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Abstract

background: The pace of novel medical treatments and approaches to therapy has accelerated in recent years.
Unfortunately, many potential therapeutic advances do not fulfil their promise when subjected to randomized
controlled trials. It is therefore highly desirable to speed up the process of evaluating new treatment options,
particularly in phase II and phase III trials. To help realize such an aim, in 2003, Royston and colleagues proposed a
class of multi-arm, two-stage trial designs intended to eliminate poorly performing contenders at a first stage
(point in time). Only treatments showing a predefined degree of advantage against a control treatment were
allowed through to a second stage. Arms that survived the first-stage comparison on an intermediate outcome
measure entered a second stage of patient accrual, culminating in comparisons against control on the definitive
outcome measure. The intermediate outcome is typically on the causal pathway to the definitive outcome (i.e. the
features that cause an intermediate event also tend to cause a definitive event), an example in cancer being
progression-free and overall survival. Although the 2003 paper alluded to multi-arm trials, most of the essential
design features concerned only two-arm trials. Here, we extend the two-arm designs to allow an arbitrary number
of stages, thereby increasing flexibility by building in several ‘looks’ at the accumulating data. Such trials can
terminate at any of the intermediate stages or the final stage.

Methods: We describe the trial design and the mathematics required to obtain the timing of the ‘looks’ and the
overall significance level and power of the design. We support our results by extensive simulation studies. As an
example, we discuss the design of the STAMPEDE trial in prostate cancer.

Results: The mathematical results on significance level and power are confirmed by the computer simulations. Our
approach compares favourably with methodology based on beta spending functions and on monitoring only a
primary outcome measure for lack of benefit of the new treatment.

Conclusions: The new designs are practical and are supported by theory. They hold considerable promise for
speeding up the evaluation of new treatments in phase II and III trials.

1 Introduction
The ongoing developments in molecular sciences have
increased our understanding of many serious diseases,
including cancer, HIV and heart disease, resulting in
many potential new therapies. However, the US Food
and Drug Administration has identified a slowdown,
rather than an expected acceleration, in innovative med-
ical therapies actually reaching patients [1]. There are

probably two primary reasons for this. First, most new
treatments show no clear advantage, or at best have a
modest effect, when compared with the current standard
of care. Second, the large number of such potential
therapies requires a corresponding number of large and
often lengthy clinical trials. The FDA called for a ‘pro-
duct-development toolkit’ to speed up the evaluation of
potential treatments, including novel clinical trial
designs. As many therapies are shown not to be effec-
tive, one component of the toolkit is methods in which
a trial is stopped ‘early’ for lack of benefit or futility.* Correspondence: pr@ctu.mrc.ac.uk
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Several methodologies have been proposed in the past
to deal with stopping for futility or lack of benefit,
including conditional power and spending functions.
With the futility approach, assumptions are made about
the distribution of trial data yet to be seen, given the
data so far. At certain points during the trial, the condi-
tional power is computed, the aim being to quantify the
chance of a statistically significant final result given the
data available so far. The procedure is also known as
stochastic curtailment. As a sensitivity analysis, the cal-
culations may be carried out under different assump-
tions about the data that could be seen if the trial were
continued [2]. For example, treatment effects of different
magnitudes might be investigated under the alternative
hypothesis of a non-null treatment effect.
Alpha-spending functions were initially proposed by

Armitage et al. [3] and extensions to the shape of these
functions were suggested by several authors including
Lan & DeMets [4] and O’Brien & Fleming [5]. In
essence, the approach suggests a functional form for
‘spending’ the type 1 error rate at several interim ana-
lyses such that the overall type 1 error is preserved,
usually at 5%. The aim is to assess whether there is evi-
dence that the experimental treatment is superior to
control at one of the interim analyses. Pampallona et al.
[6] extended the idea to beta or type 2 error spending
functions, potentially allowing the trial to be stopped
early for lack of benefit of the experimental treatment.
In the context of stopping for lack of benefit, Royston

et al. [7] proposed a design for studies with a time-to-
event outcome that employs an intermediate outcome
in the first stage of a two-stage trial with multiple
research arms. The main aims are quickly and reliably
to reject new therapies unlikely to provide a predefined
advantage over control and to identify those more likely
to be better than control in terms of a definitive out-
come measure. An experimental treatment is eliminated
at the first stage if it does not show a predefined degree
of advantage (e.g. a sufficiently small hazard ratio) over
the control treatment. In the first stage, an experimental
arm is compared with the control arm on an intermedi-
ate outcome measure, typically using a relaxed signifi-
cance level and high power. The relaxed significance
level allows the first stage to end relatively early in the
trial timeline, and high power guards against incorrectly
discarding an effective treatment. Arms which survive
the comparison enter a further stage of patient accrual,
culminating at the end of the second stage in a compari-
son against control based on the definitive outcome.
A multi-arm, two-stage design was used in GOG182/

ICON5 [8], the first such trial ever run. Early termina-
tion indeed occurred for all the experimental arms. The
trial, which compared four treatments for advanced
ovarian cancer against control, was conducted by the

Gynecologic Oncology Group in the USA and the MRC
Clinical Trials Unit, London, and investigators in Italy
and Australia. The trial was planned to run in two
stages, but after the first-stage analysis, the Independent
Data Monitoring Committee saw no justification to con-
tinue accrual to any of the treatment arms based on the
intermediate outcome of progression-free survival. Early
stopping allowed resources to be concentrated on other
trials, hypothetically saving about 20 years of trial time
compared with running four two-arm trials one after
the other with overall survival as the primary outcome
measure.
Here, we show how a parallel group, two-arm, two-

stage design may be extended to three or more stages,
thus providing stopping guidelines at every stage.
Designs with more than two arms involve several pair-
wise comparisons with control rather than just one;
apart from the multiplicity issue, the multi-arm designs
are identical to the two-arm designs. In the present
paper, section 2 describes the designs and the methodol-
ogy underlying our approach, including choice of out-
come measure and sample size calculation. Section 3
briefly compares our approach with designs based on
beta-spending functions. In section 4, we present simu-
lation studies to assess the operating characteristics of
the designs in particular situations. In section 5, we
describe a real example, the ongoing MRC STAMPEDE
[9] randomized trial in prostate cancer, which has six
arms and is planned to run in 5 stages. The needs of
STAMPEDE prompted extension of the original metho-
dology to more than two stages. Further design issues
are discussed in section 6.

2 Methods
2.1 Choosing an intermediate outcome measure
Appropriate choices of an intermediate outcome mea-
sure (I) and definitive outcome measure (D) are key to
the design of our multi-stage trials. Without ambiguity,
we use the letters I and D to mean either an outcome
measure (i.e. time to a relevant event) or an outcome
(an event itself), for example I = (time to) disease pro-
gression, D = (time to) death. The ‘treatment effect’ on I
is not required to be a surrogate for the treatment effect
on D. The basic assumptions for I in our design are that
it occurs no later than D, more frequently than D and is
on the causal pathway to D. If the null hypothesis is
true for I, it must also hold for D.
Crucially, it is not necessary that a true alternative

hypothesis for I translate into a true alternative hypoth-
esis for D. However, the converse must hold - a true
alternative hypothesis for D must imply a true alterna-
tive hypothesis for I. Experience tells us that it is com-
mon for the magnitude of the treatment effect on I to
exceed that on D.
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As an example, consider the case mentioned above,
common in cancer, in which I = time to progression or
death, D = time to death. It is quite conceivable for a
treatment to slow down or temporarily halt tumour
growth, but not ultimately to delay death. It would of
course be a problem if the reverse occurred and went
unrecognised, since the power to detect the treatment
effect on I in the early stages of one of our trials would
be compromised, leading to a larger probability of stop-
ping the trial for apparent lack of benefit. In practice,
we typically make the conservative assumption that the
size of the treatment effect is the same on the I and D
outcomes.
In the latter case, a rational choice of I might be D

itself. The case I = D is also relevant to other practical
situations, for example the absence of an obvious choice
for I, and is a special case of the methodology presented
here.
The treatment effects, i.e. (log) hazard ratios, on I and

D do not need to be highly correlated, although in prac-
tice they often are. We refer here to the correlation
between treatment effects on I and D within the trial,
not across cognate trials. When I and D are time-to-
event outcome measures, the correlation of the (log)
hazard ratios is time-dependent. Specifically, the correla-
tion depends on the accumulated numbers of events at
different times, as discussed in section 2.7.
Examples of intermediate and primary outcome mea-

sures are progression-free (or disease-free) survival and
overall survival for many cancer trials, and CD4 count
and disease-specific survival for HIV trials.

