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Abstract

Cardiac magnetic resonance (CMR) offers a variety of parameters potentially suited as surrogate endpoints in
clinical trials of acute myocardial infarction such as infarct size, myocardial salvage, microvascular obstruction or left
ventricular volumes and ejection fraction. The present article reviews each of these parameters with regard to the
pathophysiological basis, practical aspects, validity, reliability and its relative value (strengths and limitations) as
compared to competitive modalities. Randomized controlled trials of acute myocardial infarction which have used
CMR parameters as a primary endpoint are presented.
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Introduction
Reductions of mortality and morbidity are the ultimate
treatment goals in ST-elevation myocardial infarction
(STEMI). Therefore, primary endpoints in clinical stu-
dies of new therapeutic interventions are ideally events
relevant to patients such as death, reinfarction or new
symptoms of heart failure. However, studies with clinical
endpoints are associated with several shortcomings. The
incidence of the event of interest (e.g. death following
myocardial infarction) is increasingly low during short-
or medium-term follow-up given the advances in treat-
ment. Furthermore, some events might not be linked to
atherosclerotic disease resulting in low sensitivity. As a
consequence, large sample sizes and long follow-up peri-
ods are required absorbing time and financial resources.
Missing data and noncompliance are also more likely in
longer-lasting studies [1].
Surrogate endpoints can overcome some of these pro-

blems allowing for a reduction in sample size and fol-
low-up duration as well as studying pathophysiological
mechanisms of disease thereby improving trial efficiency.

Surrogate endpoints are alternative endpoints “used as a
substitute for a clinically meaningful endpoint that mea-
sures directly how a patient feels, functions or survives.
Changes induced by a therapy on a surrogate endpoint
are expected to reflect changes in a clinically meaningful
endpoint” [2]. As compared to true clinical endpoints,
surrogate endpoints should ideally be easy to measure
and should occur more frequently and earlier in the
course of the disease.
Cardiac magnetic resonance (CMR) imaging offers a

variety of parameters potentially suited as surrogate end-
points and is increasingly being used in clinical trials of
STEMI. Following a short conceptual overview of surro-
gate endpoints, we describe several of these CMR para-
meters and their value in infarction trials.

Surrogate Endpoints
Definition
According to a widely known definition published by a
working group of the National Institutes of Health, a sur-
rogate endpoint is “a biomarker that is intended to substi-
tute for a clinical endpoint. A surrogate endpoint is
expected to predict clinical benefit (or harm or lack of
benefit or harm) based on epidemiologic, therapeutic,
pathophysiologic, or other scientific evidence.” [3].
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A biological marker is defined as “a characteristic that is
objectively measured and evaluated as an indicator of nor-
mal biological processes, pathogenetic processes, or phar-
macologic responses to a therapeutic intervention” [3].
Surrogate endpoints are thus a subset of biological
markers.
Validity
According to the “International Conference on Harmoni-
sation (ICH)” the strength of the evidence for surrogacy
depends upon (i) the biological plausibility of the relation-
ship, (ii) the demonstration in epidemiological studies of
the prognostic value of the surrogate for the clinical out-
come and (iii) evidence from clinical trials that treatment
effects on the surrogate correspond to effects on the clini-
cal outcome [4]. The simple biological association between
surrogate and clinical outcome is therefore not sufficient
for a marker to qualify as a surrogate endpoint.
Reliability
Apart from validity, surrogate markers must also prove a
high degree of reliability. Reliability refers to the consis-
tency of measurements with only minimal variability.
Reliability may be estimated through a variety of methods
such as intraobserver repeatability (degree of variability if
measurements of the surrogate are repeated under identi-
cal circumstances by the same person) or interobserver
repeatability (degree of variability when measurements
are repeated by a different observer). Reliability does not
imply validity.
Limitations of Surrogate Endpoints
The use of surrogate endpoints is controversial. Most
importantly, surrogate endpoints are often criticized for
poor validity or even a complete lack of validation studies.
Another point of criticism of surrogate endpoints relates
to the safety of therapeutic interventions. Since surrogate
endpoint studies usually enroll fewer patients than trials
with clinical endpoints (indeed this is considered one of
the essential advantages of surrogate trials), there is a sub-
stantial risk to underdiagnose rare adverse events.

