most closely to clusters of width equal to the
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Fig. 3 Relationships for the six effectiveness measures from Table 1
during a single random SWCRT sequence run of the transmission
simulator. ê1(t) (filled green circles) is a direct comparison between
outcomes in the intervened group versus the status at baseline, ê2(t)
(filled pink triangles) is a direct comparison between outcomes in the
non-intervened group versus the status at baseline, and ê3(t) (filled
blue squares) is an overall comparison of the entire study area versus
baseline. ê4(t) (bright green squares) is a direct comparison between
the intervened and all non-intervened, ê5(t) (gold circles) is a direct
comparison between the intervened and those remote from the
intervention, and ê6(t) (dark green triangles) is a direct comparison
between non-intervened populations close to and remote from the
intervention. SWCRT stepped wedge cluster randomized trial

radius of the contamination, r. With clusters larger than
this (i.e., the analyses with r = 0.5 km, equivalent to
half the cluster width), ε6 remains low, because there is
relatively little contamination effect. With small clusters
relative to the radius (i.e., the analyses with r = 1.5 km),
the estimated direct effect of the intervention ε4, corre-
sponding to the conventional result, is much lower than
ε5 in most of the simulations (Fig. 4), because the effect of
the intervention spreads out across the whole surface.
Particular interest lies in the statistical power of the

contemporaneous comparisons during the rollout, where
the results are not easy to predict heuristically, because
the relative power of the measures is constantly varying.
Analyses considering a single time point at time step 60
(Table 2), indicate that among the contemporaneous mea-
sures, the one employing the remote comparator, ê5(t),
is generally of higher power than the direct compari-
son of intervened and non-intervened naive clusters ê4(t)
(Table 2). At r equal to the cluster width, ê4(t) is the
most powerful outcome, followed by ê5(t), then ê6(t).
At higher r (corresponding to a greater degree of spatial
smoothing of the intervention effects), ê4(t) generally has
lowest power. In general, power decreases with increas-
ing baseline incidence, yr(0), and correlates positively with
intervention efficacy. While the power of outcome ê6(t)
does not show a clear relationship with the design type,

the power of ê4(t) and ê5(t) is generally somewhat higher
with the oil-drop design, followed by the hierarchical, and
then the random order, though the differences are small.
The power of both ê5(t) and ê6(t) both increase

throughout the rollout in most of the settings shown in
Figs. 5 and 6, though in some cases there is a loss of power
towards the end, when the comparator groups become
small. The primary drivers of the power of a measure
are thus the efficacy, the initial incidence, and community
effect radius, regardless of design, with results becoming
less consistent at community radii of greater than half the
cluster diameter.

Results of simulations for the SolarMal trial
All three study design structures were simulated across
the Rusinga landscape, with similar relationships seen
among the designs simulated across the theoretical grid.
The overall evaluation with the project team of both oper-
ational and statistical considerations led us to conclude
that the best design for the SolarMal project would be the
hierarchical SWCRT. The logistics of the SolarMal project
were such that one meta-cluster, comprising nine clusters,
could be completed on average every three months
Hierarchical sequences were ranked inversely on the

basis of the maximum confidence interval width for ê5(t)
between simulation time steps 60 and 100. Approxi-
mately 1/3 of the hierarchical sequences examined met
this minimal criterion; a further sociological constraint,
that members within a single village receive the inter-
vention within a 6-month time frame was considerably
more restrictive. From a total of 10,000 sequences evalu-
ated, 55 met this requirement. Furthermore, each meta-
cluster was to have equal chances of being selected
first for the intervention lottery; this restraint reduced
the final set of acceptable sequences to 27. Examina-
tion of the confidence interval width versus time graphs
showed wide variation among sequences that can be
directly related to the geography of Rusinga. Certain
geographic features reappear consistently in the effec-
tiveness graphs as the design is rolled out. For exam-
ple, when meta-cluster VIII, located at the base of the
peninsula in the north-east corner of the island, appears
in the last half of a randomization sequence, the pre-
cision of the estimated effectiveness rapidly decreases;
see Fig. 7. One should expect similar geographic signa-
tures to be found in future geographically informed trial
designs.