2.2 Design and sample size
Our multi-arm, multi-stage (MAMS) designs involve the
pairwise comparison of each of several experimental
arms with control. In essence, we view MAMS designs
as a combination of two-arm, multi-stage (TAMS) trials;
that is, we are primarily interested in comparing each of
the experimental arms with the control arm. Apart from
the obvious issue of multiple treatment comparisons,
methodological aspects are similar in MAMS and
TAMS trials. In this paper, therefore, we restrict atten-
tion to TAMS trials with just one experimental arm, E,
and a control arm, C.
Assume that the definitive outcome measure, D, in a

randomized controlled trial is a time- and disease-
related event. In many trials, D would be death. As just
discussed, in our multi-stage trial design we also require
a time-related intermediate outcome, I, which is
assumed to precede D.
A TAMS design has s > 1 stages. The first s - 1 stages

include a comparison between E and C on the inter-
mediate outcome, I, and the sth stage a comparison

between E and C on the definitive outcome, D. Let Δi

be the true hazard ratio for comparing E with C on I at
the ith stage (i <s), and let Δs be the true hazard ratio
for comparing E with C on D at the sth stage. We
assume proportional hazards holds for all treatment
comparisons.
The null and alternative hypotheses for a TAMS

design are

H0(stage i) : �i = �0
i , i = 1, . . . , s

H1(stage i) : �i = �1
i , i = 1, . . . , s

The primary null and alternative hypotheses, H0 (stage
s) and H1 (stage s), concern Δs, with the hypotheses at
stage i (i <s) playing a subsidiary role. Nevertheless, it is
necessary to supply design values for all the hypotheses.
In practice, the �0

i are almost always taken as 1 and the

�1
i as some fixed value < 1 for all i = 1, ..., s; in cancer

trials, �1
i = 0.75 is a often reasonable choice. Note, how-

ever, that taking �1
s = �1

i for all i <s is a conservative
choice; the design allows for �1

s < �1
i . For example, in

cancer, if I is progression-free survival and D is death it
may be realistic and efficient to take, say, �1

s = 0.75 and

�1
i = 0.7 for i <s. In what follows, when the interpreta-

tion is clear we omit the (stage i) qualifier and refer
simply to H0 and H1.
If E is better than C then �i < �0

i for all i. Let

�̂i(i < s) be the estimated hazard ratio comparing E
with C on outcome I for all patients recruited up to and
including stage i, and �̂s be the estimated hazard ratio
comparing E with C on D for all patients at stage s (i.e.
at the time of the analysis of the definitive outcome).
The allocation ratio, i.e. the number of patients allo-

cated to E for every patient allocated to C, is assumed
to be A, with A = 1 representing equal allocation, A < 1
relatively fewer patients allocated to E and A > 1 rela-
tively more patients allocated to E.
The trial design with a maximum of s stages screens E

for ‘lack of benefit’ at each stage, as follows:
Stages 1 to s - 1

1. For stage i, specify a significance level ai and
power ωi together with hazard ratios �0

i and �1
i , as

described above.
2. Using the above four values, we can calculate ei,
the cumulative number of events to be observed in
the control arm during stages 1 through i. Conse-
quently, given the accrual rate, ri, and the hazard
rate, lI, for the I-outcome in the control arm, we
can calculate ni, the number of patients to be
entered in the control arm during stage i, and Ani,
the corresponding number of patients in the
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experimental arm. We can also calculate the (calen-
dar) time, ti, of the end of stage i.
3. Given the above values, we can also calculate a
critical value, δi, for rejecting H0 = Δi = �0

i . We dis-
cuss the determination of δi in detail in section 2.3.
4. At stage i, we stop the trial for lack of benefit of E
over C if the estimated hazard ratio, �̂i, exceeds the
critical value, δi. Otherwise we continue to the next
stage of recruitment.

Stage s:
The same principles apply to stage s as to stages 1 to

s - 1, with the obvious difference that es, the required
number of control arm events (cumulative over
all stages), and lD, the hazard rate, apply to D rather
than I.
If the experimental arm survives all of the s - 1 tests

at step 4 above, the trial proceeds to the final stage,
otherwise recruitment is terminated early.
To limit the total number of patients in the trial, an

option is to stop recruitment at a predefined time, t*,
during the final stage. Stopping recruitment early
increases the length of the final stage. See Appendix A
for further details.
To implement such a design in practice, we require

values for δi, ei, ni for stages i = 1, ..., s. To plan the trial
timelines, we also need t1, ..., ts, the endpoints of each
stage. We now consider how these values are
determined.

2.3 Determining the critical values δ1, ..., δs
We assume that the estimated log hazard ratio, ln �̂i, at
stage i is distributed as follows:

Under H0 : ln �̂i ∼ N(ln�0
i , v

0
i )

Under H1 : ln �̂i ∼ N(ln�1
i , v

1
i )

where v0i and v1i are approximate variances under H0

and H1, respectively. Suppose that a1, ..., as, one-sided
significance levels relevant to these hypotheses, have
been specified. By definition

αi = Pr
(
ln �̂i < ln δi|H0

)

= Pr

(
ln �̂i − ln�0

i

σ 0
i

<
ln δi − ln�0

i

σ 0
i

|H0

)

= �

(
ln δi − ln�0

i

σ 0
i

)

= �
(
zαi

)
say, where σ ·

i with superscript 0 or 1 denotes the
square root of the relevant v·i and F(·) is the standard
normal distribution function. Similarly, specifying

powers (one minus type 2 error probabilities) ω1, ..., ωs,
we have

ωi = Pr
(
ln �̂i < ln δi|H1

)
= �

(
ln δi − ln�1

i

σ 1
i

|H1

)
(1)

= �(zωi) (2)

It follows that

ln δi = ln�0
i + σ 0

i zαi = ln�1
i + σ 1

i zωi

To obtain the critical values, δi, it is necessary to pro-
vide values of the significance level, ai, and power, ωi,
for every stage. We discuss the choice of these quanti-
ties in section 2.6.
We also need values for σ 0

i and σ 1
i . According to Tsia-

tis [10], the variance of ln �̂i under H0 or under H1 is
given approximately by

v0i = v1i =
1
ei

+
1
Aei

=
1 + A−1

ei
, (3)

where A is the allocation ratio, ei is the number of I-
events at stage i = 1, ..., s - 1 and es is the number of D-
events at stage s in the control arm (see section 2.2). It
follows that

ei = (1 + A−1)
(zαi − zωi)

2

(ln�0
i − ln�1

i )
2 (4)

Under H1 there are fewer events of both types than
under H0, and therefore the power undershoots the
desired nominal value, ωi. A better estimate of the
power is based on a more accurate approximation to
the variance of a log hazard ratio under H1, namely, the
sum of the reciprocals of the numbers of events in each
arm, allowing for the smaller number expected under
H1. We therefore take v0i as in eqn. (3) and

v1i =
1
ei

+
1
e∗i

(5)

where e∗i is the number of events in the experimental
arm under H1 by the end of stage i when there are ei
events in the control arm and the allocation ratio is A.
(Note that A is implicitly taken into account in e∗i .) An
algorithm to calculate ei, e

∗
i and the corresponding ti is

described next.

2.4 Algorithm to determine number of events and
duration of stages
The values of ei, e

∗
i and ti for i = 1, ..., s are found by

applying an iterative algorithm, which in outline is as
follows:
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1. Use eqn. (4) to calculate an initial estimate of ei,
the number of events required in the control arm.
2. Calculate the corresponding critical log hazard

ratio ln δi = ln�0
i + zαiσ

0
i = ln �0

i + zαi

√
(1 + A−1)/ei.

3. Calculate ti, the time at which stage i ends.
4. Calculate under H1 the numbers of events
expected in the control arm (ei) and experimental
arm (e∗i ) by time ti.
5. Using eqn. (1), calculate ω∗

i , the power at the end
of stage i available with ei and e∗i events.
6. If ω∗

i < ωi, increment ei by 1 and return to step 2,
otherwise terminate the algorithm.

Details of two subsidiary algorithms required to imple-
ment steps 3 and 4 are given in Appendix A.
Note that the above algorithm requires only the pro-

portional hazards assumption in all calculations except
that for the stage end-times, ti, where we assume that
times to I and to D events are exponentially distributed.
The exponential assumption is clearly restrictive, but if
it is breached, the effect is only to reduce the accuracy
of the ti. The key design quantities, the numbers (ei and
e∗i ) of events required at each stage, are unaffected.

2.5 Determining the required numbers of patients
A key parameter of the TAMS design is the anticipated
patient recruitment (or accrual) rate. Let ri be the number
of patients entering the control arm per unit time during
stage i. Accrual is assumed to occur at a uniform rate in a
given stage. In practice, ri tends to increase with i as
recruitment typically picks up gradually during a trial’s life
cycle. Let t0 = 0, and let di = ti - ti - 1 (i = 1, ..., s) be the
duration of the ith stage. The number of patients recruited
to the control arm during stage i is ni = ridi, and to the
experimental arm it is Ani. Provided that E ’survives’ all s -
1 intermediate stages, the total number of patients

recruited to the trial is n = (1 + A)
∑s

i=1
ridi.

To limit the required sample size, the trialist may plan
to halt recruitment at a time t* <ts which occurs during
some stage a + 1 (0 ≤ a <s), and follow the patients up
until the required number of events is observed. How-
ever, halting recruitment before the end of any inter-
mediate stage would remove the possibility of ceasing
recruitment to experimental arms during that or later
stages, thus making those stages redundant. The only
sensible choice, therefore, is for t* to occur during the
final stage, and we can take a = s - 1. The required
number of patients is then

n = (1 + A)

[
rsd

∗ +
s−1∑
i=1

ridi

]

where d* = t* - ts-1 and t* is taken as ts if recruitment
continues to the end of stage s.