Cardiac Magnetic Resonance Imaging Parameters
Potentially Suited as Surrogate Endpoints
Infarct Size
Basic Description Myocardial infarction can be visua-
lised and quantified using inversion recovery imaging 10
to 15 minutes after intravenous administration of gadoli-
nium contrast (late enhancement imaging). With correct
settings, the area of infarcted myocardium appears bright
whereas normal myocardium appears black (Figure 1).
Experimental models have shown excellent agreement
between the size and shape of late contrast enhancement
in CMR and areas of myocardial necrosis or scar by his-
topathology [5,6].
In the first days following myocardial infarction, infarct

volume is usually greatest possibly in part due to marked

tissue swelling [7,8]. As necrotic tissue is replaced by
scar, infarct size decreases over the course of several
weeks (most pronounced in the first week) [7,8]. These
remodelling processes are usually completed after 6 to 8
weeks and infarct size is stable thereafter [7,8]. The
dynamic evolution of infarct volume following infarction
must be taken into account when using infarct size as a
surrogate endpoint in clinical trials. When measuring
infarct size in the first days or weeks after infarction, it is
important to adhere to a consistent time interval between
infarction and CMR image acquisition across all patients
whenever possible. Otherwise infarct size variability may
be explained simply by the differences in timing of CMR
assessment following infarction. Although the time from
symptom onset to image acquisition could be used to
define the interval, time from revascularization to image
acquisition might be more appropriate since reperfusion
injury can exert a major influence on infarct size (and
subsequent myocardial salvage) and microvascular
obstruction. With the latter approach, it stands to reason
that the variability of differences in the time from symp-
tom onset to reperfusion is a potential confounder and
study sample size must be adapted accordingly. In the
chronic phase the imaging time frame can be chosen
more liberally. Advantages of performing CMR assess-
ment early after infarction include the concomitant
assessment of microvascular obstruction or the area at
risk. In general, the decision when to measure infarct size
must be based on trial specifics. A limitation of infarct
size assessment by late enhancement CMR is the lack of
standardized protocols for primary image acquisition

Figure 1 Late enhancement CMR imaging showing infarcted
myocardium (red contours) in a patient with inferior/
inferoseptal STEMI due to occluded right coronary artery.
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(e.g. with regards to pulse sequences or dose of contrast
agent). Recommendations for standardization have
recently been published [9]. Newer phase-sensitive inver-
sion recovery sequences are able to achieve a more
consistent contrast between infarcted and normal myo-
cardium which in turn might influence measurement
variability in image analysis [10].
It should be noted that there are yet no data on the

reliability of infarct size measurements between scanners
from different vendors. This, however, would be a prere-
quisite for infarct size to qualify as a reliable endpoint in
multicenter trials with a variety of scanners.
Image Analysis For research purposes, quantitative ana-
lysis of infarct volume is best performed by delineating
infarct borders in a stack of short-axis slices covering the
whole ventricle. Infarct size can be expressed as absolute
mass or percent of left ventricular mass (mass [grams] =
volume [mL] × myocardial density [1.05 grams/mL]) [11].
Delineation of the infarct region can be performed by

manual planimetry based on visual assessment of infarct
borders or by using semiautomatic analysis software.
Although manual tracing might be partially subjective, it
has been used extensively by many CMR centers [12-14].
In an attempt to overcome the subjective nature of visual
assessment and manual planimetry, several semiauto-
matic methods have been proposed [15]. Semiautomatic
methods are based on enhanced signal intensity of the
infarcted area as compared to normal myocardium.
Infarcted myocardium can be defined by exceeding a
threshold value of signal intensity as compared to a refer-
ence region located in healthy myocardium. Initial ex
vivo studies suggested an image intensity threshold of 2
to 3 standard deviations above remote normal myocar-
dium for infarct characterization [5,16]. However, spatial
resolution for in vivo examinations is much lower mainly
due to cardiac motion. Therefore, a threshold value of 5
standard deviations might be more appropriate in the
clinical setting [12]. However, there is currently no con-
sensus which threshold is best/preferable for infarct size
assessment. In principle, choosing a lower threshold
value such as 2 standard deviations will likely include the
border zone of the infarct possibly leading to overestima-
tion of infarct size. With a higher cut-off value such as 5
standard deviations only areas with high signal intensities
like the core will be characterized as infarcted. Naturally,
infarct characterization is also highly dependent on the
choice (signal intensity) of the remote region. Some of
these problems can be avoided using the full-width at
half-maximum method. A region in the central infarct
core is chosen as reference [17]. Myocardium displaying
a signal intensity of at least 50% of the reference region
will be marked as infarcted. Full-width at half-maximum
might be inaccurate in homogeneously gray infarcts with-
out a clear hyperintense core or in infarcts with a patchy