Discussion
CRTs are widely used to evaluate interventions against
infectious agents (such as hygiene or vector control mea-
sures) because of well-known ethical and logistic lim-
itations of individually randomized controlled trials in
evaluating health interventions that are applied at the level
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Fig. 4 The three contemporaneous effectiveness measures over time. ε4 (bright green squares), ε5 (gold circles), and ε6 (dark green triangles). The
horizontal lines correspond to the simulated efficacy Es = 30 %

of the population or group [3]. The present study proposes
two extensions to the usual CRT design.
Firstly, we propose that the collection of outcome data

should include zones where contamination is likely to

occur. Contamination between intervention and control
arms is generally seen as something to avoid in CRTs,
leading to attempts to separate the study arms with buffer
zones [17]. However, CRTs with buffer zones provide
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Table 2 Power of three contemporaneous effectiveness
measures at week 60, midway through the intervention rollout,
type I error = 10 % and efficacy Es = 30 %

r yr(0) Power ê4 Power ê5 Power ê6

Hierarchical design

0.50 0.10 0.99 0.90 0.51

0.20 0.99 0.90 0.52

0.50 0.98 0.83 0.41

0.80 0.85 0.59 0.18

1.00 0.10 0.83 0.82 0.67

0.20 0.87 0.74 0.56

0.50 0.81 0.64 0.45

0.80 0.53 0.45 0.29

1.50 0.10 0.58 0.95 0.91

0.20 0.59 0.86 0.78

0.50 0.50 0.62 0.51

0.80 0.28 0.45 0.37

Oil-drop design

0.50 0.10 0.99 0.93 0.53

0.20 0.99 0.94 0.54

0.50 0.98 0.88 0.41

0.80 0.86 0.64 0.18

1.00 0.10 0.91 0.84 0.64

0.20 0.93 0.82 0.59

0.50 0.88 0.74 0.48

0.80 0.60 0.52 0.28

1.50 0.10 0.75 0.84 0.63

0.20 0.77 0.82 0.61

0.50 0.69 0.76 0.51

0.80 0.41 0.52 0.31

Random cluster design

0.50 0.10 0.98 0.89 0.52

0.20 0.99 0.90 0.52

0.50 0.97 0.83 0.40

0.80 0.84 0.58 0.18

1.00 0.10 0.80 0.80 0.66

0.20 0.84 0.73 0.58

0.50 0.79 0.63 0.45

0.80 0.50 0.44 0.29

1.50 0.10 0.54 0.94 0.88

0.20 0.54 0.79 0.74

0.50 0.45 0.56 0.48

0.80 0.25 0.41 0.36

information only about the effects of a fixed level of cov-
erage and of a single cluster geometry. It can be difficult
to exclude the possibility that contamination substantially
biases estimates of effect, since this bias, in the general
case, cannot be estimated from the trial data. Rather than
struggling to avoid the impact of such unknown commu-
nity effects, we propose that explicit measurement of the
treatment effectiveness in the boundary zones between
intervention and control areas should be used to esti-
mate these effects in space and time. Zones of imperfect
coverage are needed if inferences are to be made about
the radius of effect, the relative magnitudes of individual
and community level effects, or the temporal dynamics of
spillover effects.
Secondly, we note that local elimination of a pathogen