2.6 Setting the significance level and power for each
stage
Reaching the end of stage i (i <s) of a TAMS trial trig-
gers an interim analysis of the accumulated trial data,
the outcome of which is a decision to continue recruit-
ment or to terminate the trial for lack of benefit. The
choice of values for each ai and ωi at the design stage is
guided by two considerations.
First, we believe it is essential to maintain a high over-

all power (ω) of the trial. The implication is that for
testing the treatment effect on the intermediate out-
come, the power ωi (i <s) should be high, e.g. at least
0.95. For testing the treatment effect on the definitive
outcome, the power at the sth stage, ωs, should also be
high, perhaps of the order of at least 0.9. The main cost
of using a larger number of stages is a reduction in
overall power.
Second, given the ωi, the values chosen for the ai largely

govern the numbers of events required to be seen at each
stage and the stage durations. Here we consider larger-
than-traditional values of ai, because we want to make
decisions on dropping arms reasonably early, i.e. when a
relatively small number of events has accrued. Given the
magnitude of the targeted treatment effect and our require-
ment for high power, we are free to change only the ai. It is
necessary to use descending values of ai, otherwise some of
the stages become redundant. For practical purposes, a
design might be planned to have roughly equally spaced
numbers of events occurring at roughly equally spaced
times. For example, total (i.e. control + experimental arm)
events at stage i might be of the order of 100i. A geometric
descending sequence of ai values starting at a1 = 0.5 very
broadly achieves these aims. As a reasonable starting point
for trials with up to 6 stages, we suggest considering ai =
0.5i (i <s) and as = 0.025. The latter mimics the conven-
tional 0.05 two-sided significance level for tests on the D-
outcome. More than 6 stages will rarely be needed as they
are unlikely to be of practical value.
As an example, Table 1 shows the numbers of events

and stage times for two scenarios. s = 4 stages, accrual
ri = 100 patients/yr, �0

i = 1, �1
i = 0.75 for i = 1, ..., s,

median survival time for I (D) events = 1 (2) yr (i.e.
hazard lI = 0.69, lD = 0.35), ai = 0.5i (i = 1, 2, 3), a4 =
0.025, and allocation ratio A = 1 or 0.5. Clearly, ‘fine-
tuning’ may be needed, for example reducing a3 in
order to increase t3.

2.7 Determining the overall significance level and power
Having specified the significance level and power for
each stage of a TAMS design, the overall significance
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level, a, and power, ω, are required. They are defined as

α = P(�̂1 < δ1, . . . , �̂s < δs|H0)

ω = P(�̂1 < δ1, . . . , �̂s < δs|H1)

We assume that the distribution of
(
ln �̂1, . . . , ln �̂s

)
is multivariate normal with the same correlation matrix,
R, under H0 and H1. We discuss the meaning and esti-
mation of R below. In the notation of section 2.3, we
have

α = �s(zα1 , . . . , zαs ;R)

ω = �s(zω1 , . . . , zωs ;R)
(6)

where Fs(.;R) denotes the standard s-dimensional mul-
tivariate normal distribution function with correlation
matrix R.
The (i, j)th element Rij of R (i, j = 1, ..., s) is the corre-

lation between ln �̂i and ln �̂j, the log hazard ratios of
the outcome measures at the ends of stages i and j. For
i, j <s we show in Appendix B that, to an excellent first
approximation,

corr(�̂1, �̂j) =

√
ei
ej

(7)

Since corr
(
�̂i, �̂j

)
and corr

(
ln�̂i, ln �̂j

)
are asympto-

tically equal, our approximation to Rij is

Rij =

√
ei
ej

Exact calculation of the correlation Ris between the log
hazard ratios on the I- and D-outcomes appears intract-
able. It depends on the interval between ti and ts and on
how strongly related the treatment effects on the I and

D outcomes are. If I is a composite event which includes
D as a subevent (for example, I = progression or death,
D = death), the correlation could be quite high. In sec-
tion 2.7.1 we suggest an approach to determining Ris

heuristically.
If the I and D outcomes are identical, a and ω in eqn.

(6) are the overall significance level and power of a
TAMS trial. When I and D differ, the overall signifi-
cance level, aI, and power, ωI, of the combined I-stages
only are

αI = �s−1(zα1 , . . . , zαs−1 ;R
(s−1))

ωI = �s−1(zω1 , . . . , zωs−1 ;R
(s−1))

where R(s-1) denotes the matrix comprising the first s -
1 rows and columns of R. Even with no information on
the values of Ris, lower and upper bounds on a and ω
may be computed as

αlower = αIαs, αupper = min(αI,αs)

ωlower = ωIωs, ωupper = min(ωI,ωs)

The minima occur when Ris = 1 for all i (i.e. 100%
correlation between ln �̂i and ln �̂s), and the maxima
when Ris = 0 for all i (no correlation between ln �̂i and

ln �̂s).
Note that unlike for standard trials in which a and ω

play a primary role, neither a nor ω is required to rea-
lize a TAMS design. However, they still provide impor-
tant design information, as their calculated values may
lead one to change the ai and/or the ωi.
2.7.1 Determining Ris
In practice, values of Ris are unlikely to lie close to
either 0 or 1. One option, as described in Reference [7],
is to estimate Ris by bootstrapping relevant existing trial
data after the appropriate numbers of I-events or D-
events have been observed at the end of the stages of

Table 1 Suggested significance level and power at each stage of a TAMS design with four stages and an allocation
ratio of either 1 or 0.5

Allocation Ratio Stage Significance level (1-sided) Power Number of events Time

Control arm Total

A i ai ωi ei ei + e∗i ti

1 1 0.5 0.95 73 133 1.7

2 0.25 0.95 139 256 2.6

3 0.125 0.95 198 369 3.3

4 0.025 0.9 264 486 5.0

0.5 1 0.5 0.95 113 160 1.9

2 0.25 0.95 211 301 2.8

3 0.125 0.95 301 432 3.6

4 0.025 0.9 399 568 5.4

The number of events in the control arm and overall at each stage are shown, together with the time at which each stage ends. The assumptions underlying the
calculations are described in the text.
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interest. The approach is impractical as a general solu-
tion, for example for implementation in software.
An alternative, heuristic approach to determining Ris is

as follows. Given the design parameters (ai, ωi) (i = 1,
..., s), the number ei of control-arm I-events is about the
same as the number of D-events, when the calculations
are run first using only I-outcomes and then using only
D-outcomes. (Essentially, the two designs are the same.)
Therefore, the correlation structure of the hazard ratios
between stages must be similar for I-events and D-
events. For designs in which I and D differ, we conjec-
ture that

Ris � c
√
ei
es

(8)

where c is a constant independent of the stage, i. We

speculate that c is related to corr
(
ln �̂I, ln �̂D

)
, the cor-

relation between the estimated log hazard ratios on the
two outcomes at a fixed time-point in the evolution of
the trial. Under the assumption of proportional hazards
of the treatment effect on both outcomes, the expecta-

tion of corr
(
ln �̂I, ln �̂D

)
is independent of time, and

can be estimated by bootstrapping suitable trial data [7].
Note that if the I- and D-outcomes are identical then

c = 1 and eqn. (8) reduces to eqn. (7). If they are differ-
ent, the correlation must be smaller and c < 1 is an
attenuation factor.
We estimated c and investigated whether c is inde-

pendent of i in a limited simulation study. The design
was as described in section 4.3.1. The underlying
correlation between the normal distributions used to
generate the exponential time-to-event distributions
for I- and D-events was 0.6. The value of c was esti-

mated as Ris

/√
ei

/
es for the first two combinations of

ai (the third combination produces a degenerate
design when only I-events are considered–stage 3 is of
zero length). Accrual rates were set to 250 and 500
patients per unit time. The results are shown in

Table 2. The estimates of c range between 0.63 and
0.73 (mean 0.67). Although not precisely constant,
c does not vary greatly.
The correlation between ln �̂I and ln �̂D at the end of

stage 1 and at the end of stage 2 was approximately 0.6,
i.e. about 10 percent smaller than c. As a rule of
thumb, we suggest using eqn. (8) with c ≃ 1.1

corr
(
ln �̂I, ln �̂D

)
when an estimate of the correlation

is available. In the absence of such knowledge, we
suggest performing a sensitivity analysis of a and ω to c
over a sensible range, for example c ∈ [0.4, 0.8]; see
Table Seven for an example.

2.8 Determining ‘stagewise’ significance level and power
The significance level or power at stage i is conditional
on the experimental arm E having passed stage i - 1. Let
ai|i-1 be the probability under H0 of rejecting H0 at stage
i, given that E has passed stage i - 1. Similarly, let ωi|i-1

be the ‘stagewise’ power, that is the probability under
H1 of rejecting H0 at significance level ai at stage i,
given that E has passed stage i - 1. Passing stage i - 1
implies having passed earlier stages i-2, i-3, ..., 1 as well.
The motivation for calculating theoretical values of ai|i-1

and ωi|i-1 is to enable comparison with their empirical
values in simulation studies.
By the rules of conditional probability, we have

αi|i−1 =
�i(zα1 , ..., zαi ;R

(i))
�i−1(zα1 , ..., zαi−1 ;R(i−1))

ωi|i−1 =
�i(zω1 , ..., zωi ;R

(i))
�i−1(zω1 , ..., zωi−1 ;R(i−1))

(9)

where R(i) denotes the matrix comprising the first i
rows and columns of R. R(1) is redundant; when i = 2,
the denominators of (9) for a2|1 and ω2|1 are a1 and ω1

respectively.
For example, suppose that s = 2, a1 = 0.25, a2 =

0.025, ω1 = 0.95, ω2 = 0.90, R(2)
12

= 0.6; then a2|1 =

0.081, ω2|1 = 0.920.