necrosis pattern [15]. Of note, the newer semiautomatic
methods require a certain degree of subjective input as
well. Endocardial and epicardial borders must still be
drawn manually. This includes the endocardial infarct
border which can comprise up to 50% of the infarct peri-
meter [15]. Furthermore, artefacts and obvious misclassi-
fications of healthy tissue as myocardial infarction can be
manually corrected. Semiautomatic methods have so far
been tested in few patients only [15]. Flett et al. com-
pared the reproducibility of 7 late enhancement quantifi-
cation techniques in 20 patients with acute myocardial
infarction: Manual quantification, thresholding by 2, 3, 4,
5, or 6 standard deviations above remote myocardium,
and the full-width at half-maximum technique [18]. The
full-width at half-maximum technique was the most
reproducible compared with any other method. Semiau-
tomatic methods are constantly being refined and more
complex image analysis algorithms will likely lead to
further improvements [19-21].
Apart from quantitative analysis of infarct volume as

described above, late enhancement imaging can also be
used to measure the extent of infarct transmurality which
provides additional information in predicting improvement
in contractile function after myocardial infarction [22].
Validity and reliability When applying the above-men-
tioned ICH criteria, validity for infarct size as a surrogate
endpoint is relatively high: The capacity of infarct size to
predict various clinical endpoints has been demonstrated
in several epidemiological studies [23,24]. It has been
reported that infarct size measurement by CMR is a
stronger predictor of outcome than left ventricular func-
tion and volumes [24]. Also, the relationship between the
surrogate infarct size and clinical outcome seems biologi-
cally plausible. However, evidence from clinical trials that
treatment effects on the surrogate also correspond to
effects on the clinical outcome is more difficult to estab-
lish. An example of a sequential approach with a positive
surrogate endpoint study subsequently triggering a trial
with true clinical endpoints has recently been presented
[25,26]. In a randomized controlled trial of 144 patients
with STEMI, intracoronary bolus administration of abcix-
imab led to significant reductions in CMR infarct size as
compared to standard intravenous bolus application (pre-
sumably through higher local drug concentrations that
can be achieved through the intracoronary route) [25].
Based on these favorable effects on a surrogate endpoint,
a large study (1912 patients) with a primary clinical end-
point of mortality, reinfarction and new heart failure
symptoms has been initiated [26].
For manual tracing, infarct size measurement shows

excellent interobserver reliability in the acute and
chronic setting [14].
Comparison to alternative methods Infarct size assess-
ment by CMR offers several advantages over alternative
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methods. Owing to its high spatial resolution, it is possi-
ble to detect and quantify small endocardial infarcts
which are often missed by single photon emission com-
puted tomography (SPECT) imaging [6,27]. Given the
high efficacy of modern reperfusion therapy with infarct
size ≤ 10% of left ventricular mass in almost one half of
patients, this aspect is of great importance [28]. It must
be emphasized that the ability of CMR to detect smaller
infarcts and therefore potentially smaller differences in
infarct size between treatment groups does not necessa-
rily translate into a reduced sample size for a given trial
unless the standard deviation of measurements is also
reduced. Apart from alpha (usually set at 0.05) and the
desired power (usually set at 0.80 or 0.90), sample size
for a standard two-arm superiority trial is dependent on
the expected difference between treatment arms (the
smaller the difference to be detected, the more patients
will have to be enrolled) and its standard deviation.
Patient-to-patient variability (reflected by the standard
deviation) is naturally dependent on built-in differences
in infarct size, but also on extraneous variability such as
inconsistent data acquisition or image analysis techni-
que. Thus far, the (limited) literature does not support
any reduction in the overall standard deviation of CMR
infarct size measurements compared to SPECT [29].
Furthermore, SPECT imaging is associated with expo-