is a single all-or-nothing outcome at the level of a whole
area, so an empirical refutation of its feasibility requires
scale-up to universal coverage and cannot be achieved if
there are untreated control clusters. If elimination proves
not to be achievable, it is important to be able to estimate
how near the attempt was to success. Conversely, elimi-
nation may be achievable at some coverage less than the
maximum that can be reached, in which case there is a
need to identify this coverage, and to understand what
would be needed elsewhere. This specific requirement to
consider the impact of maximal coverage over a wide area
provides a strong rationale for adopting SWCRT designs
for addressing the feasibility of pathogen elimination,
additional to the questions of power, bias, and efficiency
usually considered in the debate between proponents of
parallel designs and of SWCRTs [18–21].
It is often difficult to gain acceptance for CRTs in

operational settings because program managers gener-
ally aim for complete coverage [21] and hence, tend to
evaluate programs using simple before-and-after designs.
SWCRT designs are under-exploited because program
implementers often do not appreciate the importance of
randomization, which is critical for inferring causality.
They have more immediate concerns in getting programs
off the ground, and only appreciate the need for infer-
ence about the effects of the intervention after the event
[22]. The SolarMal trial is one situation where this is
not the case, and provided an opportunity to implement
a widespread intervention trial with careful attention to
design.
The evaluation of the distances over which commu-

nity effects operate in the ITN trials [7–9] provides a
basis for evaluating the sizes for estimated community
radii for the SolarMal trial, since we assume that com-
munity effects of OBTs and of ITNs result from the
same phenomena of mosquito dispersion while forag-
ing for food (nectar and blood) and oviposition sites.
In a larger malaria control trial in Asembo, close to
the SolarMal site, effects were found for distances up
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Fig. 5 Power over time of contemporaneous effectiveness measure ε5(t) to detect a difference between the intervened treatment arm and
non-intervened arm remote from the intervention. All simulations are based on a cluster diameter of 1 km and one-sided type I error rate α = 5 %.
Open circle: hierarchical ordering; plus sign: oil-drop ordering; open triangle: random ordering. a Intervention efficacy of 30 %; b intervention
efficacy of 80 %

to 900 m from cluster boundaries [8], while on the
Kenyan coast significant effects persisted for distances
up to 1.5 km [9]. Our simulations suggest the precision
of the effectiveness measures is robust to variations in
community radius above 1 km and that clusters with

radii greater than 1 km should be used in such trials.
Rusinga Island is, however, large enough for only about
nine clusters of this size, and nine clusters would not
provide a sufficient degree of replication for a standard
CRT.

Fig. 6 Power over time of contemporaneous effectiveness measure ε6(t) to detect a difference between the naive individuals close to the
intervention and those remote from the intervention. All simulations are based on a cluster diameter of 1 km and one-sided type I error rate α=5 %.
Open circle: hierarchical ordering; plus sign: oil-drop ordering; open triangle: random ordering. a Intervention efficacy of 30 %; b intervention
efficacy of 80 %
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Fig. 7 Sequence selection. Three hierarchical sequences applied across Rusinga Island for two levels of intervention efficacy, 30 % and 80 %. Results
are color coded by the meta-cluster membership. Reading from the left, the meta-cluster sequences are [V, II, VII, III, IV, VIII, I, VI, IX], [V, IV, IX, III, VI, I,
VIII, V, II], and [IV, VII, II, IX, III, VIII, I, V, VI]. Coverage intervals widen upon introduction of the intervention to meta-cluster VIII, located at the base of the
peninsula in the north-east of the island, in the right two sequences. Coverage intervals were off the scale for the last meta-cluster of sequence 298.
Of the three cluster sequences presented, only sequence 296 met the criteria for entry into the pool for the SolarMal randomization sequence
selection lottery (coverage intervals of the primary effectiveness measure, ε5, less than 10 % from time points 60 to 100, and no single village rollout
greater than 6 months’ duration)