Table 2 Estimation of the attenuation factor, c, required to compute the correlations, Ris, between hazard ratios on
the I-outcome and D-outcome

Acc rate a1, a2, a3

√
e1/e3

√
e2/e3 Under H1 Under H0

R13 c R23 c R13 c R23 c

250 0.5, 0.25, 0.025 0.526 0.728 0.361 0.69 0.493 0.68 0.367 0.70 0.504 0.69

0.2, 0.1, 0.025 0.776 0.907 0.529 0.68 0.594 0.66 0.529 0.68 0.598 0.66

500 0.5, 0.25, 0.025 0.527 0.728 0.369 0.70 0.476 0.64 0.383 0.73 0.487 0.67

0.2, 0.1, 0.025 0.778 0.909 0.505 0.65 0.575 0.63 0.512 0.66 0.577 0.63

“Acc. rate” denotes the accrual rate of patients per unit time.
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3 Comments on other approaches
3.1 Beta spending functions
Pampallona et al. [6] propose beta spending functions
which allow for early stopping in favour of the null
hypothesis, i.e. for lack of benefit. The beta spending
functions and their corresponding critical values are
derived together with alpha spending functions and
hence allow stopping for benefit or futility in the same
trial. An upper and a lower critical value for the hazard
ratio are applied at each interim analysis. The approach
is implemented in EAST5 (see http://www.cytel.com/
software/east.aspx). The method may also be applied to
designs which allow stopping only for lack of benefit,
which is closest in spirit to our approach.
The main difference between our approach and beta

spending functions lies in the specification of the critical
hazard ratio, δi, at the ith stage. If a treatment is as
good as specified in the alternative hypothesis, we want
a high probability that it will proceed to the next stage
of accrual—hence the need for high power (e.g. 95%) in
the intermediate stages. The only way to increase power
with a given number of patients is to increase the signif-
icance level. A higher than usual significance level (ai) is
justifiable because an ‘error’ of continuing to the next
stage when the treatment arm should fail the test on δi
is less severe than stopping recruitment to an effective
treatment.
Critical values for beta spending functions are deter-

mined by the shape of the spending function as infor-
mation accumulates. Pampallona et al. [6]’s beta
spending functions, allowing for early stopping only in
favour of the null hypothesis, maintain reasonable over-
all power. However, a stringent significance level oper-
ates at the earlier stages, implying that the critical value
for each stage is far away from a hazard ratio of 1 (the
null hypothesis). Regardless of the shape of the chosen
beta spending function, analyses of the intermediate out-
come are conducted at a later point in time, that is,
when more events have accrued, than with our approach
for comparable designs.
The available range of spending functions with known

properties does not allow the same power (or a) to be
specified at two or more analyses [11]. Specifying the
same power at each intermediate stage, an option in a
TAMS design, is appealing because it allows the same
low probability of inappropriately rejecting an effective
treatment to be maintained at all stages.

3.2 Interim monitoring rules for lack of benefit
Recently, Freidlin et al. [12] proposed the following rule:
stop for lack of benefit if at any point during the trial
the approximate 95% confidence interval for the hazard
ratio excludes the design hazard ratio under H1. They
modify the rule (i) to start monitoring at a minimum

cumulative fraction of information (i.e. the ratio of the
cumulative number of events so far observed to the
designed number), and (ii) to prevent the implicit
hazard-ratio cut-off, δ, being too far below 1. (They sug-
gest applying a similar rule to monitor for harm, that is,
for the treatment effect being in the ‘wrong’ direction.)
They state that the cost of their scheme in terms of
reduced power is small, of the order of 1%.
For example, consider a trial design with Δ1 = 0.75,

one-sided a = 0.025 and power ω = 0.9 or 0.8. In their
Tables 3 and 4, Freidlin et al. [12] report that on average
their monitoring rule with 3 looks stops such trials for
lack of benefit under H0 at 64% or 70% of information,
respectively. The information values are claimed to be
lower (i.e. better) than those from competing methods
they consider. For comparison, we computed the average
information fractions in simulations of TAMS designs.
We studied stopping under H0 in four-stage (i.e. 3 looks)
TAMS trials with a values of 0.5, 0.25, 0.1 and 0.025, and
power 0.95 in the first 3 stages and 0.9 in the final stage.
With an accrual rate of 250 pts/year, we found the mean
information fractions on stopping to be 49% for designs
with I = D and 21% with I ≠ D. In the latter case, the
hazard for I outcomes was twice that for D outcomes,
resulting in greater than a halving of the information
fraction at stopping compared with I = D.
As seen in the above example, a critical advantage of

our design, not available with beta spending function
methodology or with Freidlin’s monitoring schemes, is
the use of a suitable intermediate outcome measure to
shorten the time needed to detect ineffective treatments.
Even in the I = D case, our designs are still highly com-
petitive and have many appealing aspects.

4 Simulation studies
4.1 Simulating realistic intermediate and definitive
outcome measures
Simulations were conducted to assess the accuracy of
the calculated power and significance level at each stage
of a TAMS design and overall. We aimed to simulate
time to disease progression (X) and time to death (Y) in
an acceptably realistic way. The intermediate outcome
measure of time to disease progression or death is then
defined as Z = min (X, Y). Thus Z mimics the time to
an I-event and Y the time to a D-event. Note that X, the
time to progression, could in theory occur ‘after death’
(i.e. X >Y); in practice, cancer patients sometimes die
before disease progression has been clinically detected,
so that the outcome Z = min (X, Y) = Y in such cases is
perfectly reasonable.
The theory presented by Royston et al [7] and

extended here to more than 2 stages is based on the
assumption that Y and Z are exponentially distributed
and positively correlated. As already noted, the
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exponential assumption affects the values only of the
stage times, ti. To generate pseudo-random variables X,
Y and Z with the required property for Y and Z, we
took the following approach. We started by simulating
random variables (U, V) from a standard bivariate nor-
mal distribution with correlation rU,V > 0. X and Y were
calculated as

X = −λ−1
1 ln�(U)

Y = −λ−1
2 ln�(V)

where F is the standard normal distribution function
and l1 and l2 are the hazards of the (correlated) expo-
nential distributions X and Y, for which the median sur-
vival times are ln (2)/l1 and ln (2)/l2, respectively.
Although it is well known that min (X, Y) is an expo-
nentially distributed random variable when X and Y are
independent exponentials, the same result does not hold
in general for correlated exponentials.
First, it was necessary to approximate the hazard, l3,

of Z as a function of l1, l2 and rU,V. The approximation
was done empirically by using simulation and smooth-
ing, taking the hazard of the distribution of Z as the
reciprocal of its sample mean. In practice, since X is not
always observable, one would specify the hazards (or
median survival times) of Z and Y, not of X and Y; the
final step, therefore, was to use numerical methods to
obtain l1 given l2, l3 and rU,V.
Second, the distribution of Z turned out to be close

to, but slightly different from exponential. A correction
was applied by modelling the distribution of W = F-1

[exp (-l3Z)] (i.e. a variate that would be distributed as N
(0, 1) if Z were exponential with hazard l3) and finally
back-transforming W to Z’, its equivalent on the expo-
nential scale. The distribution of W was approximated
using a three-parameter exponential-normal model [13].
Except at very low values of Z, we found that Z’ <Z, so
the correction (which was small) tended to bring the I-
event forward a little in time.

4.2 Single-stage trials
A single, exponentially distributed time-to-event out-
come was used in these simulations. The aim was sim-
ply to evaluate the accuracy of the basic calculation of
operating characteristics outlined in sections 2.2 and 2.3.
The actual type 1 error rate (α̂1) and power (ω̂1) were
estimated in the context of designs with nominal one-
sided significance level a1 = {0.5, 0.25, 0.1, 0.05, 0.025}
and power ω1 = {0.9, 0.95, 0.99}. Fixed single values of
the allocation ratio (A = 1), accrual rate (r1 = 500) and
hazard ratio under H0(�0

1 = 1) and H1(�1
1 = 0.75) were

used. Fifty thousand replications of each combination of
parameter values were generated. The Monte Carlo
standard errors were SE(α̂1) = {0.0022, 0.0019, 0.0013,

0.0010, 0.0007}, SE(ω̂1) = {0.0013, 0.0010, 0.0004}. The
results are shown in Table 3.The results show that the
nominal significance level and power agree fairly well,
but not perfectly, with the simulation results. The latter
are generally larger than the former by an amount that
diminishes as the sample size (total number of events)
increases.
The causes of the inaccuracies in a1 and ω1 are

explored in Appendix C. The principal reason for the
discrepancy in the type 1 error rate (α̂1) is that the esti-
mate of the variance of the log hazard ratio under H0

given in equation (3) is biased downwards by up to
about 1 to 3 percent. Regarding the power, the estimate
of the variance of the log hazard ratio under H1 given in
equation (5) is biased upwards by up to about 4 percent.
For practical purposes, however, we consider that the
accuracy levels are acceptable, and we have not
attempted to further correct the estimated variances.