sure to ionizing radiation which might become especially
relevant in longitudinal studies with multiple assessments
of myocardial morphology and function. It should, how-
ever, be kept in mind that most patients with myocardial
infarction are relatively old and longevity will likely be
limited by cardiovascular morbidity rather than the risk
imposed by additional radiation.
Infarct size may also be quantified through cardiac

enzyme analysis by estimating the cumulative “area
under the curve” or peak enzyme release in serial mea-
surements [30]. However, CMR offers the advantage of
obtaining additional parameters such as left ventricular
volumes, ejection fraction, microvascular obstruction,
myocardial salvage or infarct-associated complications.
This aspect might be especially important in interpreting
study results in their pathophysiological context and gen-
erating hypotheses for mechanisms of action for the ther-
apeutic intervention under examination. In contrast to
enzymatic analysis, CMR can also be used for serial
assessments to evaluate postinfarction remodelling.
Myocardial Salvage
Basic Description Myocardial salvage, which is defined
as salvaged tissue following reperfusion therapy, holds
promise as a surrogate endpoint. The area of high signal
(edematous myocardium) on T2-weighted CMR imaging
likely reflects the area at risk in acute myocardial infarc-
tion (Figure 2a) [31]. By comparing the area at risk in
T2-weighted and final infarct size in late enhancement

CMR images, the proportion of myocardial salvage can
be assessed retrospectively (Figure 2a + b) [32]. In myo-
cardial salvage assessment, reduction of infarct size can
also be considered the main biological target, however
with a „built-in” adjustment for the area at risk. There-
fore, many of the characteristics for infarct size men-
tioned above are also true for the assessment of
myocardial salvage. Theoretically, there are advantages
of measuring salvaged myocardium over infarct size as

Figure 2 Patient with inferior/inferolateral STEMI due to
subtotal stenosis of right coronary artery. a. T2-weighted image
acquisition for the detection of myocardial edema (green contours),
corresponding to the area at risk. b. Late enhancement CMR
imaging showing infarcted area (red contours). Myocardial salvage
can be calculated by comparing the area at risk in T2-weighted and
infarct size in late enhancement images.
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an indicator of therapeutic efficacy in clinical trials. To
illustrate this point consider a two-arm randomized trial
of a novel therapeutic intervention with baseline imbal-
ances of anterior and non-anterior infarctions between
groups and subsequent differences in the area at risk.
Since the area at risk can by itself explain over 50% of
infarct size variability, it is likely that this constellation
leads to differences in final infarct size between groups
independent of the therapeutic intervention under
examination [33]. Small differences in the area at risk
may result in significant variation of infarct size, under-
scoring the fact that most of infarct size variability is
due to the extent of the myocardium at risk [33,34].
Therefore, measuring only infarct size might impose a
potential bias and myocardial salvage may be a better
surrogate endpoint than infarct size. This is especially
true in non-randomized study designs or smaller rando-
mized trials where imbalances of baseline characteristics
between treatment groups are frequent. In large rando-
mized trials baseline imbalances are less likely, however
at the cost of increased sample size.
As for infarct size, there is a lack of standardization

with regard to image acquisition and analysis. Also, in
the setting of multicenter trials, the potential variability
of infarct size measurements between scanners from dif-
ferent vendors should be taken into account. Currently,
most of the clinical experience in visualising myocardial
edema has been obtained using inversion recovery turbo
spin echo (TSE) sequences with suppression pulses for
both fat and blood. Although these sequences provide
useful images in most clinical cases, they have inherent
limitations such as artefact susceptibility, variability in
signal intensity if phased array coils are used and low
contrast-to-noise ratio [35]. Slow flowing blood in parti-
cular near dyskinetic segments in the apex and between
trabeculae may not be suppressed sufficiently. The corre-
sponding high signal can, therefore, erroneously be
included in the delineation of the area at risk [35]. One
method to reduce this in clinical practice is to compare
T2-weighted images of the same cardiac phase side-by-
side with cine images to verify wall thickness. Newer
sequences might account for several of these limitations.
Specifically, a T2-prepared steady state free precession
(SSFP) technique has been studied as an alternative to
conventional T2-weighted TSE imaging [36]. In a trial of
31 patients with myocardial infarction (22 acute, 9
chronic) T2-prepared SSFP provided images with fewer
artefacts and better diagnostic accuracy compared to T2-
weighted TSE imaging albeit at reduced signal-to-noise
ratio [36]. A hybrid method of the aforementioned SSFP
sequence and conventional T2-weighted TSE imaging
has also been presented combining the advantages of
SSFP imaging with the higher signal-to-noise and con-
trast-to-noise ratio of T2-weighted TSE imaging [37]. An