The use of a stepped wedge means that much smaller
individual clusters can be used than in a conventional
parallel design of CRT, since as the intervention is rolled
out, adjoining clusters are assigned to the intervention,
and the radius of intervened areas grows. This also moti-
vated us to consider the oil-drop design, in which the
intervention spreads out across the whole area from a
single randomly chosen point. While this approach is
unbiased over repeated sampling, correlation between the
geographical pattern in disease incidence and the rollout
pattern is likely tomake such a design difficult to interpret.
Conversely, for the SolarMal trial, a completely random
order of assignment of the 81 clusters would have led
to intervened areas that are too fragmented for much of
the period of scale-up (and also violated the community’s
desire to limit asynchronicity of introduction within a vil-
lage). The hierarchical SWCRT with nine meta-clusters

each divided into nine clusters, represents a compro-
mise that may increase the information obtainable from
analyses of the spatial effects of the OBTs across cluster
boundaries, while reducing the risk of a strong correlation
between baseline disease incidence and rollout pattern.
Further analysis is needed to determine how to optimize

such designs given this trade-off between the benefits of
independent allocation of clusters and optimal geometry
of the intervened areas. It is not obvious how to assess
the implications for causal inference of the dependent
assignment of clusters in the hierarchical and oil-drop
designs. Since the geometry of the intervened areas is
time-dependent, the seasonality of the disease is also rel-
evant, and although our limited analysis did not find
substantial effects of spatial heterogeneity in population
density or disease transmission on the precision of the
effectiveness measures, these remain factors that should
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be considered. For the SolarMal study, we did not aspire
to achieve optimality and a number of possible designs
and sequences were simulated. Various metrics of the
power of each effectiveness measure to estimate the spa-
tial effect of the intervention on clinical malaria incidence
were assessed, and a set of the preferred sequences of the
hierarchical design was presented to community repre-
sentatives as alternatives, and the one to be implemented
was drawn by lot.
The contemporaneous comparison of intervened ver-

sus naive areas (ê4(T)) should, in general, be considered
the primary outcome of a SWCRT, but the quantification
of effects at different levels of proximity to the interven-
tion and over time using ê6(t) is likely to prove invaluable
for parameterizing models of the effects of varying cov-
erage in space and time. An extension of such empirical
time and space models will be to include time-weighted
lags in the effects of coverage, akin to the modeling of
SWCRT proposed by Hussey and Hughes [3]. This will
allow generalized prediction of the likely impact of dif-
ferent patterns of coverage of OBTs in space and time.
The broad principles of the analysis will be similar for
different outcomes: densities of host-seeking mosquitoes
(as measured by sentinel OBTs), parasite positivity (by
a rapid diagnostic test), malaria fever incidence, and all-
cause mortality. Another extension of this work would
be to develop analytical formulae for interval estima-
tion of the novel outcome measures, and to assess their
nominal coverage against intervals obtained (as in this
paper) from repeated simulations. However, in practice,
the model-based confidence intervals described above,
or sampling-based approaches such as bootstrapping or
Bayesian Markov chain Monte Carlo, provide alternatives
to the development of such bespoke methods. Sampling-
based approaches are especially attractive since they can
easily be applied to extended models incorporating lags
and covariates. A program in R that can be used to sim-
ulate trials with different values of y(0), Es, r, and N(T)

is provided as Additional file 2. This program could be
adapted both to consider further effects of spatial and
temporal heterogeneity in risk, and also for the design of
other trials with different geographies.

Conclusions
Contamination between arms in CRTs can be a source of
information about the effects of incomplete coverage, and
can provide supporting evidence for causal inference. It
follows that trials should be designed with such analyses
inmind, and contamination should not be seen simply as a
problem to be avoided.Where scale-up to complete cover-
age is required, as in assessments of the feasibility of local
elimination of a pathogen, the SWCRT is an appropri-
ate design. This leads to temporal changes in which zones
are affected by contamination. The SolarMal example

illustrates how generic transmissionmodels incorporating
spatial smoothing can be used to simulate such trials for
a power calculation and optimization of cluster size and
randomization strategies. The approach is applicable to a
range of infectious diseases transmitted via environmental
reservoirs or via arthropod vectors.
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