4.3 Multi-stage trials
4.3.1 Design
We consider only designs for TAMS trials with 3 stages.
We report the actual stagewise and overall significance
level and power, comparing them with theoretical values
derived from multivariate normal distribution as given
in eqns. (6) and (9). Actual significance levels were esti-
mated from simulations run under H0 with hazard ratio
�0

i = 1 (i = 1, ..., s). Power was estimated from simula-
tions run under H1 with hazard ratio �1

i = 0.75 (i = 1,
..., s). Other design parameter values were based on
those used in the GOG182/ICON5 two-stage trial, tak-
ing median survival for the I-outcome, progression-free
survival, of 1 yr (hazard l1 = 0.693), and for the D-out-
come, survival, of 2 yr (hazard l2 = 0.347). Correlations
among hazard ratios at the intermediate stages, Rij, were
computed from eqn. (7) for i, j <s. Values of Ris (i = 1,
..., s-1) were estimated as the empirical correlations
between �̂i and �̂s in an independent set of simulations
of the relevant design scenarios. Three designs were
used: ai = {0.5, 0.25, 0.025}, {0.2, 0.1, 0.025}, {0.1, 0.05,
0.025} with ωi = {0.95, 0.95, 0.9} in each case.
Simulations were performed in Stata using 50,000

replications of each design. Pseudo-random times to
event X, Y and Z’ were generated as described in section
4.1.
4.3.2 Results
Tables 4(a) and 4(b) give simulation results for 3 three-
stage trial designs with accrual rates of 250 and 500
patients per year, respectively.
Only the columns labelled α̂i|i−1 and ω̂i|i−1 are esti-

mates from simulation. The remaining quantities are
either primary design parameters (ri, ai, ωi) or second-
ary design parameters (δi, ei, ti, Ni). The latter are
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derived from the former according to the methods

described in section 2, additionally with Ni =
∑i

j=1
nj.

Note that by convention a1|0 = a1 and ω1|0 = ω1, the
corresponding estimates (α̂1|0, ω̂1|0) being, respectively,
the empirical significance level and power at stage 1.
Monte Carlo standard errors for underlying probabil-
ities of {0.95, 0.90, 0.5, 0.25, 0.10, 0.05} with 50,000
replications are approximately {0.00097, 0.0013, 0.0022,
0.0019, 0.0013, 0.00097}. The results show good agree-
ment between nominal and simulation values of α̂i|i−1

and ω̂i|i−1, but again with a small and unimportant ten-
dency for the simulation values to exceed the nominal
ones.

Table 5 presents the overall significance level and
power for the designs in Table 4, with (a, ω) as pre-
dicted from a trivariate normal distribution and (α̂, ω̂) as
estimated by simulation.
The same tendencies are seen as in the earlier tables.

The calculated values of the overall significance level
and power both slightly underestimate the actual values.

5 Example in prostate cancer: the STAMPEDE trial
STAMPEDE is a MAMS trial conducted at the MRC
Clinical Trials Unit in men with prostate cancer. The
aim is to assess 3 alternative classes of treatments in
men starting androgen suppression. In a four-stage
design, five experimental arms with compounds shown

Table 3 Type 1 error and power for various single-stage trial designs with one-sided significance level a1 and power ω1

Sig. Level ω1 = 0.9 ω1 = 0.95 ω1 = 0.99

a1 α̂1 ω̂1 α̂1 ω̂1 α̂1 ω̂1

0.5 0.516 0.918 0.506 0.960 0.503 0.993

0.25 0.256 0.908 0.257 0.956 0.250 0.992

0.1 0.105 0.906 0.104 0.955 0.104 0.992

0.05 0.054 0.906 0.054 0.954 0.053 0.991

0.025 0.029 0.903 0.028 0.954 0.027 0.991

The hazard ratio under H1 was fixed at 0.75.

Table 4 Simulation results (50,000 replicates) for 3 three-stage trial designs with accrual rates (ri) of (a) 250 and
(b) 500 patients per year

Design Stage ai ωi δi ei ti Ni ai|i-1 α̂i|i−1 ωi|i-1 ω̂i|i−1

(a) ri = 250

1 1 0.50 0.95 1.000 73 1.53 191 0.500 0.495 0.950 0.957

2 0.25 0.95 0.923 140 0.74 283 0.441 0.452 0.969 0.971

3 0.025 0.90 0.843 264 2.10 545 0.074 0.084 0.918 0.923

2 1 0.2 0.95 0.910 159 2.45 306 0.200 0.204 0.950 0.955

2 0.1 0.95 0.885 217 0.55 375 0.427 0.432 0.976 0.978

3 0.025 0.90 0.844 264 1.36 545 0.144 0.158 0.924 0.930

3 1 0.1 0.95 0.885 217 3.00 375 0.100 0.104 0.950 0.953

2 0.05 0.95 0.869 272 0.49 436 0.423 0.431 0.980 0.981

3 0.025 0.90 0.844 264 0.87 545 0.221 0.243 0.926 0.932

(b) ri = 500

1 1 0.50 0.95 1.000 74 1.03 259 0.500 0.503 0.950 0.957

2 0.25 0.95 0.923 141 0.46 374 0.441 0.447 0.969 0.971

3 0.025 0.90 0.844 266 1.40 722 0.074 0.084 0.918 0.925

2 1 0.2 0.95 0.910 161 1.62 404 0.200 0.203 0.950 0.954

2 0.1 0.95 0.885 220 0.33 487 0.427 0.439 0.976 0.979

3 0.025 0.90 0.844 266 0.94 722 0.144 0.150 0.924 0.927

3 1 0.1 0.95 0.885 220 1.95 487 0.100 0.103 0.950 0.954

2 0.05 0.95 0.869 275 0.29 559 0.423 0.433 0.980 0.982

3 0.025 0.90 0.844 266 0.65 722 0.221 0.224 0.926 0.929

Median survival times are 1 year for the I-outcome and 2 years for the D-outcome. Hazard ratio is 1.0 under H0 and 0.75 under H1.

Key: i, stage; ai, nominal significance level at stage i; ωi, nominal power at stage i; δi, cut-off for HR–experimental arm passes to stage i + 1 (or, if i = s, is declared
significant) if �̂i < δi; ri, rate of patient accrual per year during stage i; ei, cumulative number of control arm events required at end of stage i; ti, duration (in
years) of stage i; Ni, cumulative number of patients accrued to control arm by end of stage i; ai|i-1, ‘stagewise’ significance level, i.e. significance level at stage i
given that experimental arm has passed stage i - 1; ωi|i-1, ‘stagewise’ power, i.e. power at stage i given that experimental arm has passed stage i - 1.
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to be safe to administer are compared with a control
arm regimen of androgen suppression alone. Stages 1 to
3 utilize an I-outcome of failure-free survival (FFS). The
primary analysis is carried out at stage 4, with overall
survival (OS) as the D-outcome.
As we have already stated, the main difference

between a MAMS and a TAMS design is that the for-
mer has multiple experimental arms, each compared
pairwise with control, whereas the latter has only one
experimental arm. The design parameters for MAMS
and TAMS trials are therefore the same.
For STAMPEDE, the design parameters, operating

characteristics, number of control-arm events and time
of the end of each stage are shown in Table 6.
Originally, a correlation matrix R1, defined by eqn. (6)

and taking the ei from Table 6, was used to calculate
the overall significance level and power:

R1 =

⎛
⎜⎜⎝

1 0.6 0.5 0.4
0.6 1 0.7 0.7
0.5 0.7 1 0.8
0.4 0.7 0.8 1

⎞
⎟⎟⎠

R1 was an ‘educated guess’ at the correlation structure.
An alternative, R2, which uses eqns. (7) and (8) with c =
0.67 (also an educated guess), is

R2 =

⎛
⎜⎜⎝

1 0.73 0.58 0.35
0.73 1 0.80 0.49
0.58 0.80 1 0.61
0.35 0.49 0.61 1

⎞
⎟⎟⎠

The overall significance level and power are slightly
lower with R2 than with R1 (Table 6). To explore the
effect of varying c and R, in Table 7 we present a sensi-
tivity analysis of the values of a and ω to the choice of
c. [The values of a and ω in Table 7 were calculated
using eqns (7) and (8). The significance level varies by a
factor of about 2 over the chosen range of c, whereas
the power is largely insensitive to c. We believe that
[0.4, 0.8] is a plausible range for c in general. Note that
(a, ω) are bounded above by (as, ωs)–here, by (0.025,
0.9). Thus the overall one-sided significance level for a
treatment comparison is guaranteed to be no larger
than 0.025 and is likely to be considerably smaller. The
overall power is likely to lie in the range [0.82, 0.84] and
cannot exceed 0.9.
As a general rule, the values in Table 7 suggest that it

may be better to underestimate rather than overestimate
c as this would lead to conservative estimates of the
overall power.
As illustrated in Table 6, larger significance levels ai

were chosen for stages 1-3 than would routinely be con-
sidered in a traditional trial design. The aim was to
avoid rejecting a potentially promising treatment arm
too early in the trial, while at the same time maintaining
a reasonable chance of rejecting treatments with hazard
ratio worse than (i.e. higher than) the critical value δi.