alternative approach to T2-weighted imaging using signal
intensity as a surrogate for T2 prolongation is the direct
determination of myocardial T2 relaxation times.
Thereby, several limitations associated with conventional
T2-weighted imaging can be addressed, resulting in a
potentially more reliable method for the detection of
myocardial edema and the area at risk [38]. While these
new developments hold great promise, they have so far
been studied in few patients only.
At present, there are only limited data with regard to

the natural evolution of postinfarction edema by CMR.
In a canine model, edema could be detected by CMR
shortly after coronary occlusion [39]. In a small study of
patients with STEMI, edema was not significantly differ-
ent between day 1 and 1 week after infarction [40]. It is
unclear how long edema persists following myocardial
infarction. In patients with hypertrophic obstructive car-
diomyopathy undergoing septal artery embolization,
edema could be found after 28 days in all patients,
whereas it was no longer present after 3 months [41].
Other studies in acute reperfused ST-elevation myocar-
dial infarction patients have shown long-lasting postin-
farction edema up to 12 months [42,43].
Image Analysis Most of the techniques described for the
measurement of infarct size also apply to edema assess-
ment. However, due to the aforementioned limitations of
current T2 sequences for edema assessment, image ana-
lysis can be challenging in some patients. Image interpre-
tation depends on regional differences in myocardial
signal intensity and the purely visual delineation of
edema borders offers the potential for subjective error.
Cut-off values for defining abnormal vs. normal tissue for
semiautomated quantification are not sufficiently stan-
dardized. A quantitative T2 mapping technique has
recently been introduced which offers the potential for
increased accuracy in image analysis [38].
Validity and reliability SPECT myocardial salvage has
been successfully used as a surrogate endpoint in several
clinical trials [44-46] and the first studies using myocar-
dial salvage by CMR as a primary endpoint have been
published [47,48]. Recently, a study showed that the
amount of myocardial salvage assessed by CMR also pre-
dicts patient outcome [49]. The prognostic value of the
salvage area at risk is consistent with previous SPECT
studies [50]. However, as with infarct size, there are yet
no clear data demonstrating that specific therapies able
to increase myocardial salvage can also favorably influ-
ence patient-relevant endpoints. Recently, acceptable
reliability for myocardial salvage assessment has been
shown [51].
Comparison to alternative methods Myocardial salvage
can also be assessed by SPECT [44,46]. However, CMR
has several advantages over SPECT. As mentioned
above, CMR yields higher spatial resolution which
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allows the assessment of small subendocardial infarcts
often elusive to SPECT imaging [6,27]. Furthermore,
CMR can assess the salvaged myocardium retrospec-
tively a few days after infarction and does therefore not
interfere with acute patient management (in SPECT
imaging the radioactive tracer must be injected before
recanalization of the infarct-related artery in the emer-
gency department setting). Salvage assessment by CMR
can also be performed with a single examination
whereas in SPECT it is necessary to perform two subse-
quent measurements for assessment of the initial perfu-
sion defect and final infarct size. Finally, CMR avoids
radiation exposure. CMR may therefore be superior to
assess myocardial salvage.
Microvascular Obstruction
Basic Description Early recanalization of the infarct-
related artery is the primary treatment target in the first
hours after symptom onset in acute STEMI [52]. How-
ever, restoration of epicardial flow does not necessarily
translate into adequate perfusion of the microcirculation.
Areas of impaired microcirculatory flow can be directly
visualised and quantified by CMR as microvascular
obstruction. Following contrast administration infarcted
zones take up gadolinium and subsequently appear
bright. However, in areas of severely compromized perfu-
sion contrast take-up is absent. Areas of microvascular
obstruction can therefore be visualised as dark areas
within the bright infarct (Figure 3).
Several methods for the assessment of microvascular

obstruction by CMR have been proposed [53]. Image
acquisition during first myocardial pass of gadolinium,

early imaging in the first minutes after contrast adminis-
tration and late imaging approximately 15 minutes after
contrast injection. The extent of microvascular obstruc-
tion gradually declines between first-pass and late ima-
ging. The observed differences over time reflect the
persistent slow diffusion of contrast or collateral filling
into areas with a less compromized microcirculation.
These regions subsequently display smaller or comple-
tely absent zones of hypoenhancement on late imaging.
Microvascular obstruction on late imaging therefore
likely reflects areas of a more severely disturbed micro-
circulation whereas microvascular obstruction on early
imaging is more sensitive for the detection of only small
or less impaired areas of microvascular injury. At pre-
sent, there is no consensus which of these slightly differ-
ing techniques to apply. However, in the largest patient
series to date late image acquisition (approximately 15
minutes after contrast administration) was superior to
early image acquisition (approximately 1 minute post
contrast administration) in predicting clinical outcome
[54]. Myocardial regions displaying delayed, yet not fully
absent perfusion might therefore be of only minor
importance for clinical prognosis.
Given the time dependency of presence and extent of

microvascular obstruction on the time between contrast
administration and image acquisition, it is important to
adhere to strict methodology within the clinical trial
setting.
Image Analysis Quantitative analysis of microvascular
obstruction within the infarct zone is performed in a
stack of short-axis slices using either manual planimetry
or semiautomatic methods. Techniques are similar to
those described above for the assessment of infarct size.
Validity and reliability Microvascular obstruction is
reasonably valid to be used as a surrogate endpoint in
clinical trials. Numerous studies relating to pathophysio-
logical mechanisms have been published [55] and the
association of CMR microcirculatory injury and adverse
clinical prognosis is well established [54,56,57]. However,
as with infarct size and myocardial salvage, proof is lack-
ing that therapeutic measures able to reduce markers of
microvascular obstruction can also favorably influence
true clinical endpoints [55]. There are yet no published
reliability studies for the assessment of microvascular
obstruction.
Comparison to alternative methods Several other mod-
alities are available for detecting microvascular obstruc-
tion such as myocardial blush grading on invasive
angiography, evaluation of electrocardiographic ST-reso-
lution or myocardial contrast echocardiography. Micro-
vascular obstruction assessed by CMR might be superior
to myocardial blush grading and ST-resolution in pre-
dicting functional recovery after myocardial infarction
[58,59]. In contrast to myocardial blush grading, CMR

Figure 3 Late enhancement CMR imaging showing infarcted
myocardium (red contours) in a patient with lateral STEMI due
to occluded left circumflex artery. The central hypointense core
within the infarct represents microvascular obstruction (yellow
contours).
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image acquisition for the assessment of microvascular
obstruction is not performed immediately following cor-
onary intervention. This might be advantageous since
microvascular obstruction often expands during the first
hours following reperfusion. Therefore, very early mea-
surement might not reflect the true quantitative extent
[60].
Left ventricular ejection fraction and volumes
Basic Description CMR measures ventricular volumes
and mass using a simple acquisition of a 3-dimensional
stack of contiguous short-axis cines with full biventricular
coverage. Currently, the standard technique to measure
left ventricular ejection fraction and volumes is a breath-
hold, SSFP sequence that provides optimal contrast
between blood and myocardium. Current cine sequences
use retrospective electrocardiographic gating, although
prospective gating may be required in patients with irregu-
lar heart rhythm. A portion of the data is recorded during
each cardiac cycle and data from several heart beats are
then fused to form a continuous cine movie loop.
Image Analysis Calculation of left ventricular ejection
fraction and volumes is commonly performed in short
axis images following planimetry of endocardial and epi-
cardial contours. The borders are typically traced at
enddiastole and endsystole.
Validity and reliability Left ventricular ejection frac-
tion and volumes are important predictors for survival
after acute myocardial infarction [61,62]. CMR is an
accurate and highly reproducible technique for measur-
ing left ventricular ejection fraction and volumes and is
thus well suited to assess postinfarction remodelling
through serial assessment of left ventricular function
and morphology [63].
Comparison to alternative methods Echocardiography
and gated SPECT are widely available techniques available
for measuring cardiac function and volumes. Gated
SPECT suffers from relatively low spatial resolution. Com-
pared to echocardiography, CMR has been shown to be
significantly more accurate with less interobserver and
intraobserver variability as well as superior reproducibility
[64]. Notably, CMR assessment of the aforementioned
parameters is less dependent on geometric assumptions.
This aspect is especially important in patients after myo-
cardial infarction where regional alterations of left ventri-
cular geometry are frequent (e.g. aneurysms).
Consequently, CMR is the technique of choice for longitu-
dinal studies of left ventricular ejection fraction or remo-
delling over time.
Other CMR parameters
Intramyocardial Hemorrhage A subset of patients with
acute myocardial infarction display hypointense zones
within the area at risk in T2-weighted spin echo
sequences (Figure 4) [65]. These regions likely corre-
spond to intramyocardial hemorrhage and are associated