6 Discussion
The methodology presented in this paper aims to
address the pressing need for new additions to the ‘pro-
duct development toolkit’ [1] for clinical trials to achieve
reliable results more quickly. The approach compares a

Table 5 Overall significance level and power for the three-stage trial designs presented in Table 4

Accrual Design a α̂ ω ω̂

ri = 250 1 0.016 0.019 0.845 0.858

2 0.012 0.014 0.857 0.869

3 0.009 0.011 0.862 0.871

ri = 500 1 0.016 0.019 0.845 0.861

2 0.012 0.013 0.857 0.866

3 0.009 0.010 0.862 0.871

See text for further details.

Table 6 STAMPEDE design parameters

Stage (i) Outcome ai ωi δi ei ti

1 FFS 0.5 0.95 1.00 113 3.0

2 FFS 0.25 0.95 0.92 213 4.4

3 FFS 0.1 0.95 0.89 331 5.8

4 OS 0.025 0.9 0.84 403 8.0

Overall 0.017 0.84*

0.012 0.83**

*Using corr. matrix R1.

**Using corr. matrix R2.

Time is expressed in years. Accrual rate (ri) was planned to be 348 patients
per year in each stage. FFS = failure-free survival, OS = overall survival.

Table 7 Sensitivity of the overall significance level (a)
and power (ω) of pairwise comparisons with the control
arm in the STAMPEDE design to the choice of the
constant c

c a ω

0.4 0.0067 0.822

0.5 0.0084 0.826

0.6 0.0104 0.830

0.7 0.0127 0.835

0.8 0.0153 0.841
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new treatment against a control treatment on an inter-
mediate outcome measure at several stages, allowing
early stopping for lack of benefit. The intermediate out-
come measure does not need to be a surrogate for the
primary outcome measure in the sense of Prentice [14].
It does need to be related in the sense that if a new
treatment has little or no effect on the intermediate out-
come measure then it will probably have little or no
effect on the primary outcome measure. However, the
relationship does not need to work in the other direc-
tion; it is not stipulated that because an effect has been
observed on the intermediate outcome measure, an
effect will also be seen on the primary outcome mea-
sure. A good example of an intermediate outcome is
progression-free survival in cancer, when overall survival
is the definitive outcome. Such a design, in two stages
only, was proposed by Royston et al. [7] in the setting of
a multi-arm trial. In the present paper, we have
extended the design to more than two stages, developing
and generalizing the mathematics as necessary.
In the sample size calculations presented here, times

to event are assumed to be exponentially distributed.
Such an assumption is not realistic in general. In the
TAMS design, an incorrect assumption of exponential
time-to-event affects the timelines of the stages, but
under proportional hazards of the treatment effect, it
has no effect on the numbers of events required at each
stage. A possible option for extending the method to
non-exponential survival is to assume piecewise expo-
nential distributions. The implementation of this metho-
dology for the case of parallel group trials was described
by Barthel et al. [15]. Further work is required to incor-
porate it into the multi-stage framework.
Another option is to allow the user to supply the

baseline (control arm) survival distribution seen in pre-
vious trial(s). By transforming the time-to-event into an
estimate of the baseline cumulative hazard function,
which has a unit exponential distribution, essentially the
same sample size calculations can be made, regardless
of the form of the actual distribution. ‘Real’ timelines for
the stages of the trial can be obtained by back-transfor-
mation, using flexible parametric survival modelling [16]
implemented in Stata routines [17,18] The only problem
is that the patient accrual rate, assumed constant (per
stage) on the original time scale, is not constant on the
transformed time scale; it is a continuous function of
the latter. The expression for the expected event rate e
(t) given in eqn. (10) is therefore no longer valid, and
further extension of the mathematics in Appendix A is
needed. This is another topic for further research.
We used simulation to assess the operating character-

istics of TAMS trials based on a bivariate exponential
distribution, obtained by transforming a standard bivari-
ate normal distribution. The simulation results confirm

the design calculations in terms of the significance level
and power actually attained. They show that overall
power is maintained at an acceptable level when adding
further stages.
Multi-stage trials and the use of intermediate out-

comes are not new ideas. Trials with several interim
analyses and stopping rules have been suggested in the
context of alpha and beta spending functions. Posch
et al. [19] have reviewed the ideas. One of the main dif-
ferences between other approaches and ours is the
method of calculation of the critical value for the hazard
ratio at each stage or interim analysis, as discussed in
section 3. With the error spending-function approach,
the critical value is driven by the shape chosen for the
function. In our approach, it is based on being unable to
reject H0 at modest significance levels.
Our approach differs from that of calculating condi-

tional power for futility. In the latter type of interim
analysis, the conditional probability of whether a parti-
cular clinical trial is likely to yield a significant result in
the future is assessed, given the data available so far [2].
Z-score boundaries are plotted based on conditional
power and on the information fraction at each point in
time. These values must be exceeded for the trial to
stop early for futility. In contrast, we base the critical
value at each stage not on what may happen in the
future, but rather on the data gathered so far.
We note that further theoretical development of

TAMS designs is required. Questions to be addressed
include the following. (1) How do we specify the stage-
wise significance levels (ai) and power (ωi) to achieve
efficient designs (e.g. in terms of minimizing the
expected number of patients)? We have made some ten-
tative suggestions in section 2.6, but a more systematic
approach is desirable. (2) Given the uncertainty of the
correlation structure of the treatment effects on the dif-
ferent types of outcome measure (see section 2.7.1),
what are the implications for the overall significance
level and power?
In the meantime, multi-arm versions of TAMS trials

have been implemented in the real world, and new ones
are being planned. We believe that they offer a valuable
way forward in the struggle efficiently to identify and
evaluate the many potentially exciting new treatments
now becoming available. Further theoretical develop-
ments will follow as practical issues arise.

7 Conclusions
We describe a new class of multi-stage trial designs
incorporating repeated tests for lack of additional effi-
cacy of a new treatment compared with a control regi-
men. Importantly, the stages include testing for lack of
benefit with respect to an intermediate outcome mea-
sure at a relaxed significance level. If carefully selected,
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such an intermediate outcome measure can provide
more power and consequently a markedly increased lead
time. We demonstrate the mathematical calculation of
the operating characteristics of the designs, and verify
the calculations through computer simulations. We
believe these designs represent a significant step forward
in the potential for speeding up the evaluation of new
treatment regimens in phase III trials.

8 Appendix A. Further details of algorithms for
sample size Calculations
As noted in section 2.4, two subsidiary algorithms are
needed in the sample size calculations for a TAMS trial.
We adopt the following notation and assumptions:

• Calendar time is denoted by t. The start of the trial
(i.e. beginning of recruitment) occurs at t = 0.
• No patient drops out or is lost to follow-up
• Stages 1, ..., s start at t0, ..., ts-1 and end at t1, ..., ts
time-units (e.g. years), respectively. We assume that
t0 = 0 and ti-1 <ti (i = 1, ..., s).
• Duration of stage i is di = ti - ti-1 time-units.
• Recruitment occurs at a uniform rate in each stage,
but the rate may vary between stages. The number
of patients recruited to the control arm during stage
i is ri.
• Number of events expected in interval (0, t] = e(t).
• Survival function is S (t) and distribution function
is F (t) = 1 - S (t)
• Number of patients at risk of an event at time t =
N(t), with N (0) = 0

If patients are recruited at a uniform rate, r per unit
time, in an interval (0, t], the expected number of events
in that interval is

e(t) = rf (t) = r

t∫
0

F(t − u)du (10)

8.1 Determining the numbers of events from the stage
times
Step 4 of the sample size algorithm requires calculation
of the number of events expected at the end of a stage,
given the recruitment history up to that point. Consider
N (t1), the number of patients at risk of an event at the
end of stage 1. Assuming no drop-out, this is given by
(number of patients recruited in stage 1) minus
(expected number of events in (0, t1]), that is

N(t1) = r1t1 − r1f (t1)

To compute N (t2), we consider two subsets of
patients: the N (t1) patients recruited during stage 1 and
still at risk at t1, and the r2 (t2 - t1) new patients
recruited during stage 2, i.e. in (t1, t2]. Provided the sur-
vival distribution is ‘memoryless’ (e.g. the exponential
distribution), the number of ‘survivors’ from the first
subset at t2 is N (t1) S (t2 - t1). In this case we have

N(t2) = N(t1)S(t2 − t1) + r2(t2 − t1) − r2f (t2 − t1)

= N(t1)S(d2) + r2[d2 − f (d2)]

Generalizing this expression for stage i (i = 1, ..., s) as
a recurrence relation convenient for computer evalua-
tion, we have

N(ti) = N(ti−1)S(di) + ri[di − f (di)] (11)