with adverse remodelling of the left ventricle [65]. T2*-
weighted gradient echo sequences are also able to visua-
lise hemorrhagic infarcts and might be more sensitive to
the susceptibility effects of hemorrhage than spin-echo
imaging [66]. The presence of such hemorrhage is asso-
ciated with microvascular obstruction and has been
shown to be a strong predictor of adverse remodelling
after infarction [65,67]. However, the clinical significance
of intramyocardial hemorrhage on hard clinical outcome
has not yet been established. In conclusion, further vali-
dation and reliability studies are necessary for this para-
meter to qualify as a surrogate endpoint in clinical trials.
Infarct core and border zone The infarct region can be
further subclassified into core and border zone depending
on relative signal intensity as compared to normal myocar-
dium (semiautomatic analysis). In one trial the infarct core
has been defined by a signal intensity ≥ 3 standard devia-
tions of remote normal myocardium whereas the peri-
infarct border zone was classified by a signal intensity
between 2 and 3 standard deviations [68]. The border
zone represents a mixture of healthy and structurally
damaged myocytes and might be a substrate of ventricular
arrhythmia [69]. The topic has so far been studied in only
few patients in the chronic phase after infarction.

General limitations of post-infarct CMR imaging
Important limitations of CMR imaging in post-infarct
patients are contraindications such as pacemakers, inter-
nal defibrillators, claustrophobia or hemodynamic and

Figure 4 T2-weighted spin echo imaging in a patient with
inferior/inferolateral STEMI due to occluded right coronary
artery showing myocardial edema (green contours). The
hypointense zones within the edematous region likely represent
intramyocardial hemorrhage (blue contours).
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electrical instability. Also, there are concerns about the
use of gadolinium based contrast agents in patients with
advanced renal failure due to the risk of developing
nephrogenic systemic fibrosis [70]. When planning a
trial in myocardial infarction with CMR endpoints, one
should be aware that these factors are often defined as
exclusion criteria. Even in the cohort finally randomized,
5-10% of patients will eventually not undergo CMR
examination for various reasons [25,48]. Furthermore, in
patients with atrial fibrillation or significant ventricular
ectopy, there can be degradation in image quality.

Randomized controlled STEMI trials with primary CMR
endpoints
Table 1 summarizes published randomized controlled
trials for the treatment of myocardial infarction in the

acute setting using CMR parameters as a primary study
endpoint (restricted to trials published until December
2010 and listed in MEDLINE). Trials with a non-CMR pri-
mary endpoint or those not defining the primary endpoint
were excluded. Numerous further studies are currently
being conducted.

Summary and conclusions
CMR is a safe technique, even in the first days after infarc-
tion and offers a variety of established and novel para-
meters potentially suitable as surrogate endpoints in
clinical trials of STEMI. It allows the evaluation of func-
tion, infarct extent, salvaged myocardium and microvascu-
lar obstruction, and can be acquired easily within 30 to
40 minutes. The choice of marker is naturally dependent
on the specific question of the trial to be conducted.