Regarding e (t), the expected number of events, we
can derive, by a similar argument, the recurrence
relation

e(ti) = e(ti−1) + rif (di) +N(ti−1)F(di) (12)

for i = 1, ..., s. Equations (11) and (12) enable the cal-
culation of the number of patients at risk and number
of events at the end of any stage for a memoryless survi-
val distribution under the assumption of a constant
recruitment rate in each stage.
If the survival distribution is exponential with hazard

l, the required functions of t are

S(t) = exp(−λt)

F(t) = 1 − exp(−λt)

f (t) = t − 1
λ
[1 − exp(−λt)] = t − 1

λ
F(t)

In general terms, the numbers at risk and expected
numbers of events at any given stage may be computed
using (11) and (12). Write e (ti) = e (ti; l) to emphasize
the dependence on the hazard in the case of the
exponential distribution. Let lI and lD be the hazards
for I-events and D-events, respectively. In the notation
of section 2.4, we have

ei =
{
e(ti;�0

i λI) control arm I − events at stages i = 1, . . . , s − 1
e(ts;�0

s λD) control arm D − events at stage s

e∗i =
{
Ae(ti;�1

i λI) experimental arm I − events at stages i = 1, . . . , s − 1
Ae(ts;�1

SλD) experimental arm D − events at stage s

8.2 Calculating times from cumulative events
Step 3 of section 2.4 involves computing the stage end-
points given the number of events occurring in each
stage. This may be done by using a straightforward
Newton-Raphson iterative scheme.
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Consider a function g (x). We wish to find a root x
such that g (x) ≈ 0. The Newton-Raphson scheme
requires a starting guess, x(0). The next guess is given by
x(1) = x(0) - g (x(0))/g’ (x(0)). The process continues until
some i is found such that |x(i) - x(i-1)| is sufficiently
small. In well-behaved problems, convergence is fast
(quadratic) and unique.
Given a cumulative number of events, e, we wish to

find t such that e (t) ≈ e, i.e. t such that g (t) = e-e (t) ≈
0. Suppose we have a vector (e1, ..., es) of events whose
corresponding times (t1, ..., ts) are to be found, and that
the first i - 1 times have been found to be t1, ..., ti-1. To
find ti, we have

g (ti) = e − e(ti)

= e − e(ti−1) − rif (ti − ti−1) − N(ti−1)F(ti − ti−1)

with N (ti-1) given by (11) and e (ti) by eqn. (12).
Hence

dg(ti)
dt

= −ri
df (ti − ti−1)

dt
− N(ti−1)

dF(ti − ti−1)
dt

For the exponential distribution, we have

dg(ti)
dt

= −riF(ti − ti−1) − N(ti−1)λ(1 − F(ti − ti−1))

A reasonable starting value for ti is ti-1 + 0.5× median
survival time. Updates of ti are performed in routine
fashion using the Newton-Raphson scheme. Adequate
convergence usually occurs within about 8 iterations.

8.3 Stopping recruitment before the end of stage s
We turn to the situation where recruitment is stopped
at some time t* <ts, and all recruited patients are fol-
lowed up for events until ts. This may be a good option
when recruitment is slow, at the cost of increasing the
length of the trial. Let a Î {0, 1, ..., s - 1} be the stage
immediately preceding the time t*, that is, t* occurs dur-
ing stage ta+1 so that t* Î (ta, ta+1]. If a = 0, for exam-
ple, recruitment ceases before the end of stage 1. We
assume that the recruitment rate is ra+1 between ta and
t* and zero between t* and ta+1. Let d* = t* - ta be the
duration of recruitment during stage a + 1. In practice,
as explained in section 2.5, we restrict the application of
these formulae to the case a + 1 = s.
We now consider the extension of the calculations to

allow early stopping of recruitment for the cases in
steps 4 and 3 of the sample size algorithm described in
section 2.4.
8.3.1 Step 4: Determining the number of events from the
stage times
By arguments similar to those in section 8.1, we have

N(t∗) = N(ta)S(d∗) + ra+1[d∗ − f (d∗)], (13)

e(t∗) = e(ta) + ra+1f (d∗) +N(ta)F(d∗) (14)

In fact, e (t*) is the expected number of events at
an arbitrary timepoint t* Î (0, ts). The total number
of patients recruited to the trial is

(1 + A) (ra+1d∗ +
∑a

i=1
ridi).

8.3.2 Step 3: Calculating times from cumulative events
Given a and t*, numbers of events e1, ..., ea, ea+1 and
stage endpoints t1, ..., ta, we wish to find ta+1 to give ea
+1 cumulative events. Similar to section 8.1, we have

ea+1 = e(t∗) +N(t∗)F(ta+1 − t∗)

where N (t*) and e (t*) are as given in eqns. (13) and
(14).
For determining the unknown ta+1 by Newton-Raph-

son iteration, the only term in ea+1 that includes the
‘target’ value ta+1 is N (t*) F (ta+1 - t*). For the exponen-
tial distribution, the derivative of N (t*) F (ta+1 - t*) with
respect to t at ta+1 is N (t*) l [1 - F (ta+1 - t*)], so that

dg(ta+1)
dt

= −N(t∗)λ [1 − F(ta+1 − t∗)]

The iterative scheme may be applied as in section 8.2
to solve for ta+1.

9 Appendix B. Determining the correlation matrix
(Rij)
9.1 Approximate results
We assume that the arrivals of patients into the trial fol-
low independent homogeneous Poisson processes with
rates r in the control arm and Ar in the experimental
arm, where A is the allocation ratio. This is equivalent
to patients entering the trial in a Poisson process of rate
(1 + A)r and being assigned independently to E (the
experimental arm) with probability p = A/(1 + A) or to
C (the control arm) with probability 1 - p = 1/(1 + A).
If, for each arm, the intervals between entry of the

patient into the trial and the event of interest (analysis
times) are independent and identically distributed, and if
we ignore the effect of initial conditions (the start of the
trial at t = 0) so that the process of events occurring in
each arm is in equilibrium, these events occur in Pois-
son processes with rates r and Ar in the two arms. If,
additionally the two sequences of intervals are indepen-
dent, then the two Poisson processes are also indepen-
dent. Note that there is no requirement here that the
analysis times (i.e. the intervals between patient entries
and event-times) have the same distribution for patients
in both arms of the trial.
In the following discussion in this section, we consider

the equilibrium case under the above assumptions. The
transient case is deferred to section 9.2.
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We begin observing events in each arm at t = 0. We
await m1 events in the control arm at time T1 (stage 1),
a further m2 events during the subsequent time period
of length T2 (stage 2), and so on up to stage s. Thus we
await ei = m1 +m2 + ... +mi control-arm events by time
ti = T1 +T2 + ... +Ti (stage i). Quantities mi (i = 1, ..., s)
are fixed whereas {Ti, i = 1, ..., s} are mutually indepen-
dent random variables, where Ti has a gamma distribu-
tion, Γ (mi, r), with index mi and scale parameter r.
Let the number of events observed in the experimen-

tal arm at T1 be O1 and the incremental numbers of
events observed in the experimental arm during the sub-
sequent time periods of lengths T2, ..., Ts be O2, ...,Os

respectively. Given {Ti, i = 1, ..., s}, the variables {Oi} are
mutually independent, where Oi has a Poisson distribu-
tion with rate Ar and mean ArTi. Since the {Ti} are
mutually independent, the same is true of the {Oi}
unconditionally.
Let the random variable Nc (t) be the number of con-

trol-arm events observed by time t. The parameter Δi

denotes the hazard ratio at stage i. Then, at stage 1, the
hazard ratio is

�1 =
O1/E(O1)

m1/E[Nc(T1)]
=

O1

Am1
.

More generally, for i = 1, ..., s, at stage i the hazard
ratio is

�i =
(O1 + . . . +Oi)
A(m1 + . . . +mi)

.

For 1 ≤ i <j ≤ s we require the correlation

corr(�i,�j) = corr(O1 + . . . +Oi,O1 + . . . +Oj)

as correlations are invariant under linear transforma-
tions of the variables.
Since the Oi are mutually independent, it follows that

corr(�i,�j) =

√
var(O1 + ... +Oi)
var(O1 + ... +Oj)

.

We determine this correlation for the case i = 1, j = 2;
the derivation for general i and j is the same. It is easy
to see that

var(O1) = var[E (O1|T1)] + E[var(O1|T1)] = var(ArT1) + E(ArT1) = A(1 + A)m1,

and similarly that

var(O1 + O2) = A(1 + A)(m1 +m2).

It follows that

corr(�1,�2) =
√

m1

m1 +m2

and more generally that for 1 ≤ i ≤ j ≤ s

corr(�i,�j) =
√
m1 + ... +mj

m1 + ... +mi
=

√
ei
ej
. (15)

Equation (15) gives the correlation between the hazard
ratios when it is assumed that the processes of events in
the two arms are in equilibrium. In the next section, we
show that the equilibrium result given in equation (15)
holds exactly in the non-equilibrium case when the dis-
tributions of the intervals between trial entry and event
are the same for the two arms of the trial. In this case,
the result is easily derived under the more general
assumption that the Poisson process of trial entries is
nonstationary. In section 9.3, a comparison is made with
exact correlations estimated by simulation for a typical
example.

9.2 Exact results
We now suppose that the trial begins at t = 0, with
no entries into either arm before that time. For sim-
plicity of notation, we will focus on s = 2; the exten-
sion to larger values of s is straightforward. We
assume that entries into the trial form a Poisson pro-
cess with rate (1 + A)r(t)(t > 0) and, as before, are
independently allocated to the experimental and con-
trol arms with probabilities p = A/(1 + A) and 1 - p
respectively.
In the experimental arm, if analysis times are indepen-

dent and identically distributed with common density fe,
the events form another (nonhomogeneous) Poisson
process with rate

A
∫ t

0
fe(t − u)r(u)du,

again starting from t = 0. Thus, O1 has a Poisson dis-
tribution with mean Aθe(T1), where

θe(T) ≡
∫ T

0

∫ t

0
fe(t − u)r(u)dudt.

Similarly, O1 and O2 are independent Poisson variables
and O1 + O2 has a Poisson distribution with mean Aθe
(T1 + T2).
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For the control arm, if the analysis times have density
fc and we define

θc(T) ≡
∫ T

0

∫ t

0
fc(t − u)r(u)dudt,

then the mean numbers of events in (0, T1] and (0, T1

+ T2] are θc(T1) and θc(T1 + T2).
Thus the hazard ratio parameters are

�1 =
O1

m1

θc(T1)
Aθe(T1)

�2 =
O1 +O2

m1 +m2

θc(T1 + T1)
Aθe(T1 + T2)

.

Under the hypothesis that the densities fe and fc are
the same in the two arms of the trial (as is typically the
case under the null hypothesis, Δ = 1), the two func-
tions θe and θc coincide and the hazard ratios simplify.
It is then straightforward to see that, as in the equili-
brium analysis,

corr(�1,�2) = corr(O1,O1 +O2) =

√
var(O1)

var(O1 +O2)

where var(O) = E(Aθe(T))+var(Aθe(T)), and O denotes
the observed number of events in the experimental arm
in an arbitrary time T.
Suppose that T is the time elapsing until the mth

event in the control arm. Then, T >t if and only if Nc(t)
<m. As Nc(t) has a Poisson distribution with mean θc(t),

pr(T > t) =
m−1∑
k=0

[θc(t)]
k

k
e−θc(t),

from which it follows that T has density

fT(t) = θ ′
c(t)

{θc(t)}m−1

(m − 1)
e−θc(t)(t > 0)

and therefore that the random variable θc(T) has a
gamma distribution Γ(m, 1) with index m and scale
parameter 1. Note that, by transforming the time scale
from t to θc(t) we are transforming to operational time
(see Cox and Isham [20], section 4.2), in which events
in the control arm occur in a Poisson process of unit
rate. The method works here because the transformed
time scales are, up to the constant A, assumed to be the
same in the two arms of the trial.
Finally, since we have assumed the equivalence of θe

and θc, var(O) = AE(θc(T)) + A2var(θc(T)) = A(1 + A)m,
and thus, as before,

corr(�1,�2) =
√

m1

m1 +m2
=

√
e1
e2
.

9.3 Example
The example is loosely based on the design of the MRC
STAMPEDE trial [9] in prostate cancer. We consider
s = 4 stages and a single event-type (i.e. no intermediate
event-type). We wish to compare {Rij} for i, j = 1, ...,
s from simulation with the values derived from equation
(15). At the ith stage, whose timing is determined by
the predefined significance level ai and power ωi, the
hazard ratio between the experimental and control arms
is calculated and compared with a cut-off value, δi,
calculated as described in section 2.3. In practice, the
number of events ei required in the control arm at the ith
stage is computed and the analysis is performed when
that number has been observed. The (one-sided) signifi-
cance levels, ai, at the four stages were chosen to be 0.5,
0.25, 0.1, 0.025 and the power values, ωi, to be 0.95, 0.95,
0.95, 0.9. The allocation ratio was taken as A = 1. The
accrual rate was assumed to be 1000 patients per year,
with a median time to event (analysis time) of 4 years.
The design (see Table 8) was simulated 5000 times

and the empirical Pearson correlations between the esti-
mates �̂i (i = 1, ..., 4) of the hazard ratios were com-
puted when the underlying hazard ratio, Δ, was 1 (null
hypothesis) or 0.75 (typical alternative hypothesis). The
results for Δ = 1 are shown in Table 9.When Δ = 1, the
exact results of section 9.2 apply, and any discrepancies
in Table 9 should be due to sampling variation. The

Table 8 Parameters of the four-stage trial design used in
the simulation study. See text for details

Stage(i) ai ωi δi ei

1 0.5 0.95 1.000 73

2 0.25 0.95 0.923 140

3 0.1 0.95 0.884 217

4 0.025 0.9 0.843 262

Table 9 Estimates of correlations Rij. Lower triangle (in
italics), based on equation (15); upper triangle, estimates
based on simulation under Δ = 1, 5000 replications

Rij i = 1 i = 2 i = 3 i = 4

j = 1 1 0.721 0.575 0.519

j = 2 0.722 1 0.799 0.722

j = 3 0.579 0.802 1 0.909

j = 4 0.529 0.733 0.914 1
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simulated values are in fact within one Monte Carlo
standard error (0.014) of the theoretical values, which
supports equation (15). The root mean square discre-
pancy across the 6 correlations is 0.0067.
When Δ = 0.75, however, we must rely on the equili-

brium approximation. Any errors are a mixture of sam-
pling variation and bias due to the use of the
approximation. Simulation results are given in Table 10.
The discrepancies are slightly larger than in Table 9.
The root mean square discrepancy across the 6 correla-
tions is 0.0121, about double that for Δ = 1. Neverthe-
less, for practical use, equation (7) provides an excellent
approximation in the present scenario.
Further simulations were performed with Δ = 0.50 and

Δ = 0.35. The results (not shown) confirmed that equa-
tion (15) provides an excellent approximation.

10 Appendix C. How do the inaccuracies in power
and significance level arise?
Since at stage i

αi = �

(
ln δi − ln�0

i

σ 0
i

)
= �(zαi),

it follows that under H0, the sampling distribution of
the random variable

Ai =
ln δi − ln �̂i

σ 0
i

should have mean zαi, variance 1, skewness 0 and kur-
tosis 3. Similarly, under H1,

Bi =
ln δi − ln �̂i

σ 1
i

should have mean zωi, variance 1, skewness 0 and kur-
tosis 3. If the estimate ln �̂i is biased, the means of Ai

and Bi in simulation studies will differ from zαi and zωi

under H0 and H1, respectively. If there is bias in the
estimates of σ 0

i and σ 1
i , the SDs of simulated values of

Ai and Bi will differ from σ 0
i and σ 1

i under H0 and H1,
respectively. The direction of the bias of the SD will be
the opposite to that in the estimators of σ 0

i and σ 1
i .

Table 11 shows the means and SDs of the Ai for stage
1 (i = 1). Except for a1 = 0.5, ω1 = 0.90, the case with
the smallest number of events, the bias in the mean is
small and positive. The bias in the SD is larger and posi-
tive (about 1 to 3 percent), suggesting that the estimator
of v0i in eqn. (3) is biased downwards somewhat.
Table 12 shows the means and SDs of the Bi for i = 1.

The values of zω1 corresponding to ω1 = 0.90, 0.95 and
0.99 are 1.282, 1.645 and 2.326, respectively. Except for
a1 = 0.5, ω1 = 0.90, the bias in the mean is small and
negative–about half a percent. The bias in the SD is lar-
ger and negative (about 4 percent), suggesting that the
estimator (5) of v1i is biased upwards somewhat. 2

Table 10 Estimates of correlations Rij
Rij i = 1 i = 2 i = 3 i = 4

j = 1 1 0.715 0.569 0.512

j = 2 0.722 1 0.793 0.717

j = 3 0.579 0.802 1 0.904

j = 4 0.529 0.733 0.914 1

Lower triangle (in italics), based on equation (15); upper triangle, estimates
based on simulation under Δ = 0.75, 5000 replications.

Table 11 Means and SDs of random variable A1 for the simulations in Table 3, computed under H0

Sig. Level a1 zα1 ω1 = 0.90 ω1 = 0.95 ω1 = 0.99

Mean SD Mean SD Mean SD

0.5 0.000 0.043 0.995 0.018 1.006 0.004 1.000

0.25 -0.674 -0.670 1.017 -0.667 1.015 -0.673 1.005

0.1 -1.282 -1.278 1.021 -1.286 1.013 -1.277 1.014

0.05 -1.645 -1.647 1.018 -1.648 1.019 -1.646 1.014

0.025 -1.960 -1.955 1.031 -1.955 1.019 -1.963 1.018

Table 12 Means and SDs of random variable B1 for the simulations in Table 3, computed under H1

Sig. Level a1 zα1 ω1 = 0.90 ω1 = 0.95 ω1 = 0.99

Mean SD Mean SD Mean SD

0.5 0.000 1.302 0.920 1.646 0.936 2.314 0.939

0.25 -0.674 1.274 0.954 1.638 0.952 2.316 0.952

0.1 -1.282 1.273 0.963 1.630 0.962 2.316 0.963

0.05 -1.645 1.272 0.966 1.630 0.965 2.319 0.966

0.025 -1.960 1.272 0.977 1.636 0.970 2.311 0.968
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