Table 1 Randomized controlled trials for the treatment of myocardial infarction in the acute setting using CMR
parameters as a primary study endpoint (sorted by date of publication)

Primary CMR endpoint Study Treatment Number of
patients

Year
published

Myocardial salvage index at days 2-4 Thiele et al. (LIPSIA-N-ACC
study)[48]

High-dose N-acetylcysteine 251 2010

LV endsystolic volume index at 10-14
weeks

Abbate et al.[71] Interleukin-1 blockade with anakinra 10 2010

LV ejection fraction at 6 months Wöhrle et al.[72] Autologous intracoronary bone-marrow cell
therapy

42 2010

Myocardial salvage at 3 months Lonborg et al.[47] Ischemic postconditioning 118 2010

Infarct size at 4-6 months Haeck et al.[73] Proximal embolic protection and thrombus
aspiration

206 2010

Infarct size and LV ejection fraction at
90 days

Patel et al. (APEX-AMI trial)
[74]

Pexelizumab (anti-C5 complement antibody) 99 2010

LV endsystolic volume index at 24
weeks

Weir et al.[75] Eplerenone 100 2009

LV ejection fraction at 6 months Tendera et al. (REGENT study)
[76]

Intracoronary infusion of bone-marrow
derived selected CD34+CXCR4+ cells versus
non-selected mononuclear cells

200 2009

Infarct size at 1 month Song et al.[77] Upstream high-dose tirofiban treatment 2009

LV ejection fraction at 4 and 12 months Dill et al.[78] Intracoronary administration of bone-
marrow derived progenitor cells

54 2009

Infarct size after 5 days Atar et al. (FIRE study)[79] FX06 234 2009

Infarct size and microvascular
obstruction at 2 days

Thiele et al.[25] Intracoronary versus intravenous bolus
abciximab application

144 2008

Infarct size at 3 days Hahn et al.[80] Distal protection device 39 2007

Global and regional myocardial function
at 3 months

Engelmann et al.[81] Granulocyte colony-stimulating factor 44 2006

LV ejection fraction at 6 months Kang et al. (MAGIC Cell-3-DES
trial)[82]

Intracoronary infusion of mobilized
peripheral blood stem cells

96 2006

Systolic wall thickening at 6 months Ripa et al. (STEMMI trial)[83] Granulocyte colony-stimulating factor 78 2006

LV ejection fraction at 4 months Janssens[84] Transfer of autologous bone-marrow
derived stem cells in the infarct-related
artery

67 2006

Infarct size at 6 months Thiele et al.[85] Pre-hospital combination-fibrinolysis plus
conventional care versus pre-hospital
combination-fibrinolysis plus facilitated
percutaneous coronary intervention

164 2005

LV ejection fraction at 6 months Wollert et al. (BOOST trial)[86] Intracoronary transfer of autologous bone-
marrow cells

60 2004

LV volumes at 6 months Darasz et al.[87] Captopril and xamoterol 70 1995

Abbreviations: CMR = cardiac magnetic resonance; LV = left ventricular.
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However, choosing the most appropriate surrogate end-
point for the question at hand cannot restrict itself to a
biologically plausible association between surrogate and
clinical outcome. Other qualities of validity must also be
demonstrated. Furthermore, surrogate endpoints should
demonstrate high measurement reliability which can be
considered a specific strength of most CMR parameters.
Definite proof of validity is more difficult to establish.
Therefore, the use of CMR surrogate endpoints in trials of
myocardial infarction mandates a thoughtful interpretation
of study results. It seems reasonable to use CMR surrogate
endpoint studies mainly to prove fundamental biological
activity and to evaluate pathophysiological mechanisms of
novel therapeutic interventions. This can ultimately guide
the decision whether to conduct larger studies with end-
points truly relevant to patients. Further studies should
focus to address some of the limitations of CMR end-
points in myocardial infarction.

List of abbreviations
STEMI: ST-elevation myocardial infarction; CMR: Cardiac magnetic resonance;
ICH: International Conference on Harmonisation; SPECT: Single photon
emission computed tomography; TSE: Turbo spin echo; SSFP: steady state
free precession.
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